Pylnstaller Documentation
Release 5.13.2

David Cortesi

2023-08-29

CONTENTS

1 Quickstart 3
2 Contents: 5
2.1 ReqUirements v v vt e e e e e e e e e e e e e e e e e e e 5
22 LHCENSE o e e e e 6
23 HowToContribute e e 6
24 HowtoInstall Pylnstaller e 7
2.5 What PylInstaller Does and How It Does It 9
2.6 Using PylInstaller e e e e e e e e e e e 12
2.7 Run-time Information e 25
2.8 Using Spec Files 0 e e e e e e e 29
2.9 Notes about specific Features o L o 40
2.10 When Things Go Wrong i i e 62
211 Advanced Topics o ot e e e e e e e e e 67
2.12 Understanding PyInstaller Hooks 75
2.13 Hook Configuration Options i e e 94
2.14 Building the Bootloader L e 100
2.15 Changelog for Pylnstaller e 107
2,16 CreditS o e e e e 172
207 ManPages e e e e e e e e e 187
2.18 Development Guide L e e e e e e e e e e 196
2.19 Indicesandtables 206
Python Module Index 207
Index 209

Pyinstaller Documentation, Release 5.13.2

Version Pylnstaller 5.13.2
Homepage https://pyinstaller.org/
Contact pyinstaller @googlegroups.com

Authors David Cortesi, based on structure by Giovanni Bajo & William Caban, based on Gordon McMil-
lan’s manual

Copyright This document has been placed in the public domain.

PyInstaller bundles a Python application and all its dependencies into a single package. The user can run the packaged
app without installing a Python interpreter or any modules. PylInstaller supports Python 3.7 and newer, and correctly
bundles many major Python packages such as numpy, matplotlib, PyQt, wxPython, and others.

Pylnstaller is tested against Windows, MacOS X, and Linux. However, it is not a cross-compiler; to make a Windows
app you run PylInstaller on Windows, and to make a Linux app you run it on Linux, etc. x PyInstaller has been used suc-
cessfully with AIX, Solaris, FreeBSD and OpenBSD but testing against them is not part of our continuous integration
tests, and the development team offers no guarantee (all code for these platforms comes from external contributions)
that PyInstaller will work on these platforms or that they will continue to be supported.

CONTENTS 1

https://pyinstaller.org/
mailto:pyinstaller@googlegroups.com

Pyinstaller Documentation, Release 5.13.2

2 CONTENTS

CHAPTER
ONE

QUICKSTART

Make sure you have the Requirements installed, and then install PyInstaller from PyPI:

pip install -U pyinstaller

Open a command prompt/shell window, and navigate to the directory where your .py file is located, then build your
app with the following command:

pyinstaller your_program.py

Your bundled application should now be available in the dist folder.

Pyinstaller Documentation, Release 5.13.2

4 Chapter 1. Quickstart

CHAPTER
TWO

CONTENTS:

2.1 Requirements

2.1.1 Windows

PylInstaller runs in Windows 8 and newer. It can create graphical windowed apps (apps that do not need a command
window).

2.1.2 macOS

PylInstaller runs on macOS 10.15 (Catalina) or newer. It can build graphical windowed apps (apps that do not use a
terminal window). PylInstaller builds apps that are compatible with the macOS release in which you run it, and following
releases. It can build x86_64, arm64 or hybrid universal2 binaries on macOS machines of either architecture. See
macOS multi-arch support for details.

2.1.3 GNU/Linux

Pylnstaller requires the 1dd terminal application to discover the shared libraries required by each program or shared
library. It is typically found in the distribution-package glibc or libc-bin.

It also requires the objdump terminal application to extract information from object files and the objcopy terminal
application to append data to the bootloader. These are typically found in the distribution-package binutils.

2.1.4 AIX, Solaris, FreeBSD and OpenBSD

Users have reported success running PyInstaller on these platforms, but it is not tested on them. The 1dd and ob jdump
commands are needed.

Each bundled app contains a copy of a bootloader, a program that sets up the application and starts it (see 7he Bootstrap
Process in Detail).

When you install PylInstaller using pip, the setup will attempt to build a bootloader for this platform. If that succeeds,
the installation continues and PylInstaller is ready to use.

If the pip setup fails to build a bootloader, or if you do not use pip to install, you must compile a bootloader manually.
The process is described under Building the Bootloader .

http://www.pip-installer.org/
http://www.pip-installer.org/
http://www.pip-installer.org/

Pyinstaller Documentation, Release 5.13.2

2.2 License

PylInstaller is distributed under a dual-licensing scheme using both the GPL 2.0 License, with an exception that allows
you to use it to build commercial products - listed below - and the Apache License, version 2.0, which only applies
to a certain few files. To see which files the Apache license applies to, and to which the GPL applies, please see the
COPYING.txt file which can be found in the root of the PyInstaller source repository.

A quick summary of the GPL license exceptions:
¢ You may use PylInstaller to bundle commercial applications out of your source code.

* The executable bundles generated by PylInstaller from your source code can be shipped with whatever li-
cense you want, as long as it complies with the licenses of your dependencies.

* You may modify PyInstaller for your own needs but changes to the Pylnstaller source code fall under the
terms of the GPL license. That is, if you distribute your modifications you must distribute them under
GPL terms.

2.3 How To Contribute

You are very welcome to contribute! Pylnstaller is a maintained by a group of volunteers. All contributions, like
community support, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

Pylnstaller is an free software project that is created and maintained by volunteers. It lives-and-dies based on the
support it receives from others, and the fact that you’re even considering contributing to PylInstaller is very generous
of you.

Since as of now all core-developers are working on PylInstaller in their spare-time, you can help us (and the project)
most if you are following some simple guidelines. The higher the quality of your contribution, the less work we have
incorporating them and the earlier we will be able to incorporate them :-)

If you get stuck at any point you can create a ticket on GitHub.

For more about our development process and methods, see the Development Guide.

2.3.1 Some ideas how you can help

Some ideas how you can help:
¢ Answer support tickets: Often the user just needs to be pointed to the fitting section in the manual.

» Triage open issues, which means: read the report; ask the issue requester to provide missing information and
to try with the latest development version; ensure there is a minimal example; ensure the issue-reporter followed
all steps in When Things Go Wrong. If you are able reproduce the problem and track down the bug, this would
be a great help for the core developers.

* Help improving the documentation: There is a list of documentation issues you can pick one from. Please
provide a pull-request for your changes. Read more »»

* Pick an issue requesting a pull-request and provide one.

* Review pull requests: Are the commit messages following the guideline Please Write Good Commit Messages;
do all new files have a copyright-header (esp. for hooks this is often missing); is the code okay; etc.

* Scan the list of open issues and pick some task :-)

6 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/new
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Akind%3Asupport
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Aarea%3Adocumentation
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3A%22pull-request+wanted%22
https://github.com/pyinstaller/pyinstaller/pulls
https://github.com/pyinstaller/pyinstaller/issues

Pyinstaller Documentation, Release 5.13.2

Thank you very much!

If you plan to contribute frequently, just ask for write access to the main git repository. We would be glad to welcome
you in the team!

2.4 How to Install Pylnstaller

Pylnstaller is available as a regular Python package. The source archives for released versions are available from PyPi,
but it is easier to install the latest version using pip:

pip install pyinstaller

To upgrade existing PyInstaller installation to the latest version, use:

pip install --upgrade pyinstaller

To install the current development version, use:

pip install https://github.com/pyinstaller/pyinstaller/tarball/develop

To install directly using pip’s built-in git checkout support, use:

pip install git+https://github.com/pyinstaller/pyinstaller

or to install specific branch (e.g., develop):

pip install git+https://github.com/pyinstaller/pyinstaller@develop

2.4.1 Installing from the source archive

The source code archive for released versions of PyInstaller are available at PyPI and on PylInstaller Downloads page.

Note: Even though the source archive provides the setup . py script, installation via python setup.py install has
been deprecated and should not be used anymore. Instead, run pip install . from the unpacked source directory,
as described below.

The installation procedure is:
1. Unpack the source archive.
2. Move into the unpacked source directory.

3. Run pip install . from the unpacked source directory. If installing into system-wide python installa-
tion, administrator privilege is required.

The same procedure applies to installing from manual git checkout:

git clone https://github.com/pyinstaller/pyinstaller
cd pyinstaller
pip install .

If you intend to make changes to the source code and want them to take effect immediately, without re-installing the
package each time, you can install it in editable mode:

2.4. How to Install Pylnstaller 7

https://pypi.python.org/pypi/PyInstaller/
http://www.pip-installer.org/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases

Pyinstaller Documentation, Release 5.13.2

pip install -e .

For platforms other than Windows, GNU/Linux and macOS, you must first build the bootloader for your platform:
see Building the Bootloader. After the bootloader has been built, use the pip install . command to complete the
installation.

2.4.2 Verifying the installation

On all platforms, the command pyinstaller should now exist on the execution path. To verify this, enter the com-
mand:

pyinstaller --version

The result should resemble 4.n for a released version, and 4 .n.dev0-xxxxxx for a development branch.
If the command is not found, make sure the execution path includes the proper directory:

* Windows: C:\PythonXY\Scripts where XY stands for the major and minor Python version number, for exam-
ple C:\Python38\Scripts for Python 3.8)

¢ GNU/Linux: /usr/bin/

* macOS (using the default Apple-supplied Python) /usr/bin

* macOS (using Python installed by homebrew) /usr/local/bin
* macOS (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path% and in other systems, echo $PATH.

Note: If you cannot use the pyinstaller command due to the scripts directory not being in PATH, you can in-
stead invoke the PyInstaller module, by running python -m PyInstaller (pay attention to the module name,
which is case sensitive). This form of invocation is also useful when you have Pylnstaller installed in multiple python
environments, and you cannot be sure from which installation the pyinstaller command will be ran.

2.4.3 Installed commands

The complete installation places these commands on the execution path:
e pyinstaller is the main command to build a bundled application. See Using Pylnstaller.
» pyi-makespec is used to create a spec file. See Using Spec Files.
* pyi-archive_viewer is used to inspect a bundled application. See Inspecting Archives.
* pyi-bindepend is used to display dependencies of an executable. See Inspecting Executables.

* pyi-grab_version is used to extract a version resource from a Windows executable. See Capturing Windows
Version Data.

* pyi-set_version can be used to apply previously-extracted version resource to an existing Windows exe-
cutable.

8 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

2.5 What Pylnstaller Does and How It Does It

This section covers the basic ideas of PylInstaller. These ideas apply to all platforms. Options and special cases are
covered below, under Using Pylnstaller.

PylInstaller reads a Python script written by you. It analyzes your code to discover every other module and library your
script needs in order to execute. Then it collects copies of all those files — including the active Python interpreter! —
and puts them with your script in a single folder, or optionally in a single executable file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application as a single-file executable,

pyinstaller --onefile --windowed myscript.py

You distribute the bundle as a folder or file to other people, and they can execute your program. To your users, the app
is self-contained. They do not need to install any particular version of Python or any modules. They do not need to
have Python installed at all.

Note: The output of PyInstaller is specific to the active operating system and the active version of Python. This means
that to prepare a distribution for:

* adifferent OS
* adifferent version of Python
* a 32-bit or 64-bit OS

you run PylInstaller on that OS, under that version of Python. The Python interpreter that executes PylInstaller is part
of the bundle, and it is specific to the OS and the word size.

2.5.1 Analysis: Finding the Files Your Program Needs
What other modules and libraries does your script need in order to run? (These are sometimes called its “dependen-
cies”.

To find out, PyInstaller finds all the import statements in your script. It finds the imported modules and looks in them
for import statements, and so on recursively, until it has a complete list of modules your script may use.

PylInstaller understands the “egg” distribution format often used for Python packages. If your script imports a module
from an “egg”, Pylnstaller adds the egg and its dependencies to the set of needed files.

PylInstaller also knows about many major Python packages, including the GUI packages Qt (imported via PyQt or
PySide), WxPython, Tklnter, matplotlib, and other major packages. For a complete list, see Supported Packages.

Some Python scripts import modules in ways that PyInstaller cannot detect: for example, by using the __import__()
function with variable data, using importlib.import_module (), or manipulating the sys.path value at run time.
If your script requires files that PyInstaller does not know about, you must help it:

* You can give additional files on the pyinstaller command line.
* You can give additional import paths on the command line.

* You can edit the myscript.spec file that PyInstaller writes the first time you run it for your script. In the spec
file you can tell PyInstaller about code modules that are unique to your script.

2.5. What Pylnstaller Does and How It Does It 9

http://www.qt-project.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/wiki/About-PySide
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
https://matplotlib.org
https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages
https://docs.python.org/3/library/functions.html#import__
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/sys.html#sys.path

Pyinstaller Documentation, Release 5.13.2

* You can write “hook” files that inform PyInstaller of hidden imports. If you create a “hook” for a package that
other users might also use, you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files, you can tell PyInstaller to include them in the bundle as well.
You do this by modifying the spec file, an advanced topic that is covered under Using Spec Files.

In order to locate included files at run time, your program needs to be able to learn its path at run time in a way that
works regardless of whether or not it is running from a bundle. This is covered under Run-time Information.

Pylnstaller does not include libraries that should exist in any installation of this OS. For example in GNU/Linux, it
does not bundle any file from /1ib or /usr/1ib, assuming these will be found in every system.

2.5.2 Bundling to One Folder

When you apply PylInstaller to myscript.py the default result is a single folder named myscript. This folder contains
all your script’s dependencies, and an executable file also named myscript (myscript.exe in Windows).

You compress the folder tomyscript.zip and transmit it to your users. They install the program simply by unzipping
it. A user runs your app by opening the folder and launching the myscript executable inside it.

It is easy to debug problems that occur when building the app when you use one-folder mode. You can see exactly what
files PylInstaller collected into the folder.

Another advantage of a one-folder bundle is that when you change your code, as long as it imports exactly the same
set of dependencies, you could send out only the updated myscript executable. That is typically much smaller than
the entire folder. (If you change the script so that it imports more or different dependencies, or if the dependencies are
upgraded, you must redistribute the whole bundle.)

A small disadvantage of the one-folder format is that the one folder contains a large number of files. Your user must
find the myscript executable in a long list of names or among a big array of icons. Also your user can create a problem
by accidentally dragging files out of the folder.

2.5.3 How the One-Folder Program Works
A bundled program always starts execution in the PyInstaller bootloader. This is the heart of the myscript executable
in the folder.

The Pylnstaller bootloader is a binary executable program for the active platform (Windows, GNU/Linux, macOS,
etc.). When the user launches your program, it is the bootloader that runs. The bootloader creates a temporary Python
environment such that the Python interpreter will find all imported modules and libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter to execute your script. Everything follows normally from there,
provided that all the necessary support files were included.

(This is an overview. For more detail, see The Bootstrap Process in Detail below.)

2.5.4 Bundling to One File

PylInstaller can bundle your script and all its dependencies into a single executable named myscript (myscript.exe
in Windows).

The advantage is that your users get something they understand, a single executable to launch. A disadvantage is that
any related files such as a README must be distributed separately. Also, the single executable is a little slower to start
up than the one-folder bundle.

Before you attempt to bundle to one file, make sure your app works correctly when bundled to one folder. It is is much
easier to diagnose problems in one-folder mode.

10 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

2.5.5 How the One-File Program Works

The bootloader is the heart of the one-file bundle also. When started it creates a temporary folder in the appropriate
temp-folder location for this OS. The folder is named _MEIxxxxxx, where xxxxxx is a random number.

The one executable file contains an embedded archive of all the Python modules used by your script, as well as com-
pressed copies of any non-Python support files (e.g. .so files). The bootloader uncompresses the support files and
writes copies into the the temporary folder. This can take a little time. That is why a one-file app is a little slower to
start than a one-folder app.

Note: Pylnstaller currently does not preserve file attributes. see #3926.

After creating the temporary folder, the bootloader proceeds exactly as for the one-folder bundle, in the context of the
temporary folder. When the bundled code terminates, the bootloader deletes the temporary folder.

(In GNU/Linux and related systems, it is possible to mount the /tmp folder with a “no-execution” option. That option
is not compatible with a Pylnstaller one-file bundle. It needs to execute code out of /tmp. If you know the target
environment, --runtime-tmpdir might be a workaround.)

Because the program makes a temporary folder with a unique name, you can run multiple copies of the app; they won’t
interfere with each other. However, running multiple copies is expensive in disk space because nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes or is killed (kill -9 on Unix, killed by the Task Manager
on Windows, “Force Quit” on macOS). Thus if your app crashes frequently, your users will lose disk space to multiple
_MEIxxxxxx temporary folders.

It is possible to control the location of the _MEIxxxxxx folder by using the --runtime-tmpdir command line option.
The specified path is stored in the executable, and the bootloader will create the _MEIxxxxxx folder inside of the
specified folder. Please see Defining the Extraction Location for details.

Note: Do not give administrator privileges to a one-file executable on Windows (“Run this program as an administra-
tor”). There is an unlikely but not impossible way in which a malicious attacker could corrupt one of the shared libraries
in the temp folder while the bootloader is preparing it. When distributing a privileged program in general, ensure that
file permissions prevent shared libraries or executables from being tampered with. Otherwise, an unelevated process
which has write access to these files may escalate privileges by modifying them.

Note: Applications that use os.setuid() may encounter permissions errors. The temporary folder where the bundled
app runs may not being readable after setuid is called. If your script needs to call seruid, it may be better to use
one-folder mode so as to have more control over the permissions on its files.

2.5.6 Using a Console Window

By default the bootloader creates a command-line console (a terminal window in GNU/Linux and macOS, a command
window in Windows). It gives this window to the Python interpreter for its standard input and output. Your script’s use
of print and input() are directed here. Error messages from Python and default logging output also appear in the
console window.

An option for Windows and macOS is to tell PyInstaller to not provide a console window. The bootloader starts Python
with no target for standard output or input. Do this when your script has a graphical interface for user input and can
properly report its own diagnostics.

2.5. What Pylnstaller Does and How It Does It 11

https://github.com/pyinstaller/pyinstaller/issues/3926

Pyinstaller Documentation, Release 5.13.2

As noted in the CPython tutorial Appendix, for Windows a file extension of .pyw suppresses the console window
that normally appears. Likewise, a console window will not be provided when using a myscript.pyw script with
PyInstaller.

2.5.7 Hiding the Source Code

The bundled app does not include any source code. However, Pylnstaller bundles compiled Python scripts (. pyc files).
These could in principle be decompiled to reveal the logic of your code.

If you want to hide your source code more thoroughly, one possible option is to compile some of your modules with
Cython. Using Cython you can convert Python modules into C and compile the C to machine language. PylInstaller
can follow import statements that refer to Cython C object modules and bundle them.

2.6 Using Pylnstaller

The syntax of the pyinstaller command is:
pyinstaller [options] script [script ...] | specfile

In the most simple case, set the current directory to the location of your program myscript.py and execute:

pyinstaller myscript.py

Pylnstaller analyzes myscript.py and:
* Writes myscript.spec in the same folder as the script.
¢ Creates a folder build in the same folder as the script if it does not exist.
» Writes some log files and working files in the build folder.
* Creates a folder dist in the same folder as the script if it does not exist.
e Writes the myscript executable folder in the dist folder.

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line. If you name more, all are analyzed and included in the output.
However, the first script named supplies the name for the spec file and for the executable folder or file. Its code is the
first to execute at run-time.

For certain uses you may edit the contents of myscript.spec (described under Using Spec Files). After you do this,
you name the spec file to Pylnstaller instead of the script:

pyinstaller myscript.spec

The myscript.spec file contains most of the information provided by the options that were specified when
pyinstaller (or pyi-makespec) was run with the script file as the argument. You typically do not need to specify
any options when running pyinstaller with the spec file. Only a few command-line options have an effect when
building from a spec file.

You may give a path to the script or spec file, for example
pyinstaller options... ~/myproject/source/myscript.py
or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

12 Chapter 2. Contents:

https://docs.python.org/3/tutorial/appendix.html#executable-python-scripts
http://www.cython.org/

Pyinstaller Documentation, Release 5.13.2

2.6.1 Options

A full list of the pyinstaller command’s options are as follows:

Positional Arguments

scriptname
Name of scriptfiles to be processed or exactly one .spec file. If a .spec file is specified, most options are unnec-
essary and are ignored.

Optional Arguments

-h, --help
show this help message and exit

-v, --version
Show program version info and exit.

--distpath DIR
Where to put the bundled app (default: ./dist)

--workpath WORKPATH
Where to put all the temporary work files, .log, .pyz and etc. (default: ./build)

-y, --noconfirm
Replace output directory (default: SPECPATH/dist/SPECNAME) without asking for confirmation

--upx-dir UPX_DIR
Path to UPX utility (default: search the execution path)
-a, --ascii
Do not include unicode encoding support (default: included if available)

--clean
Clean Pylnstaller cache and remove temporary files before building.

--log-level LEVEL
Amount of detail in build-time console messages. LEVEL may be one of TRACE, DEBUG, INFO, WARN,
DEPRECATION, ERROR, FATAL (default: INFO). Also settable via and overrides the PYI_LOG_LEVEL
environment variable.

What To Generate

-D, --onedir
Create a one-folder bundle containing an executable (default)

-F, --onefile
Create a one-file bundled executable.

--specpath DIR
Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME
Name to assign to the bundled app and spec file (default: first script’s basename)

2.6. Using Pylinstaller 13

Pyinstaller Documentation, Release 5.13.2

What To Bundle, Where To Search

--add-data <SRC;DEST or SRC:DEST>
Additional non-binary files or folders to be added to the executable. The path separator is platform specific,
os.pathsep (which is ; on Windows and : on most unix systems) is used. This option can be used multiple
times.

--add-binary <SRC;DEST or SRC:DEST>
Additional binary files to be added to the executable. See the --add-data option for more details. This option
can be used multiple times.

-p DIR, --paths DIR
A path to search for imports (like using PYTHONPATH). Multiple paths are allowed, separated by ': ', or use
this option multiple times. Equivalent to supplying the pathex argument in the spec file.

--hidden-import MODULENAME, --hiddenimport MODULENAME
Name an import not visible in the code of the script(s). This option can be used multiple times.

--collect-submodules MODULENAME
Collect all submodules from the specified package or module. This option can be used multiple times.

--collect-data MODULENAME, --collect-datas MODULENAME
Collect all data from the specified package or module. This option can be used multiple times.

--collect-binaries MODULENAME
Collect all binaries from the specified package or module. This option can be used multiple times.

--collect-all MODULENAME
Collect all submodules, data files, and binaries from the specified package or module. This option can be used
multiple times.

--copy-metadata PACKAGENAME
Copy metadata for the specified package. This option can be used multiple times.

--recursive-copy-metadata PACKAGENAME
Copy metadata for the specified package and all its dependencies. This option can be used multiple times.

--additional-hooks-dir HOOKSPATH
An additional path to search for hooks. This option can be used multiple times.

--runtime-hook RUNTIME_HOOKS
Path to a custom runtime hook file. A runtime hook is code that is bundled with the executable and is executed
before any other code or module to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES
Optional module or package (the Python name, not the path name) that will be ignored (as though it was not
found). This option can be used multiple times.

--splash IMAGE_FILE
(EXPERIMENTAL) Add an splash screen with the image IMAGE_FILE to the application. The splash screen
can display progress updates while unpacking.

14 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

How To Generate

-d {all,imports,bootloader,noarchive}, --debug {all,imports,bootloader,noarchive}

Provide assistance with debugging a frozen application. This argument may be provided multiple times to select
several of the following options. - all: All three of the following options. - imports: specify the -v option to the
underlying Python interpreter, causing it to print a message each time a module is initialized, showing the place
(filename or built-in module) from which it is loaded. See https://docs.python.org/3/using/cmdline.html#id4. -
bootloader: tell the bootloader to issue progress messages while initializing and starting the bundled app. Used
to diagnose problems with missing imports. - noarchive: instead of storing all frozen Python source files as an
archive inside the resulting executable, store them as files in the resulting output directory.

--python-option PYTHON_OPTION
Specify a command-line option to pass to the Python interpreter at runtime. Currently supports “v” (equivalent
to “—debug imports”), “u”, and “W <warning control>".

-s, --strip
Apply a symbol-table strip to the executable and shared libs (not recommended for Windows)

--noupx
Do not use UPX even if it is available (works differently between Windows and *nix)

--upx-exclude FILE
Prevent a binary from being compressed when using upx. This is typically used if upx corrupts certain binaries
during compression. FILE is the filename of the binary without path. This option can be used multiple times.

Windows And Mac Os X Specific Options

-c, --console, --nowindowed
Open a console window for standard i/o (default). On Windows this option has no effect if the first script is a
“pyw’ file.

-w, --windowed, --noconsole
Windows and Mac OS X: do not provide a console window for standard i/o. On Mac OS this also triggers
building a Mac OS .app bundle. On Windows this option is automatically set if the first script is a ‘.pyw’ file.
This option is ignored on *NIX systems.

-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">, --icon <FILE.ico or FILE.
exe,ID or FILE.icns or Image or "NONE">
FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the icon with ID from an exe. FILE.icns:
apply the icon to the .app bundle on Mac OS. If an image file is entered that isn’t in the platform format (ico
on Windows, icns on Mac), Pylnstaller tries to use Pillow to translate the icon into the correct format (if Pillow
is installed). Use “NONE” to not apply any icon, thereby making the OS show some default (default: apply
Pylnstaller’s icon). This option can be used multiple times.

--disable-windowed-traceback
Disable traceback dump of unhandled exception in windowed (noconsole) mode (Windows and macOS only),
and instead display a message that this feature is disabled.

2.6. Using Pylinstaller 15

https://docs.python.org/3/using/cmdline.html#id4

Pyinstaller Documentation, Release 5.13.2

Windows Specific Options

--version-file FILE
Add a version resource from FILE to the exe.

-m <FILE or XML>, --manifest <FILE or XML>
Add manifest FILE or XML to the exe.

--no-embed-manifest
Generate an external .exe.manifest file instead of embedding the manifest into the exe. Applicable only to onedir
mode; in onefile mode, the manifest is always embedded, regardless of this option.

-r RESOURCE, --resource RESOURCE
Add or update a resource to a Windows executable. The RESOURCE is one to four items,
FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file or an exe/dll. For data files, at least TYPE and
NAME must be specified. LANGUAGE defaults to 0 or may be specified as wildcard * to update all resources
of the given TYPE and NAME. For exe/dll files, all resources from FILE will be added/updated to the final
executable if TYPE, NAME and LANGUAGE are omitted or specified as wildcard *. This option can be used
multiple times.

--uac-admin
Using this option creates a Manifest that will request elevation upon application start.

--uac-uiaccess
Using this option allows an elevated application to work with Remote Desktop.

Windows Side-By-Side Assembly Searching Options (Advanced)

--win-private-assemblies
Any Shared Assemblies bundled into the application will be changed into Private Assemblies. This means the
exact versions of these assemblies will always be used, and any newer versions installed on user machines at the
system level will be ignored.

--win-no-prefer-redirects
While searching for Shared or Private Assemblies to bundle into the application, PylInstaller will prefer not to
follow policies that redirect to newer versions, and will try to bundle the exact versions of the assembly.

Mac Os Specific Options

--argv-emulation
Enable argv emulation for macOS app bundles. If enabled, the initial open document/URL event is processed
by the bootloader and the passed file paths or URLs are appended to sys.argv.

--osx-bundle-identifier BUNDLE_IDENTIFIER
Mac OS .app bundle identifier is used as the default unique program name for code signing purposes. The
usual form is a hierarchical name in reverse DNS notation. For example: com.mycompany.department.appname
(default: first script’s basename)

--target-architecture ARCH, --target-arch ARCH
Target architecture (macOS only; valid values: x86_64, arm64, universal2). Enables switching between univer-
sal2 and single-arch version of frozen application (provided python installation supports the target architecture).
If not target architecture is not specified, the current running architecture is targeted.

--codesign-identity IDENTITY
Code signing identity (macOS only). Use the provided identity to sign collected binaries and generated exe-
cutable. If signing identity is not provided, ad- hoc signing is performed instead.

16 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

--osx-entitlements-file FILENAME
Entitlements file to use when code-signing the collected binaries (macOS only).

Rarely Used Special Options

--runtime-tmpdir PATH
Where to extract libraries and support files in onefile-mode. If this option is given, the bootloader will ignore
any temp-folder location defined by the run-time OS. The _MEIxxxxxx-folder will be created here. Please use
this option only if you know what you are doing.

--bootloader-ignore-signals
Tell the bootloader to ignore signals rather than forwarding them to the child process. Useful in situations where
for example a supervisor process signals both the bootloader and the child (e.g., via a process group) to avoid
signalling the child twice.

2.6.2 Shortening the Command

Because of its numerous options, a full pyinstaller command can become very long. You will run the same com-
mand again and again as you develop your script. You can put the command in a shell script or batch file, using line
continuations to make it readable. For example, in GNU/Linux:

pyinstaller --noconfirm --log-level=WARN \
--onefile --nowindow \
--add-data="README:." \
--add-data="imagel.png:img" \
--add-binary="1ibfoo.so:1ib" \
--hidden-import=secretl \
--hidden-import=secret2 \
--upx-dir=/usr/local/share/ \
myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN *
--onefile --nowindow *
--add-data="README;." 4
--add-data="imagel.png;img" *
--add-binary="1ibfoo.so;1lib" *
--hidden-import=secretl *
--hidden-import=secret2 *
--icon=..\MLNMFLCN.ICO *
myscript.spec

2.6. Using Pylinstaller 17

Pyinstaller Documentation, Release 5.13.2

2.6.3 Running Pyinstaller from Python code

If you want to run PylInstaller from Python code, you can use the run function defined in PyInstaller.__main__.
For instance, the following code:

import PyInstaller.__main__

PyInstaller.__main__.run([
'my_script.py',
'--onefile',
'—--windowed'

D

Is equivalent to:

pyinstaller my_script.py --onefile --windowed

2.6.4 Using UPX

UPX is a free utility for compressing executable files and libraries. It is available for most operating systems and can
compress a large number of executable file formats. See the UPX home page for downloads, and for the list of supported
file formats.

When UPX is available, Pylnstaller uses it to individually compress each collected binary file (executable, shared
library, or python extension) in order to reduce the overall size of the frozen application (the one-dir bundle directory,
or the one-file executable). The frozen application’s executable itself is not UPX-compressed (regardless of one-dir or
one-file mode), as most of its size comprises the embedded archive that already contains individually compressed files.

Pylnstaller looks for the UPX in the standard executable path(s) (defined by PATH environment variable), or in the
path specified via the --upx-dir command-line option. If found, it is used automatically. The use of UPX can be
completely disabled using the --noupx command-line option.

Note: UPX is currently used only on Windows. On other operating systems, the collected binaries are not processed
even if UPX is found. The shared libraries (e.g., the Python shared library) built on modern linux distributions seem to
break when processed with UPX, resulting in defunct application bundles. On macOS, UPX currently fails to process
.dylib shared libraries; furthermore the UPX-compressed files fail the validation check of the codesign utility, and
therefore cannot be code-signed (which is a requirement on the Apple M1 platform).

Excluding problematic files from UPX processing

Using UPX may end up corrupting a collected shared library. Known examples of such corruption are Windows DLLs
with Control Flow Guard (CFG) enabled, as well as Qt5 and Qt6 plugins. In such cases, individual files may be need
to be excluded from UPX processing, using the --upx-exclude option (or using the upx_exclude argument in the
.spec file).

Changed in version 4.2: PylInstaller detects CFG-enabled DLLs and automatically excludes them from UPX processing.
Changed in version 4.3: Pylnstaller automatically excludes Qt5 and Qt6 plugins from UPX processing.

Although Pylnstaller attempts to automatically detect and exclude some of the problematic files from UPX processing,
there are cases where the UPX excludes need to be specified manually. For example, 32-bit Windows binaries from the
PySide2 package (Qt5 DLLs and python extension modules) have been reported to be corrupted by UPX.

18 Chapter 2. Contents:

https://upx.github.io/
https://upx.github.io/
https://github.com/upx/upx/issues/398
https://github.com/upx/upx/issues/107
https://github.com/pyinstaller/pyinstaller/issues/4178#issuecomment-868985789

Pyinstaller Documentation, Release 5.13.2

Changed in version 5.0: Unlike earlier releases that compared the provided UPX-exclude names against basenames of
the collect binary files (and, due to incomplete case normalization, required provided exclude names to be lowercase
on Windows), the UPX-exclude pattern matching now uses OS-default case sensitivity and supports the wildcard (*)
operator. It also supports specifying (full or partial) parent path of the file.

The provided UPX exclude patterns are matched against source (origin) paths of the collected binary files, and the
matching is performed from right to left.

For example, to exclude Qt5 DLLs from the PySide2 package, use --upx-exclude "Qt*.dll", and to exclude the
python extensions from the PySide2 package, use --upx-exclude "PySide2*.pyd".

2.6.5 Splash Screen (Experimental)

Note: This feature is incompatible with macOS. In the current design, the splash screen operates in a secondary thread,
which is disallowed by the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

Some applications may require a splash screen as soon as the application (bootloader) has been started, because espe-
cially in onefile mode large applications may have long extraction/startup times, while the bootloader prepares every-
thing, where the user cannot judge whether the application was started successfully or not.

The bootloader is able to display a one-image (i.e. only an image) splash screen, which is displayed before the ac-
tual main extraction process starts. The splash screen supports non-transparent and hard-cut-transparent images as
background image, so non-rectangular splash screens can also be displayed.

This splash screen is based on Tcl/Tk, which is the same library used by the Python module tkinter. PyInstaller bundles
the dynamic libraries of tcl and tk into the application at compile time. These are loaded into the bootloader at startup
of the application after they have been extracted (if the program has been packaged as an onefile archive). Since the
file sizes of the necessary dynamic libraries are very small, there is almost no delay between the start of the application
and the splash screen. The compressed size of the files necessary for the splash screen is about 1.5 MB.

As an additional feature, text can optionally be displayed on the splash screen. This can be changed/updated from
within Python. This offers the possibility to display the splash screen during longer startup procedures of a Python
program (e.g. waiting for a network response or loading large files into memory). You can also start a GUI behind the
splash screen, and only after it is completely initialized the splash screen can be closed. Optionally, the font, color and
size of the text can be set. However, the font must be installed on the user system, as it is not bundled. If the font is not
available, a fallback font is used.

If the splash screen is configured to show text, it will automatically (as onefile archive) display the name of the file that
is currently being unpacked, this acts as a progress bar.

2.6.6 The pyi_splash Module

The splash screen is controlled from within Python by the pyi_splash module, which can be imported at runtime.
This module cannot be installed by a package manager because it is part of PyInstaller and is included as needed. This
module must be imported within the Python program. The usage is as follows:

import pyi_splash
Update the text on the splash screen
pyi_splash.update_text("PyInstaller is a great software!")

pyi_splash.update_text("Second time's a charm!")

Close the splash screen. It does not matter when the call

(continues on next page)

2.6. Using Pylinstaller 19

http://www.tcl.tk/
http://wiki.python.org/moin/TkInter

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

to this function is made, the splash screen remains open until
this function is called or the Python program is terminated.
pyi_splash.close()

Of course the import should beina try ... except block, in case the program is used externally as a normal Python
script, without a bootloader. For a detailed description see pyi_splash Module (Detailed).

2.6.7 Defining the Extraction Location

In rare cases, when you bundle to a single executable (see Bundling to One File and How the One-File Program
Works), you may want to control the location of the temporary directory at compile time. This can be done using the
--runtime-tmpdir option. If this option is given, the bootloader will ignore any temp-folder location defined by the
run-time OS. Please use this option only if you know what you are doing.

2.6.8 Supporting Multiple Platforms

If you distribute your application for only one combination of OS and Python, just install Pylnstaller like any other
package and use it in your normal development setup.

Supporting Multiple Python Environments

When you need to bundle your application within one OS but for different versions of Python and support libraries —
for example, a Python 3.6 version and a Python 3.7 version; or a supported version that uses Qt4 and a development
version that uses QtS — we recommend you use venv. With venv you can maintain different combinations of Python
and installed packages, and switch from one combination to another easily. These are called virtual environments or
venvs in short.

» Use venv to create as many different development environments as you need, each with its unique combination
of Python and installed packages.

* Install PyInstaller in each virtual environment.

 Use Pylnstaller to build your application in each virtual environment.
Note that when using venv, the path to the PylInstaller commands is:

* Windows: ENV_ROOT\Scripts

e Others: ENV_ROOT/bin

Under Windows, the pip-Win package makes it especially easy to set up different environments and switch between
them. Under GNU/Linux and macOS, you switch environments at the command line.

See PEP 405 and the official Python Tutorial on Virtual Environments and Packages for more information about Python
virtual environments.

20 Chapter 2. Contents:

https://docs.python.org/3/library/venv.html
https://sites.google.com/site/pydatalog/python/pip-for-windows
https://www.python.org/dev/peps/pep-0405
https://docs.python.org/3/tutorial/venv.html

Pyinstaller Documentation, Release 5.13.2

Supporting Multiple Operating Systems

If you need to distribute your application for more than one OS, for example both Windows and macOS, you must
install PyInstaller on each platform and bundle your app separately on each.

You can do this from a single machine using virtualization. The free virtualBox or the paid VMWare and Parallels
allow you to run another complete operating system as a “guest”. You set up a virtual machine for each “guest” OS. In
it you install Python, the support packages your application needs, and PyInstaller.

A File Sync & Share system like NextCloud is useful with virtual machines. Install the synchronization client in each
virtual machine, all linked to your synchronization account. Keep a single copy of your script(s) in a synchronized
folder. Then on any virtual machine you can run PylInstaller thus:

cd ~/NextCloud/project_folder/src # GNU/Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \
--distpath=path-to-local-dist-folder \
...other options as required... \
./myscript.py

Pylnstaller reads scripts from the common synchronized folder, but writes its work files and the bundled app in folders
that are local to the virtual machine.

If you share the same home directory on multiple platforms, for example GNU/Linux and macOS, you will need to set
the PYINSTALLER_CONFIG_DIR environment variable to different values on each platform otherwise PylInstaller
may cache files for one platform and use them on the other platform, as by default it uses a subdirectory of your home
directory as its cache location.

It is said to be possible to cross-develop for Windows under GNU/Linux using the free Wine environment. Further
details are needed, see How to Contribute.

2.6.9 Capturing Windows Version Data

A Windows app may require a Version resource file. A Version resource contains a group of data structures, some
containing binary integers and some containing strings, that describe the properties of the executable. For details see
the Microsoft Version Information Structures page.

Version resources are complex and some elements are optional, others required. When you view the version tab of a
Properties dialog, there’s no simple relationship between the data displayed and the structure of the resource. For this
reason Pylnstaller includes the pyi-grab_version command. It is invoked with the full path name of any Windows
executable that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents a Version resource in readable form to standard output. You can copy it from
the console window or redirect it to a file. Then you can edit the version information to adapt it to your program. Using
pyi-grab_version you can find an executable that displays the kind of information you want, copy its resource data,
and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters. (Unicode characters are allowed in
Version resource string fields.) Be sure to edit and save the text file in UTF-8 unless you are certain it contains only
ASCII string values.

Your edited version text file can be given with the --version-file option to pyinstaller or pyi-makespec. The
text data is converted to a Version resource and installed in the bundled app.

In a Version resource there are two 64-bit binary values, FileVersion and ProductVersion. In the version text file
these are given as four-element tuples, for example:

2.6. Using Pylinstaller 21

https://www.virtualbox.org
http://www.vmware.com/solutions/desktop/
http://www.parallels.com
https://en.wikipedia.org/wiki/Enterprise_file_synchronization_and_sharing
https://nextcloud.org
http://www.winehq.org/
https://pyinstaller.readthedocs.io/en/latest/contributing.html
http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx

Pyinstaller Documentation, Release 5.13.2

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

The elements of each tuple represent 16-bit values from most-significant to least-significant. For example the value
(2, 0, 4, 0) resolves to 0002000000040000 in hex.

You can also install a Version resource from a text file after the bundled app has been created, using the
pyi-set_version command:

pyi-set_version version_text_file executable_file

The pyi-set_version utility reads a version text file as written by pyi-grab_version, converts it to a Version
resource, and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version. You find it is Python code that creates
a VSVersionInfo object. The class definition for VSVersionInfo is found in utils/win32/versioninfo.py in
the PylInstaller distribution folder. You can write a program that imports versioninfo. In that program you can eval
the contents of a version info text file to produce a VSVersionInfo object. You can use the .toRaw() method of
that object to produce a Version resource in binary form. Or you can apply the unicode () function to the object to
reproduce the version text file.

2.6.10 Building macOS App Bundles

Under macOS, PylInstaller always builds a UNIX executable in dist. If you specify --onedir, the output is a folder
named myscript containing supporting files and an executable named myscript. If you specify --onefile, the
output is a single UNIX executable named myscript. Either executable can be started from a Terminal command line.
Standard input and output work as normal through that Terminal window.

If you specify --windowed with either option, the dist folder also contains a macOS application named myscript.
app.

As you probably know, an application is a special type of folder. The one built by Pylnstaller contains a folder always
named Contents which contains:

* A folder Frameworks which is empty.

* A folder Resources that contains an icon file.

e A file Info.plist that describes the app.

* A folder MacOS that contains the the executable and supporting files, just as in the --onedir folder.

Use the --icon argument to specify a custom icon for the application. It will be copied into the Resources folder.
(If you do not specify an icon file, PyInstaller supplies a file icon-windowed. icns with the PylInstaller logo.)

Use the --osx-bundle-identifier argument to add a bundle identifier. This becomes the CFBundleIdentifier
used in code-signing (see the Pylnstaller code signing recipe and for more detail, the Apple code signing overview
technical note).

You can add other items to the Info.plist by editing the spec file; see Spec File Options for a macOS Bundle below.

22 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing
https://developer.apple.com/library/mac/technotes/tn2206/_index.html

Pyinstaller Documentation, Release 5.13.2

2.6.11 Platform-specific Notes

GNU/Linux

Making GNU/Linux Apps Forward-Compatible

Under GNU/Linux, PyInstaller does not bundle 1ibc (the C standard library, usually glibc, the Gnu version) with the
app. Instead, the app expects to link dynamically to the 1ibc from the local OS where it runs. The interface between
any app and libc is forward compatible to newer releases, but it is not backward compatible to older releases.

For this reason, if you bundle your app on the current version of GNU/Linux, it may fail to execute (typically with a
runtime dynamic link error) if it is executed on an older version of GNU/Linux.

The solution is to always build your app on the oldest version of GNU/Linux you mean to support. It should continue
to work with the 1ibc found on newer versions.

The GNU/Linux standard libraries such as glibc are distributed in 64-bit and 32-bit versions, and these are not com-
patible. As a result you cannot bundle your app on a 32-bit system and run it on a 64-bit installation, nor vice-versa.
You must make a unique version of the app for each word-length supported.

Note that PyInstaller does bundle other shared libraries that are discovered via dependency analysis, such as lib-
stdc++.50.6, libfontconfig.so.1, libfreetype.so.6. These libraries may be required on systems where older (and thus
incompatible) versions of these libraries are available. On the other hand, the bundled libraries may cause issues when
trying to load a system-provided shared library that is linked against a newer version of the system-provided library.

For example, system-installed mesa DRI drivers (e.g., radeonsi_dri.so) depend on the system-provided version of lib-
stdc++.50.6. If the frozen application bundles an older version of libstdc++.50.6 (as collected from the build system),
this will likely cause missing symbol errors and prevent the DRI drivers from loading. In this case, the bundled lib-
stdc++.50.6 should be removed. However, this may not work on a different distribution that provides libstdc++.50.6
older than the one from the build system; in that case, the bundled version should be kept, because the system-provided
version may lack the symbols required by other collected binaries that depend on libstdc++.50.6.

Windows

The developer needs to take special care to include the Visual C++ run-time .dlls: Python 3.5+ uses Visual Studio 2015
run-time, which has been renamed into “Universal CRT* and has become part of Windows 10. For Windows Vista
through Windows 8.1 there are Windows Update packages, which may or may not be installed in the target-system. So
you have the following options:

1. Build on Windows 7 which has been reported to work.

2. Include one of the VCRedist packages (the redistributable package files) into your application’s installer. This is
Microsoft’s recommended way, see “Distributing Software that uses the Universal CRT* in the above-mentioned
link, numbers 2 and 3.

3. Install the Windows Software Development Kit (SDK) for Windows 10 and expand the .spec-file to include the
required DLLs, see “Distributing Software that uses the Universal CRT* in the above-mentioned link, number 6.

If you think, PyInstaller should do this by itself, please help improving Pylnstaller.

2.6. Using Pylinstaller 23

https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt/
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

Pyinstaller Documentation, Release 5.13.2

macOS

Making macOS apps Forward-Compatible

On macOS, system components from one version of the OS are usually compatible with later versions, but they may
not work with earlier versions. While PyInstaller does not collect system components of the OS, the collected 3rd party
binaries (e.g., python extension modules) are built against specific version of the OS libraries, and may or may not
support older OS versions.

As such, the only way to ensure that your frozen application supports an older version of the OS is to freeze it on the
oldest version of the OS that you wish to support. This applies especially when building with Homebrew python, as its
binaries usually explicitly target the running OS.

For example, to ensure compatibility with “Mojave” (10.14) and later versions, you should set up a full environment
(i.e., install python, Pylnstaller, your application’s code, and all its dependencies) in a copy of macOS 10.14, using a
virtual machine if necessary. Then use PylInstaller to freeze your application in that environment; the generated frozen
application should be compatible with that and later versions of macOS.

Building 32-bit Apps in macOS

Note: This section is largely obsolete, as support for 32-bit application was removed in macOS 10.15 Catalina (for
64-bit multi-arch support on modern versions of macOS, see /ere). However, Pylnstaller still supports building 32-bit
bootloader, and 32-bit/64-bit Python installers are still available from python.org for (some) versions of Python 3.7.

Older versions of macOS supported both 32-bit and 64-bit executables. Pylnstaller builds an app using the the word-
length of the Python used to execute it. That will typically be a 64-bit version of Python, resulting in a 64-bit executable.
To create a 32-bit executable, run Pylnstaller under a 32-bit Python.

To verify that the installed python version supports execution in either 64- or 32-bit mode, use the file command on
the Python executable:

$ file /usr/local/bin/python3

/usr/local/bin/python3: Mach-0 universal binary with 2 architectures
/usr/local/bin/python3 (for architecture i386): Mach-0 executable 1386
/usr/local/bin/python3 (for architecture x86_64): Mach-0 64-bit executable x86_64

The OS chooses which architecture to run, and typically defaults to 64-bit. You can force the use of either architecture
by name using the arch command:

$ /usr/local/bin/python3

Python 3.7.6 (v3.7.6:43364a7ae0®, Dec 18 2019, 14:12:53)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import Sys; Sys.maxsize

9223372036854775807

$ arch -i386 /usr/local/bin/python3
Python 3.7.6 (v3.7.6:43364a7ae®, Dec 18 2019, 14:12:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
2147483647

24 Chapter 2. Contents:

http://brew.sh/

Pyinstaller Documentation, Release 5.13.2

Note: Pylnstaller does not provide pre-built 32-bit bootloaders for macOS anymore. In order to use Pylnstaller with
32-bit python, you need to build the bootloader yourself, using an XCode version that still supports compiling 32-
bit. Depending on the compiler/toolchain, you may also need to explicitly pass --target-arch=32bit to the waf
command.

Getting the Opened Document Names

When user double-clicks a document of a type that is registered with your application, or when a user drags a document
and drops it on your application’s icon, macOS launches your application and provides the name(s) of the opened
document(s) in the form of an OpenDocument AppleEvent.

These events are typically handled via installed event handlers in your application (e.g., using Carbon API via ctypes,
or using facilities provided by UI toolkits, such as tkinter or PyQt5).

Alternatively, Pylnstaller also supports conversion of open document/URL events into arguments that are appended to
sys.argv. This applies only to events received during application launch, i.e., before your frozen code is started. To
handle events that are dispatched while your application is already running, you need to set up corresponding event
handlers.

For details, see this section.

AIX

Depending on whether Python was build as a 32-bit or a 64-bit executable you may need to set or unset the environment
variable OBJECT_MODE. To determine the size the following command can be used:

$ python -c "import sys; print(sys.maxsize <= 2**32)"
True

When the answer is True (as above) Python was build as a 32-bit executable.

When working with a 32-bit Python executable proceed as follows:

$ unset OBJECT_MODE
$ pyinstaller <your arguments>

When working with a 64-bit Python executable proceed as follows:

$ export OBJECT_MODE=64
$ pyinstaller <your arguments>

2.7 Run-time Information

Your app should run in a bundle exactly as it does when run from source. However, you may want to learn at run-time
whether the app is running from source or whether it is bundled (“frozen”). You can use the following code to check
“are we bundled?”:

import sys
if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):
print('running in a PyInstaller bundle')

(continues on next page)

2.7. Run-time Information 25

https://docs.python.org/3/library/sys.html#sys.argv

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

else:
print('running in a normal Python process')

When a bundled app starts up, the bootloader sets the sys. frozen attribute and stores the absolute path to the bundle
folder in sys._MEIPASS. For a one-folder bundle, this is the path to that folder. For a one-file bundle, this is the path
to the temporary folder created by the bootloader (see How the One-File Program Works).

When your app is running, it may need to access data files in one of the following locations:
* Files that were bundled with it (see Adding Data Files).
* Files the user has placed with the app bundle, say in the same folder.
« Files in the user’s current working directory.

The program has access to several variables for these uses.

2.7.1 Using __file__

When your program is not bundled, the Python variable __file__ refers to the current path of the module it is contained
in. When importing a module from a bundled script, the PyInstaller bootloader will set the module’s __file__ attribute
to the correct path relative to the bundle folder.

For example, if you import mypackage .mymodule from a bundled script, then the __file__ attribute of that module
will be sys._MEIPASS + 'mypackage/mymodule.pyc'. So if you have a data file at mypackage/file.dat that
you added to the bundle at mypackage/file.dat, the following code will get its path (in both the non-bundled and
the bundled case):

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file_), 'file.dat'))

In the main script (the __main__ module) itself, the __file__ variable contains path to the script file. In Python 3.8
and earlier, this path is either absolute or relative (depending on how the script was passed to the python interpreter),
while in Python 3.9 and later, it is always an absolute path. In the bundled script, the PyInstaller bootloader always
sets the __file__ variable inside the __main__ module to the absolute path inside the bundle directory, as if the
byte-compiled entry-point script existed there.

For example, if your entry-point script is called program.py, then the __file__ attribute inside the bundled script
will point to sys._MEIPASS + 'program.py'. Therefore, locating a data file relative to the main script can be either
done directly using sys._MEIPASS or via the parent path of the __file__ inside the main script.

The following example will get the path to a file other-file.dat located next to the main script if not bundled and
inside the bundle folder if it is bundled:

from os import path
bundle_dir = path.abspath(path.dirname(__file__))
path_to_dat = path.join(bundle_dir, 'other-file.dat')

Or, if you’d rather use pathlib:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("other-file.dat")

Changed in version 4.3: Formerly, the __file__ attribute of the entry-point script (the __main__ module) was set
to only its basename rather than its full (absolute or relative) path within the bundle directory. Therefore, Pylnstaller
documentation used to suggest sys._MEIPASS as means for locating resources relative to the bundled entry-point
script. Now, __file__ is always set to the absolute full path, and is the preferred way of locating such resources.

PYp—

26 Chapter 2. Contents:

https://docs.python.org/3/library/pathlib.html

Pyinstaller Documentation, Release 5.13.2

Placing data files at expected locations inside the bundle

To place the data-files where your code expects them to be (i.e., relative to the main script or bundle directory), you
can use the dest parameter of the --add-data=source:dest command-line switches. Assuming you normally use
the following code in a file named my_script.py to locate a file file.dat in the same folder:

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file_), 'file.dat'))

Or the pathlib equivalent:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("file.dat")

And my_script.py is not part of a package (not in a folder containing an __init_.py), then __file__ will be [app
root]/my_script.pyc meaning that if you put file.dat in the root of your package, using:

PyInstaller --add-data=/path/to/file.dat:.

It will be found correctly at runtime without changing my_script.py.

Note: Windows users should use ; instead of : in the above line.

If __file__ is checked from inside a package or library (say my_library.data) then __file__ will be [app
root]/my_library/data.pyc and --add-data should mirror that:

PyInstaller --add-data=/path/to/my_library/file.dat:./my_library

However, in this case it is much easier to switch to the spec file and use the PyInstaller.utils.hooks.
collect_data_files() helper function:

from PyInstaller.utils.hooks import collect_data_files

a = Analysis(...,
datas=collect_data_files("my_library"),
)

2.7.2 Using sys.executable and sys.argv[0]

When a normal Python script runs, sys.executable is the path to the program that was executed, namely, the Python
interpreter. In a frozen app, sys.executable is also the path to the program that was executed, but that is not Python;
it is the bootloader in either the one-file app or the executable in the one-folder app. This gives you a reliable way to
locate the frozen executable the user actually launched.

The value of sys.argv[0] is the name or relative path that was used in the user’s command. It may be a relative path
or an absolute path depending on the platform and how the app was launched.

If the user launches the app by way of a symbolic link, sys.argv[0] uses that symbolic name, while sys.executable
is the actual path to the executable. Sometimes the same app is linked under different names and is expected to behave
differently depending on the name that is used to launch it. For this case, you would test os.path.basename(sys.
argv[0])

2.7. Run-time Information 27

https://docs.python.org/3/library/pathlib.html

Pyinstaller Documentation, Release 5.13.2

On the other hand, sometimes the user is told to store the executable in the same folder as the files it will operate on, for
example a music player that should be stored in the same folder as the audio files it will play. For this case, you would
use os.path.dirname(sys.executable).

The following small program explores some of these possibilities. Save it as directories.py. Execute it as a Python
script, then bundled as a one-folder app. Then bundle it as a one-file app and launch it directly and also via a symbolic
link:

#!/usr/bin/env python3
import sys, os
frozen = 'not'’
if getattr(sys, 'frozen', False):
we are running in a bundle
frozen = 'ever so'
bundle_dir = sys._MEIPASS
else:
we are running in a normal Python environment
bundle_dir = os.path.dirname(os.path.abspath(__file))
print('we are',frozen, 'frozen')
print('bundle dir is', bundle_dir)
print('sys.argv[0] is', sys.argv[0])
print('sys.executable is', sys.executable)
print('os.getcwd is', os.getcwd())

2.7.3 LD_LIBRARY_PATH / LIBPATH considerations
This environment variable is used to discover libraries, it is the library search path - on GNU/Linux and *BSD
LD_LIBRARY PATH is used, on AIX it is LIBPATH.

If it exists, PyInstaller saves the original value to *_ORIG, then modifies the search path so that the bundled libraries
are found first by the bundled code.

But if your code executes a system program, you often do not want that this system program loads your bundled libraries
(that are maybe not compatible with your system program) - it rather should load the correct libraries from the system
locations like it usually does.

Thus you need to restore the original path before creating the subprocess with the system program.

env = dict(os.environ) # make a copy of the environment
1p_key = 'LD_LIBRARY_PATH' # for GNU/Linux and *BSD.
lp_orig = env.get(lp_key + '_ORIG")
if lp_orig is not None:
env[lp_key] = lp_orig # restore the original, unmodified value
else:
This happens when LD_LIBRARY_PATH was not set.
Remove the env var as a last resort:
env.pop(lp_key, None)
p = Popen(system_cmd, ..., env=env) # create the process

28 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

2.8 Using Spec Files

When you execute
pyinstaller options.. myscript.py

the first thing PylInstaller does is to build a spec (specification) file myscript.spec. That file is stored in the
--specpath directory, by default the current directory.

The spec file tells PyInstaller how to process your script. It encodes the script names and most of the options you give to
the pyinstaller command. The spec file is actually executable Python code. Pylnstaller builds the app by executing
the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file. It is usually enough to give all the
needed information (such as hidden imports) as options to the pyinstaller command and let it run.

There are four cases where it is useful to modify the spec file:
* When you want to bundle data files with the app.

* When you want to include run-time libraries (.d11 or .so files) that PylInstaller does not know about from any
other source.

* When you want to add Python run-time options to the executable.
* When you want to create a multiprogram bundle with merged common modules.
These uses are covered in topics below.
You create a spec file using this command:
pyi-makespec options name.py [other scripts ...]

The options are the same options documented above for the pyinstaller command. This command creates the
name . spec file but does not go on to build the executable.

After you have created a spec file and modified it as necessary, you build the application by passing the spec file to the
pyinstaller command:

pyinstaller options name. spec

When you create a spec file, most command options are encoded in the spec file. When you build from a spec file,
those options cannot be changed. If they are given on the command line they are ignored and replaced by the options
in the spec file.

Only the following command-line options have an effect when building from a spec file:
e ——upx-dir
e ——distpath
e —-workpath
e —-noconfirm
e —-ascii
e —-clean

e —-log-level

2.8. Using Spec Files 29

Pyinstaller Documentation, Release 5.13.2

2.8.1 Spec File Operation

After PylInstaller creates a spec file, or opens a spec file when one is given instead of a script, the pyinstaller
command executes the spec file as code. Your bundled application is created by the execution of the spec file. The
following is a shortened example of a spec file for a minimal, one-folder app:

block_cipher = None
a = Analysis(['minimal.py'],

pyz

exe

pathex=['/Developer/PItests/minimal'],
binaries=None,

datas=None,

hiddenimports=[],

hookspath=None,

runtime_hooks=None,

excludes=None,

cipher=block_cipher)

PYZ(a.pure, a.zipped_data,

cipher=block_cipher)

EXE(pyz,...)

coll = COLLECT(...)

The statements in a spec file create instances of four classes, Analysis, PYZ, EXE and COLLECT.

* A new instance of class Analysis takes a list of script names as input. It analyzes all imports and other depen-
dencies. The resulting object (assigned to a) contains lists of dependencies in class members named:

scripts: the python scripts named on the command line;
pure: pure python modules needed by the scripts;

pathex: a list of paths to search for imports (like using PYTHONPATH), including paths given by the
--paths option.

binaries: non-python modules needed by the scripts, including names given by the --add-binary op-
tion;

datas: non-binary files included in the app, including names given by the --add-data option.

¢ An instance of class PYZ is a .pyz archive (described under Inspecting Archives below), which contains all the
Python modules from a.pure.

* Aninstance of EXE is built from the analyzed scripts and the PYZ archive. This object creates the executable file.

* An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the EXE instance receives all of the scripts, modules and binaries.

You modify the spec file to pass additional values to Analysis and to EXE.

30

Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

Pyinstaller Documentation, Release 5.13.2

2.8.2 Adding Files to the Bundle

To add files to the bundle, you create a list that describes the files and supply it to the Analysis call. When you bundle
to a single folder (see Bundling to One Folder), the added data files are copied into the folder with the executable. When
you bundle to a single executable (see Bundling to One File), copies of added files are compressed into the executable,
and expanded to the _MEIxxxxxx temporary folder before execution. This means that any changes a one-file executable
makes to an added file will be lost when the application ends.

In either case, to find the data files at run-time, see Run-time Information.

Adding Data Files
You can add data files to the bundle by using the --add-data command option, or by adding them as a list to the spec
file.

When using the spec file, provide a list that describes the files as the value of the datas= argument to Analysis. The
list of data files is a list of tuples. Each tuple has two values, both of which must be strings:

* The first string specifies the file or files as they are in this system now.
* The second specifies the name of the folder to contain the files at run-time.

For example, to add a single README file to the top level of a one-folder app, you could modify the spec file as
follows:

a = Analysis(...
datas=[('src/README.txt', '.') 1,

)

And the command line equivalent (see What To Bundle, Where To Search for platform-specific details):

pyinstaller --add-data 'src/README.txt:.' myscript.py

You have made the datas= argument a one-item list. The item is a tuple in which the first string says the existing file
is src/README. txt. That file will be looked up (relative to the location of the spec file) and copied into the top level
of the bundled app.

The strings may use either / or \ as the path separator character. You can specify input files using “glob” abbreviations.
For example to include all the .mp3 files from a certain folder:

a = Analysis(...
datas= [('/mygame/sfx/*.mp3', 'sfx') 1],

)

All the .mp3 files in the folder /mygame/sfx will be copied into a folder named s£fx in the bundled app.

The spec file is more readable if you create the list of added files in a separate statement:

added_files = [

('src/README.txt', '.'),
('/mygame/sfx/*.mp3', 'sfx')
]

a = Analysis(...
datas = added_files,

(continues on next page)

2.8. Using Spec Files 31

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

You can also include the entire contents of a folder:

added_files = [
('src/README.txt', '.'),
('/mygame/data’', 'data'),
('/mygame/sfx/*.mp3', 'sfx')
]

The folder /mygame/data will be reproduced under the name data in the bundle.

Using Data Files from a Module
If the data files you are adding are contained within a Python module, you can retrieve them using pkgutil.
get_data().

For example, suppose that part of your application is a module named helpmod. In the same folder as your script and
its spec file you have this folder arrangement:

helpmod
__init__.py
helpmod.py

help_data.txt

Because your script includes the statement import helpmod, PyInstaller will create this folder arrangement in your
bundled app. However, it will only include the .py files. The data file help_data.txt will not be automatically
included. To cause it to be included also, you would add a datas tuple to the spec file:

a = Analysis(...
datas= [('helpmod/help_data.txt', 'helpmod')],

)

When your script executes, you could find help_data. txt by using its base folder path, as described in the previous
section. However, this data file is part of a module, so you can also retrieve its contents using the standard library
function pkgutil.get_data():

import pkgutil
help_bin = pkgutil.get_data('helpmod', 'help_data.txt')

This returns the contents of the help_data. txt file as a binary string. If it is actually characters, you must decode it:

help_utf = help_bin.decode('UTF-8', 'ignore')

32 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

Adding Binary Files

Note: Binary files refers to DLLs, dynamic libraries, shared object-files, and such, which PyInstaller is going to search
for further binary dependencies. Files like images and PDFs should go into the datas.

You can add binary files to the bundle by using the --add-binary command option, or by adding them as a list to the
spec file. In the spec file, make a list of tuples that describe the files needed. Assign the list of tuples to the binaries=
argument of Analysis.

Adding binary files works in a similar way as adding data files. As described in Adding Binary Files, each tuple should
have two values:

* The first string specifies the file or files as they are in this system now.
* The second specifies the name of the folder to contain the files at run-time.

Normally PylInstaller learns about . so and .d11 libraries by analyzing the imported modules. Sometimes it is not clear
that a module is imported; in that case you use a --hidden-import command option. But even that might not find
all dependencies.

Suppose you have a module special_ops.so that is written in C and uses the Python C-API. Your program im-
ports special_ops, and Pylnstaller finds and includes special_ops.so. But perhaps special_ops.so links to
libiodbc.2.dylib. PylInstaller does not find this dependency. You could add it to the bundle this way:

a = Analysis(...
binaries=[('/usr/lib/libiodbc.2.dylib"', ".") 1],

Or via the command line (again, see What To Bundle, Where To Search for platform-specific details):

pyinstaller --add-binary '/usr/lib/libiodbc.2.dylib:." myscript.py

If you wish to store 1ibiodbc.2.dylib on a specific folder inside the bundle, for example vendor, then you could
specify it, using the second element of the tuple:

a = Analysis(...
binaries=[('/usr/lib/libiodbc.2.dylib', 'vendor') 1],

As with data files, if you have multiple binary files to add, to improve readability, create the list in a separate statement
and pass the list by name.

Advanced Methods of Adding Files

PylInstaller supports a more advanced (and complex) way of adding files to the bundle that may be useful for special
cases. See The Table of Contents (TOC) lists and the Tree Class below.

2.8. Using Spec Files 33

Pyinstaller Documentation, Release 5.13.2

2.8.3 Giving Run-time Python Options
You can pass command-line options to the Python interpreter. The interpreter takes a number of command-line options
but only the following are supported for a bundled app:

* v to write a message to stdout each time a module is initialized.

* u for unbuffered stdio.

* W and an option to change warning behavior: W ignore or W once or W error.

To pass one or more of these options, create a list of tuples, one for each option, and pass the list as an additional
argument to the EXE call. Each tuple has three elements:

* The option as a string, for example v or W ignore.
* None
* The string OPTION

For example modify the spec file this way:

options = [('v', None, 'OPTION'), ('W ignore', None, 'OPTION')]
a = Analysis(...

)
exe = EXE(pyz,
a.scripts,
options, <--- added line
exclude_binaries=...
)

Note: The unbuffered stdio mode (the u option) enables unbuffered binary layer of stdout and stderr streams on
all supported Python versions. The unbuffered text layer requires Python 3.7 or later.

2.8.4 Spec File Options for a macOS Bundle

When you build a windowed macOS app (that is, running under macOS, you specify the --windowed option), the spec
file contains an additional statement to create the macOS application bundle, or app folder:

app = BUNDLE(exe,
name='"myscript.app',
icon=None,
bundle_identifier=None)

The icon= argument to BUNDLE will have the path to an icon file that you specify using the --icon option. The
bundle_identifier will have the value you specify with the --osx-bundle-identifier option.

An Info.plist file is an important part of a macOS app bundle. (See the Apple bundle overview for a discussion of
the contents of Info.plist.)

PylInstaller creates a minimal Info.plist. The version option can be used to set the application version using the
CFBundleShortVersionString Core Foundation Key.

You can add or overwrite entries in the plist by passing an info_plist= parameter to the BUNDLE call. Its argument
should be a Python dict with keys and values to be included in the Info.plist file. Pylnstaller creates Info.plist
from the info_plist dict using the Python Standard Library module plistlib. plistlib can handle nested Python objects

34 Chapter 2. Contents:

https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html
https://docs.python.org/3/library/plistlib.html

Pyinstaller Documentation, Release 5.13.2

(which are translated to nested XML), and translates Python data types to the proper Info.plist XML types. Here’s
an example:

app = BUNDLE(exe,

name='myscript.app',

icon=None,

bundle_identifier=None,

version="0.0.1",

info_plist={
'NSPrincipalClass': 'NSApplication',
'NSAppleScriptEnabled': False,
'CFBundleDocumentTypes': [

{
'CFBundleTypeName': 'My File Format',
'CFBundleTypeIconFile': 'MyFileIcon.icns',
'LSItemContentTypes': ['com.example.myformat'],
'LSHandlerRank': 'Owner'
3

]

3,
)
In the above example, the key/value 'NSPrincipalClass': 'NSApplication'isnecessary toallow macOS toren-

der applications using retina resolution. The key 'NSAppleScriptEnabled’ is assigned the Python boolean False,
which will be output to Info.plist properly as <false/>. Finally the key CFBundleDocumentTypes tells macOS
what filetypes your application supports (see Apple document types).

2.8.5 POSIX Specific Options

By default all required system libraries are bundled. To exclude all or most non-Python shared system libraries from
the bundle, you can add a call to the function exclude_system_libraries from the Analysis class. System libraries
are defined as files that come from under /1ib* or /usr/1ib* as is the case on POSIX and related operating systems.
The function accepts an optional parameter that is a list of file wildcards exceptions, to not exclude library files that
match those wildcards in the bundle. For example to exclude all non-Python system libraries except “libexpat” and
anything containing “krb” use this:

a = Analysis(...)

a.exclude_system_libraries(list_of_exceptions=['libexpat*"', '*krb*'])

2.8.6 The Splash Target

For a splash screen to be displayed by the bootloader, the Splash target must be called at build time. This class can
be added when the spec file is created with the command-line option --splash INAGE_FILE. By default, the option
to display the optional text is disabled (text_pos=None). For more information about the splash screen, see Splash
Screen (Experimental) section. The Splash Target looks like this:

a = Analysis(...)

splash = Splash('image.png',
binaries=a.binaries,
datas=a.datas,

(continues on next page)

2.8. Using Spec Files 35

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

text_pos=(10, 50),
text_size=12,
text_color="black")

Splash bundles the required resources for the splash screen into a file, which will be included in the CArchive.

A Splash has two outputs, one is itself and one is stored in splash.binaries. Both need to be passed on to other
build targets in order to enable the splash screen. To use the splash screen in a onefile application, please follow this
example:

a = Analysis(...)

splash = Splash(...)

onefile
exe = EXE(pyz,
a.scripts,
splash, # <-- both, splash target
splash.binaries, # <-- and splash binaries
L)

In order to use the splash screen in a onedir application, only a small change needs to be made. The splash.binaries
attribute has to be moved into the COLLECT target, since the splash binaries do not need to be included into the exe-
cutable:

a = Analysis(...)

splash = Splash(...)

onedir
exe = EXE(pyz,
splash, # <-- splash target
a.scripts,
cel)
coll = COLLECT(exe,
splash.binaries, # <-- splash binaries
L)

On Windows/macOS images with per-pixel transparency are supported. This allows non-rectangular splash screen
images. On Windows the transparent borders of the image are hard-cuted, meaning that fading transparent values are
not supported. There is no common implementation for non-rectangular windows on Linux, so images with per- pixel
transparency is not supported.

The splash target can be configured in various ways. The constructor of the Splash target is as follows:

Splash.__init__ (image_file, binaries, datas, **kwargs)

Parameters

» image_file (str) — A path-like object to the image to be used. Only the PNG file format
is supported.

Note: If a different file format is supplied and PIL (Pillow) is installed, the file will be

36 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#str

Pyinstaller Documentation, Release 5.13.2

converted automatically.

Note: Windows: The color 'magenta' / "#£f00ff' must not be used in the image or
text, as it is used by splash screen to indicate transparent areas. Use a similar color (e.g.,
'#£f00fe") instead.

Note: If PIL (Pillow) is installed and the image is bigger than max_img_size, the image
will be resized to fit into the specified area.

binaries (1ist) — The TOC list of binaries the Analysis build target found. This TOC
includes all extension modules and their binary dependencies. This is required to determine
whether the user’s program uses tkinter.

datas (1ist)— The TOC list of data the Analysis build target found. This TOC includes all
data-file dependencies of the modules. This is required to check if all splash screen require-
ments can be bundled.

Keyword Arguments

text_pos — An optional two-integer tuple that represents the origin of the text on the splash
screen image. The origin of the text is its lower left corner. A unit in the respective coordinate
system is a pixel of the image, its origin lies in the top left corner of the image. This parameter
also acts like a switch for the text feature. If omitted, no text will be displayed on the splash
screen. This text will be used to show textual progress in onefile mode.

text_size — The desired size of the font. If the size argument is a positive number, it is
interpreted as a size in points. If size is a negative number, its absolute value is interpreted
as a size in pixels. Default: 12

text_font — An optional name of a font for the text. This font must be installed on the user
system, otherwise the system default font is used. If this parameter is omitted, the default
font is also used.

text_color — An optional color for the text. HTML color codes ('#40e0d®') and color
names ('turquoise') are supported. Default: 'black' (Windows: the color 'magenta’
/ '#££00ff" is used to indicate transparency, and should not be used)

text_default — The default text which will be displayed before the extraction starts. De-
fault: "Initializing"

full_tk — By default Splash bundles only the necessary files for the splash screen (some
tk components). This options enables adding full tk and making it a requirement, meaning
all tk files will be unpacked before the splash screen can be started. This is useful during
development of the splash screen script. Default: False

minify_ script — The splash screen is created by executing an Tcl/Tk script. This option
enables minimizing the script, meaning removing all non essential parts from the script.
Default: True

rundir — The folder name in which tcl/tk will be extracted at runtime. There should be no
matching folder in your application to avoid conflicts. Default: '__splash'

name — An optional alternative filename for the .res file. If not specified, a name is generated.

script_name — An optional alternative filename for the Tcl script, that will be generated. If
not specified, a name is generated.

2.8. Using Spec Files

37

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyinstaller Documentation, Release 5.13.2

* max_img_size — Maximum size of the splash screen image as a tuple. If the supplied image
exceeds this limit, it will be resized to fit the maximum width (to keep the original aspect
ratio). This option can be disabled by setting it to None. Default: (760, 480)

* always_on_top — Force the splashscreen to be always on top of other windows. If disabled,
other windows (e.g., from other applications) can cover the splash screen by user bringing
them to front. This might be useful for frozen applications with long startup times. Default:
True

2.8.7 Multipackage Bundles

Some products are made of several different apps, each of which might depend on a common set of third-party libraries,
or share code in other ways. When packaging such a product it would be a pity to treat each app in isolation, bundling
it with all its dependencies, because that means storing duplicate copies of code and libraries.

You can use the multipackage feature to bundle a set of executable apps so that they share single copies of libraries.
You can do this with either one-file or one-folder apps.

Multipackaging with One-Folder Apps

For combining multiple one-folder applications, use a shared COLLECT statement. This will collect the external
resources for all of the one-folder apps into one directory.

Multipackaging with One-File Apps

Each dependency (a DLL, for example) is packaged only once, in one of the apps. Any other apps in the set that depend
on that DLL have an “external reference” to it, telling them to extract that dependency from the executable file of the
app that contains it.

This saves disk space because each dependency is stored only once. However, to follow an external reference takes
extra time when an app is starting up. All but one of the apps in the set will have slightly slower launch times.

The external references between binaries include hard-coded paths to the output directory, and cannot be rearranged.
You must place all the related applications in the same directory when you install the application.

To build such a set of apps you must code a custom spec file that contains a call to the MERGE function. This function
takes a list of analyzed scripts, finds their common dependencies, and modifies the analyses to minimize the storage
cost.

The order of the analysis objects in the argument list matters. The MERGE function packages each dependency into
the first script from left to right that needs that dependency. A script that comes later in the list and needs the same
file will have an external reference to the prior script in the list. You might sequence the scripts to place the most-used
scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE (*args)

MERGE is used after the analysis phase and before EXE. Its variable-length list of arguments consists of a list of tuples,
each tuple having three elements:

» The first element is an Analysis object, an instance of class Analysis, as applied to one of the apps.
* The second element is the script name of the analyzed app (without the .py extension).

* The third element is the name for the executable (usually the same as the script).

38 Chapter 2. Contents:

https://www.zacoding.com/en/post/pyinstaller-create-multiple-executables/

Pyinstaller Documentation, Release 5.13.2

MERGE examines the Analysis objects to learn the dependencies of each script. It modifies these objects to avoid
duplication of libraries and modules. As a result the packages generated will be connected.

Example MERGE spec file
One way to construct a spec file for a multipackage bundle is to first build a spec file for each app in the package.
Suppose you have a product that comprises three apps named (because we have no imagination) foo, bar and zap:
pyi-makespec options as appropriate... foo.py
pyi-makespec options as appropriate... bar.py
pyi-makespec options as appropriate... zap.py

Check for warnings and test each of the apps individually. Deal with any hidden imports and other problems. When
all three work correctly, combine the statements from the three files foo. spec, bar. spec and zap. spec as follows.

First copy the Analysis statements from each, changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
pathex=["'/the/path/to/foo'],
hiddenimports=[],
hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a, bar_a, and zap_a are modified so that the latter two refer to the first for common depen-
dencies.

Following this you can copy the PYZ, EXE and COLLECT statements from the original three spec files, substituting the
unique names of the Analysis objects where the original spec files have a. Modify the EXE statements to pass in
Analysis.dependencies, in addition to all other arguments that are passed in the original EXE statements. For
example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.dependencies, foo_a.scripts, ... etc.

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.dependencies, bar_a.scripts, ... etc.

Save the combined spec file as foobarzap. spec and then build it:

pyinstaller foobarzap.spec

The output in the dist folder will be all three apps, but the apps dist/bar and dist/zap will refer to the contents of
dist/foo for shared dependencies.

Remember that a spec file is executable Python. You can use all the Python facilities (for and with and the members
of sys and io) in creating the Analysis objects and performing the PYZ, EXE and COLLECT statements. You may also
need to know and use The Tuble of Contents (TOC) lists and the Tree Class described below.

2.8. Using Spec Files 39

Pyinstaller Documentation, Release 5.13.2

2.8.8 Globals Available to the Spec File

While a spec file is executing it has access to a limited set of global names. These names include the classes defined
by Pylnstaller: Analysis, BUNDLE, COLLECT, EXE, MERGE, PYZ, TOC, Tree and Splash, which are discussed in the
preceding sections.

Other globals contain information about the build environment:

DISTPATH The relative path to the dist folder where the application will be stored. The default path is relative to the
current directory. If the --distpath option is used, DISTPATH contains that value.

HOMEPATH The absolute path to the PyInstaller distribution, typically in the current Python site-packages folder.

SPEC The complete spec file argument given to the pyinstaller command, for example myscript.spec or
source/myscript.spec.

SPECPATH The path prefix to the SPEC value as returned by os.path.split().
specnm The name of the spec file, for example myscript.

workpath The path to the build directory. The default is relative to the current directory. If the workpath= option
is used, workpath contains that value.

WARNFILE The full path to the warnings file in the build directory, for example build/warn-myscript.txt.

2.9 Notes about specific Features

2.9.1 Ctypes Dependencies

Ctypes is a foreign function library for Python, that allows calling functions present in shared libraries. Those libraries
are not imported as Python packages, because they are not picked up via Python imports: their path is passed to ctypes
instead, which deals with the shared library directly; this caused <1.4 PylInstaller import detect machinery to miss those
libraries, failing the goal to build self-contained PyInstaller executables:

from ctypes import *

This will pass undetected under PyInstaller detect machinery,
because it's not a direct import.

handle = CDLL("/usr/lib/library.so™)

handle. function_call()

Solution in Pylnstaller

Pylnstaller contains a pragmatic implementation of Ctypes dependencies: it will search for simple standard usages of
ctypes and automatically track and bundle the referenced libraries. The following usages will be correctly detected:

CDLL("library.so")

WinDLL("library.so")

ctypes.DLL("library.so")

cdll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
windll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
cdll.LoadLibrary("library.so™)

windll.LoadLibrary("library.so")

More in detail, the following restrictions apply:

40 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

* only libraries referenced by bare filenames (e.g. no leading paths) will be handled; handling absolute paths
would be impossible without modifying the bytecode as well (remember that while running frozen, ctypes would
keep searching the library at that very absolute location, whose presence on the host system nobody can guaran-
tee), and relative paths handling would require recreating in the frozen executable the same hierarchy of directo-
ries leading to the library, in addition of keeping track of which the current working directory is;

* only library paths represented by a literal string will be detected and included in the final executable:
Pylnstaller import detection works by inspecting raw Python bytecode, and since you can pass the library path
to ctypes using a string (that can be represented by a literal in the code, but also by a variable, by the return value
of an arbitrarily complex function, etc...), it’s not reasonably possible to detect all ctypes dependencies;

* only libraries referenced in the same context of ctypes’ invocation will be handled.
We feel that it should be enough to cover most ctypes’ usages, with little or no modification required in your code.

If PylInstaller does not detect a library, you can add it to your bundle by passing the respective information to
--add-binary option or listing it in the .spec-file. If your frozen application will be able to pick up the library at
run-time can not be guaranteed as it depends on the detailed implementation.

Gotchas

The ctypes detection system at Analysis time is based on ctypes.util.find_library(). This means that you
have to make sure that while performing Analysis and running frozen, all the environment values find_library()
uses to search libraries are aligned to those when running un-frozen. Examples include using LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH to widen find_library() scope.

2.9.2 SWIG support

Pylnstaller tries to detect binary modules created by SWIG. This detection requires:
¢ The Python wrapper module must be imported somewhere in your application (or by any of the modules it uses).

* The wrapper module must be available as source-code and it’s first line must contain the text automatically
generated by SWIG.

* The C-module must have the same name as the wrapper module prefixed with an underscore (_). (This is a SWIG
restriction already.)

e The C-module must sit just beside the wrapper module (thus a relative import would work).
Also some restrictions apply, due to the way the SWIG wrapper is implemented:

* The C-module will become a global module. As a consequence, you can not use two SWIG modules with the
same basename (e.g. pkgl._cmod and pkg2._cmod), as one would overwrite the other.

2.9.3 Cython support
PylInstaller can follow import statements that refer to Cython C object modules and bundle them — like for any other
module implemented in C.

But — again, as for any other module implemented in C — PyInstaller can not determine if the Cython C object module
is importing some Python module. These will typically show up as in a traceback like this (mind the .pyx extension):

Traceback (most recent call last):
[...]

File "myapp\cython_module.pyx", line 3, in init myapp.cython_module
ModuleNotFoundError: No module named 'csv

2.9. Notes about specific Features 41

https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library

Pyinstaller Documentation, Release 5.13.2

So if you are using a Cython C object module, which imports Python modules, you will have to list these as
--hidden-import.

2.9.4 macOS multi-arch support

With the introduction of Apple Silicon M1, there are now several architecture options available for python:

* single-arch x86_64 with thin binaries: older python.org builds, Homebrew python running natively on Intel
Macs or under rosetta2 on M1 Macs

* single-arch arm64 with thin binaries: Homebrew python running natively on M1 macs

* multi-arch universal2 with fat binaries (i.e., containing both x86_64 and arm64 slices): recent universal2
python.org builds

PylInstaller aims to support all possible combinations stemming from the above options:
* single-arch application created using corresponding single-arch python
* universal2 application created using universal2 python

* single-arch application created using universal2 python (i.e., reducing universal2 fat binaries into either
x86_64 or arm64 thin binaries)

By default, PyInstaller targets the current running architecture and produces a single-arch binary (x86_64 when
running on Intel Mac or under rosetta2 on M1 Mac, or arm64 when running on M1 Mac). The reason for that is that
even with a universal2 python environment, some packages may end up providing only single-arch binaries, making
it impossible to create a functional universal2 frozen application.

The alternative options, such as creating a universal2 version of frozen application, or creating a non-native single-
arch version using universal2 environment, must therefore be explicitly enabled. This can be done either by speci-
fying the target architecture in the . spec file via the target_arch= argument to EXE(), or on command-line via the
--target-arch switch. Valid values are x86_64, arm64, and universal2.

Architecture validation during binary collection

To prevent run-time issues caused by missing or mismatched architecture slices in binaries, the binary collection process
performs strict architecture validation. It checks whether collected binary files contain required arch slice(s), and if
not, the build process is aborted with an error message about the problematic binary.

In such cases, creating frozen application for the selected target architecture will not be possible unless the problem
of missing arch slices is manually addressed (for example, by downloading the wheel corresponding to the missing
architecture, and stiching the offending binary files together using the 1ipo utility).

Changed in version 4.10: In earlier PylInstaller versions, the architecture validation was performed on all collected
binaries, such as python extension modules and the shared libraries referenced by those extensions. As of Pylnstaller
4.10, the architecture validation is limited to only python extension modules.

The individual architecture slices in a multi-arch universal2 extension may be linked against (slices in) universal2
shared libraries, or against distinct single-arch thin shared libraries. This latter case makes it impossible to reliably
validate architecture of the collected shared libraries w.r.t. the target application architecture.

However, the extension modules do need to be fully compatible with the target application architecture. Therefore, their
continued validation should hopefully suffice to detect attempts at using incompatible single-arch python packages*".

0 Although nothing really prevents a package from having distinct, architecture-specific extension modules. ..

42 Chapter 2. Contents:

http://brew.sh/
http://brew.sh/

Pyinstaller Documentation, Release 5.13.2

Trimming fat binaries for single-arch targets

When targeting a single architecture, the build process extracts the corresponding arch slice from any collected fat
binaries, including the bootloader. This results in a completely thin build even when building in universal2 python
environment.

2.9.5 macOS binary code signing

With Apple Silicon M1 architecture, macOS introduced mandatory code signing, even if ad-hoc (i.e., without actual
code-signing identity). This means that arm64 arch slices (but possibly also x86_64 ones, especially in universal2
binaries) in collected binaries always come with signature.

The processing of binaries done by PylInstaller (e.g., library path rewriting in binaries’ headers) invalidates their sig-
natures. Therefore, the signatures need to be re-generated, otherwise the OS refuses to load a binary.

By default, PyInstaller ad-hoc (re)signs all collected binaries and the generated executable itself. Instead of ad-
hoc signing, it is also possible to use real code-signing identity. To do so, either specify your identity in the . spec file
via codesign_identity= argument to EXE() , or on command-line via the --codesign-identity switch.

Being able to provide codesign identity allows user to ensure that all collected binaries in either onefile or onedir
build are signed with their identity. This is useful because for onefile builds, signing of embedded binaries cannot
be performed in a post-processing step.

Note: When codesign identity is specified, Pylnstaller also turns on hardened runtime by passing
--options=runtime to the codesign command. This requires the codesign identity to be a valid Apple-issued
code signing certificate, and will not work with self-signed certificates.

Trying to use self-signed certificate as a codesign identity will result in shared libraries failing to load, with the following
reason reported:

[libname]: code signature in ([libname]) not valid for use in process using Library Validation: mapped
file has no Team ID and is not a platform binary (signed with custom identity or adhoc?)

Furthermore, it is possible to specify entitlements file to be used when signing the collected binaries and the exe-
cutable. This can be done in the . spec file via entitlements_file= argument to EXE(), or on command-line via
the --osx-entitlements-file switch.

App bundles

Pylnstaller also automatically attempts to sign .app bundles, either using ad-hoc identity or actual signing identity, if
provided via --codesign-identity switch. In addition to passing same options as when signing collected binaries
(identity, hardened runtime, entitlement), deep signing is also enabled via by passing --deep option to the codesign
utility.

Should the signing of the bundle fail for whatever reason, the error message from the codesign utility will be printed
to the console, along with a warning that manual intervention and manual signing of the bundle are required.

2.9. Notes about specific Features 43

Pyinstaller Documentation, Release 5.13.2

2.9.6 macOS event forwarding and argv emulation in app bundles

The user interaction with macOS app bundles takes place via so called Apple Events. When the user double clicks on the
application’s icon, the application is started and receives an Open Application ('oapp"') event. Dragging a document
on the application’s icon or attempting to open an application-registered file generates an Open Document (' odoc")
event. Similarly, launching an URL with application-registered schema generates a Launch/Get URL (' GURL ") event.
Typically, a long-running UI application installs Carbon or Cocoa event handlers (or their equivalents provided by
higher-level Ul toolkit) to handle these requests during its runtime.

Pylnstaller provides two aspects of support for macOS event handling; automatic event forwarding, which enables
frozen application to receive events in onefile mode, and optional argv emulation for converting initial opening event
into sys.argv arguments. Both aspects apply only to app bundles (i.e., the windowed bootloader variant) and not to
POSIX (command-line) frozen applications.

Changed in version 5.0: In earlier PyInstaller versions, argv emulation was always enabled in onefile mode and was
unavailable in onedir mode. As Pylnstaller 5.0, argv emulation must be explicitly opted-in, and is available in both
onefile and onedir mode.

Event forwarding
In PylInstaller onedir bundles, the application runs as a single process, and therefore receives Apple Events normally,
as other macOS applications would.

In onefile bundles, the application has a parent launcher process and the child process; the open document requests
generated by user are received by the parent process, and are automatically forwarded to the child process, where the
frozen python code is running.

Event forwarding is implemented for the following types of Apple Events:
* kAEOpenDocuments ('odoc'): open document request
e kAEGetURL ('GURL"): open/launch URL request
* kAEReopenApplication ('rapp'): reopen application

e kAEActivate ('actv'): activate application (bring to front)

Optional argv emulation

PylInstaller implements an optional feature called argv emulation, which can be toggled via argv_emulation= argu-
ment to EXE() in the .spec file, or enabled on command-line via --argv-emulation flag.

If enabled, the bootloader performs initial Apple Event handling to intercept events during the application’s start-up
sequence, and appends file paths or URLs received via Open Document/URL (‘odoc’ and ‘GURL) events to sys.argv,
as if they were received via command-line.

This feature is intended for simple applications that do not implement the event handling, but still wish to process initial
open document request. This applies only to initial open events; events that occur after the frozen python code is started
are dispatched via event queue (in onedir mode directly, and forwarded to child process in onefile mode.) and as
such need to be handled via event handlers.

Note: This feature is not suitable for long-running applications that may need to service multiple open requests during
their lifetime. Such applications will require proper event handling anyay, and therefore do not benefit from having
initial events processed by argv emulation.

44 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#sys.argv

Pyinstaller Documentation, Release 5.13.2

Warning: The initial event processing performed by bootloader in onedir mode may interfere with UI toolkit
used by frozen python application, such as Tc1/Tk via tkinter module. The symptoms may range from window
not being brought to front when the application startup to application crash with segmentation fault.

While Pylnstaller tries to mitigate the issue on its end, we recommend against using argv emulation in combination
with U toolkits.

Practical examples

This section provides some practical examples on handling file and URL open events in macOS application bundles,
via argv emulation in a simple one-shot program, or via installed event handlers in a GUI application.

Registering supported file types and custom URL schemas

In order for macOS application bundle to handle open operations on files and custom URL schemas, the OS needs to
be informed what file types and what URL schemas the application supports. This is done in the bundle’s Info.plist
file, via CFBundleDocumentTypes and CFBundleURLTypes entries:

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE plist PUBLIC "-//Apple//DID PLIST 1.0//EN" "http://www.apple.com/DIDs/
—PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
[...] <!-- preceding entries --->
<key>CFBundleDocumentTypes</key>
<array>
<dict>

<key>CFBundleTypeName</key>
<string>MyCustomFileType</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>mcf</string>
</array>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
</dict>
</array>
<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>MyCustomUrlSchema</string>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>CFBundleURLSchemes</key>
<array>
<string>my-url</string>
</array>
</dict>
</array>

(continues on next page)

2.9. Notes about specific Features 45

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

</dict>
</plist>

In the above example, the application declares itself a viewer for made-up .mcf files, and as a viewer for URLs beginning
with my-url://.

PylInstaller automatically generates an Info.plist file for your application bundle; to have it include the entries shown
above, add the info_plist argument to the BUNDLE () directive in the .spec file, and set its content as follows:

app = BUNDLE(
#[...]
info_plist={

'CFBundleURLTypes': [{

'CFBundleURLName': 'MyCustomUrlSchema',
'CFBundleTypeRole': 'Viewer',
'CFBundleURLSchemes': ['my-url', 1],

1,

'CFBundleDocumentTypes': [{
'CFBundleTypeName': 'MyCustomFileType',
'CFBundleTypeExtensions': ['mcf',],
'CFBundleTypeRole': "Viewer",

1,

Open event handling with argv emulation

Consider the following python script that began its life as a command-line utility, to be invoked from the terminal:

python3 img2gray.py imagel.png image2.png ...

The script processes each passed image, converts it to grayscale, and saves it next to the original, with -gray appended
to the file name:

img2gray.py
import sys
import os

import PIL.Image

if len(sys.argv) < 2:
print(f"Usage: {sys.argv[0]} <filename> [filenames...]")
sys.exit(l)

Convert all given files

for input_filename in sys.argv[1:]:
filename, ext = os.path.splitext(input_filename)
output_filename = filename + '-gray' + ext

img = PIL.Image.open(input_filename)

(continues on next page)

46 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

img_g = img.convert('L")
img_g.save(output_£filename)

If you generate an application bundle (as opposed to a command-line POSIX application), the most likely way of user
interaction will be dragging image files onto the bundle’s icon or using Open with... entry from the image file’s
context menu. Such interaction generates open file events, and in general requires your application code to implement
event handling.

Enabling argv emulation in PylInstaller causes its bootloader to process events during the application startup, and extend
sys.argv with any file paths or URLs that might have been received via open file or URL requests. This allows your
application to process the received filenames as if they were passed via command-line, without any modifications to
the code itself.

The following .spec file provides a complete example for a onedir application bundle that allows conversion of .png
and . jpg images:

img2gray.spec
a = Analysis(['img2gray.py']l,)

pyz = PYZ(a.pure, a.zipped_data)

exe = EXE(
pyz,
a.scripts,
exclude_binaries=True,
name="img2gray"',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
console=False,
argv_emulation=True, # enable argv emulation

coll = COLLECT(
exe,
a.binaries,
a.zipfiles,
a.datas,
strip=False,
upx=False,
upx_exclude=[],
name="'img2gray'

)

app = BUNDLE(
coll,
name="img2gray.app',
Register .png and .jpg as supported file types
info_plist={
'CFBundleDocumentTypes': [{
'CFBundleTypeName': "Convertible image types",
'CFBundleTypeExtensions': [

(continues on next page)

2.9. Notes about specific Features 47

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

'png’, 'jpg’,
1,
'CFBundleTypeRole': "Viewer",

H,

The user can now drag image file(s) onto the icon of the resulting img2gray application bundle, or select img2gray
under the Open with. .. entry in the image file’s context menu.

Note: The argv emulation handles only initial open event, which is received before your frozen python code is started.
If you wish to handle subsequent open requests while the application is still running, you need to implement proper
event handling in your python code.

Open event handling in a tkinter-based GUI application

The Tcl/Tk framework used by tkinter allows application to provide event handlers for pre-defined types of Apple
Events, by registering macOS-specific commands.

The handler for open file events can be registered via : :tk::mac: :OpenDocument command, while the handler for
open URL events can be registered via : :tk: :mac: :LaunchURL command. The latter is available starting with Tcl/Tk
8.6.107°.

The following application illustrates the event handling using tkinter, by logging all received open file/URL events
into a scrollable text widget:

eventlogger_tk.py
import sys

import tkinter
import tkinter.scrolledtext

class Application:
def __init__(self):
Create UI
self.window = tkinter.Tk(Q)
self.window.geometry('800x600"')
self.window.title("Tk-based event logger")

self.text_view = tkinter.scrolledtext.ScrolledText()
self.text_view.pack(fill=tkinter.BOTH, expand=1)
self.text_view.configure(state="disabled')

Register event handlers
See https://tcl.tk/man/tcl/TkCmd/tk_mac.html for list of
macOS-specific commands

(continues on next page)

0 At the time of writing, python.org builds use Tcl/Tk 8.6.5, except for the Python 3.9.x macOS 64-bit universal2 installer builds, which use
Tcl/Tk 8.6.10. Homebrew Python requires tkinter to be explicitly installed as python-tk, and uses latest version of Tcl/Tk, 8.6.11. Registering
::tk:imac: :LaunchURL command with versions of Tcl/Tk older than 8.6.10 is essentially no-op.

48 Chapter 2. Contents:

https://www.tcl.tk/man/tcl8.6/TkCmd/tk_mac.html

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

self.window.createcommand(": :tk: :mac: :OpenDocument”, self.open_document_handler)
self.window.createcommand(": :tk::mac::LaunchURL", self.open_url_handler) #.

—works with Tcl/Tk >= 8.6.10

def append_message(self, msg):
"""Append message to text view.
self.text_view.configure(state="normal")
self.text_view.insert('end', msg + '\n')
self.text_view.configure(state="disabled")

i

def run(self):
"""Run the main loop.
app.append_message("'Application started!™)
app.append_message(f"Args: {sys.argv[1l:]}")
self.window.mainloop()

e

Event handlers
def open_document_handler(self, *args):
app - append_message(f"Open document event: {args}')

def open_url_handler(self, *args):
app.append_message(f"Open URL event: {args}")

if _name__ == '__main__"':

app = Application()
app.run()

The corresponding .spec file that builds a onedir application bundle with a custom file association (.pyi_tk) and a
custom URL schema (pyi-tk://):

a =

pyz

exe

)

Analysis(['eventlogger_tk.py'])

PYZ(a.pure, a.zipped_data)

= EXE(

pyz,

a.scripts,
exclude_binaries=True,
name="'"eventlogger_tk',
debug=False,
bootloader_ignore_signals=False,
strip=False,

upx=False,

console=False,
argv_emulation=False, # unnecessary as app handles events

coll = COLLECT(

exe,
a.binaries,
a.zipfiles,

(continues on next page)

2.9.

Notes about specific Features 49

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

a.datas,

strip=False,
upx=False,
name="'"eventlogger_tk'

app = BUNDLE(
coll,
name="'"eventlogger_tk.app',
Register custom protocol handler and custom file extension
info_plist={

'CFBundleURLTypes': [{

'CFBundleURLName': 'MyCustomUrlSchemaTk',
'CFBundleTypeRole': 'Viewer',
'CFBundleURLSchemes': ['pyi-tk'],

3,

'CFBundleDocumentTypes': [{
'CFBundleTypeName': 'MyCustomFileTypeTk',
'CFBundleTypeExtensions': [

'pyi_tk',
1,
'CFBundleTypeRole': "Viewer",

1,

Once running, the application logs all received open file and open URL requests. These are generated either by trying
to open a file with .pyi_tk extension using the UI, or using open command from the terminal:

$ touch filel.pyi_tk file2.pyi_tk file3.pyi_tk filed4.pyi_tk

$ open filel.pyi_tk
$ open file2.pyi_tk

$ open pyi-tk://testl
$ open pyi-tk://test2

$ open file3.pyi_tk file4.pyi_tk

Open event handling in a Qt-based GUI application

In Qt-based applications, open file and open URL requests are handled by installing application-wide event filter for
QFileOpenEvent.

This event abstracts both open file and open URL request, with file open requests having file:// URL schema.
An event contains a single file name or URL, so an open request containing multiple targets generates corresponding
number of QFileOpenEvent events.

Below is an example application and its corresponding .spec file:

eventlogger_qt.py
import sys

(continues on next page)

50 Chapter 2. Contents:

https://doc.qt.io/qt-5/qfileopenevent.html

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

import signal

from PySide2 import QtCore, QtWidgets

class Application(QtWidgets.QApplication):
QtWidgets.QApplication with extra handling for macOS Open
document/URL events.

e

openFileRequest = QtCore.Signal (QtCore.QUrl, name='openFileRequest")

def event(self, event):

if event.type() == QtCore.QEvent.FileOpen:
Emit signal so that main window can handle the given URL.
Or open a new application window for the file, or whatever
is appropriate action for your application.
self.openFileRequest.emit(event.url())
return True

return super().event(event)

class MainWindow(QtWidgets.QMainWindow) :

o

Main window.

o

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.resize (800, 600)
self.setWindowTitle("Qt-based event logger")

Construct the UI

self.scroll_area = QtWidgets.QScrollArea()
self.scroll_area.setWidgetResizable(True)
self.setCentralWidget(self.scroll_area)

self.text_edit = QtWidgets.QTextEdit()
self.scroll_area.setWidget(self.text_edit)
self.text_edit.setReadOnly(True)

def append_message(self, msg):

e

Append message to text view.

i

self.text_edit.append(msg)

def handle_open_file_request(self, url):
self.append_message(f"Open request: {url.toString(Q}")

(continues on next page)

2.9. Notes about specific Features 51

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

if __name__ == '__main__"':

Make Ctrl+C work
signal.signal(signal.SIGINT, signal.SIG_DFL)

app = Application(list(sys.argv))

window = MainWindow()
window. show()

window.append_message("Application started!")
window.append_message(f"Args: {sys.argv[1:]1}")

app.openFileRequest.connect (window.handle_open_file_request)

app.exec_Q)

eventlogger_qt.spec
a = Analysis(['eventlogger_qt.py'])

pyz = PYZ(a.pure, a.zipped_data)

exe = EXE(
pyz,
a.scripts,
exclude_binaries=True,
name="eventlogger_qt',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
console=False,
argv_emulation=False, # unnecessary as app handles events

coll = COLLECT(
exe,
a.binaries,
a.zipfiles,
a.datas,
strip=False,
upx=False,
name="eventlogger_qt'

app = BUNDLE(
coll,
name="eventlogger_qt.app',
Register custom protocol handler and custom file extension
info_plist={
'CFBundleURLTypes': [{
'CFBundleURLName': 'MyCustomUrlSchemaQt',
'CFBundleTypeRole': 'Viewer',

(continues on next page)

52 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

'CFBundleURLSchemes': ['pyi-qt'],

1,

'CFBundleDocumentTypes': [{
'CFBundleTypeName': 'MyCustomFileTypeQt',
'CFBundleTypeExtensions': [

'pyi_qt’,
1,
'CFBundleTypeRole': "Viewer",

1,

The application behaves in the same way as its tkinter-based counterpart, except that the associated file extension
and URL schema have been adjusted to prevent interference between the two example applications.

Initial open event

This section contains notes about behavior of the initial open event received by appliation, as seen by the frozen python
code (or the UI toolkit it uses).

When application is opened normally, this is done via Open Application (' oapp ') event, which is the first event received
by the application. If application is opened in response to open document or open URL request (i.e., it is not yet running
when request is made), then the first received event is 'odoc' or 'GURL', respectively.

In PylInstaller-frozen onefile bundles, the child process always starts with 'oapp' event, regardless how the appli-
cation was started. This is because the child is always started “normally”, and it is the parent who receives the actual
opening event; if the parent was opened with 'odoc' or "GURL' event, then event is either forwarded to child or
converted to sys.argv that is passed to the child, depending on whether argv emulation is enabled or not.

Therefore, in onefile mode, argv emulation has no direct effect on the initial open event (as seen by the frozen python
code), which is always 'oapp"'.

In onedir bundles, there application consists of single process, which receives the events. Without argv emulation,
the initial open event (as seen by the frozen python code) may be either 'oapp', 'odoc', or 'GURL', depending on
how application was started.

However, if argv emulation is enabled in a onedir bundle, its processing of initial event leaves the event queue empty.
The lack of initial open event seems to cause segmentation fault with Tcl/Tk 8.6.11 and Homebrew Python 3.9.6
(#5581). As a work-around, the bootloader attempts to submit an 'oapp' event to itself, so that when the frozen
python code inspects the event queue, it finds an initial open event (i.e., 'oapp'). These potential side effects of argv
emulation on Ul toolkits are the reason why we recommend against using them together.

2.9.7 Signal handling in console Windows applications and onefile application
cleanup

The signal handling in console applications on Windows differs from POSIX-based operating systems, such as linux
and macOS. While signals generated by abnormal conditions, such as SIGABRT (abnormal termination; for example
due to C code calling abort), SIGFPE (floating-point error), and SIGSEGV (illegal storage access), are generated and
can be handled using handlers installed via the signal function, this is not the case for signals associated with program
interruption and termination.

Specifically, interrupting a console-enabled program by pressing Ctrl+C does not generate the SIGINT signal, but
rather a special console control signal called CTRL_C_EVENT, which can be handled by a handler installed via the

2.9. Notes about specific Features 53

http://brew.sh/
https://github.com/pyinstaller/pyinstaller/issues/5581
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/abort
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal

Pyinstaller Documentation, Release 5.13.2

SetConsoleCtrlHandler win32 API function'. Similarly, as noted in MSDN documentation on signal, the SIGTERM
signal is not generated under Windows. Instead, there are several console control signals:

e CTRL_C_EVENT: interrupt via Ctr/+C key combination

e CTRL_BREAK_EVENT: interrupt via Ctrl+Break key combination
e CTRL_CLOSE_EVENT: closing the parent console window

e CTRL_LOGOFF_EVENT: a user logging off

e CTRL_SHUTDOWN_EVENT: system shutting down

When a console control signal is generated, the handler installed via SetConsoleCtrlHandler (if any) is executed in a
separate thread, spawned within the program process by the operating system. In other words, the handler function
is executed in parallel to the main program thread, which is necessary as the latter might be waiting on a blocking
operation or performing an endless loop.

As noted here, upon receiving CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT, the handler
function can perform any necessary clean-up”, and either:

« call ExitProcess to terminate the process.

e return FALSE (0). Other registered handlers are called, and if none returned TRUE, the default handler terminates
the process by calling ExitProcess.

e return TRUE (non-zero). The system terminates the process immediately, without calling any other registered
handler functions.

In other words, all options result in eventual program termination.

On the other hand, the default handler for CTRL_C_EVENT and CTRL_BREAK_EVENT also terminates the process, but
this behavior can be modified by suppressing the default handler by returning TRUE in the user-installed one.

Another important aspect of console control signals is that handling CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and
CTRL_SHUTDOWN_EVENT is subject to system-imposed time-outs (e.g., five seconds for the CTRL_CLOSE_EVENT); if
the process does not exit within the time-out limit, the operating system itself unconditionally terminates the process.

The above effectively means that once the program receives such control signal, its termination is inevitable (i.e., the
signal cannot be ignored). At best, the termination can be delayed to perform any necessary clean-up, but even this
must be done within system-imposed time limits.

Example of console control signal handling in python application

The following code demonstrates the basic implementation of a graceful console application shutdown. If the appli-
cation is interrupted by user pressing Ctrl4+C or Ctrl+Break, or closed due to user closing the console window, the
application’s state is stored to a file, so it can be restored on a subsequent run.

console_counter.py
import sys

import time

import pathlib

import win32api # pip install pywin32

(continues on next page)

! The higher-level programming languages, such as python, might emulate the standard signals; but under-the-hood mechanics still involve
console control signals discussed in this section.
2 Note that at this point, however, the program is essentially a multi-threaded one, so usual multi-threading caveats may apply.

54 Chapter 2. Contents:

https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal
https://docs.microsoft.com/en-us/windows/console/handlerroutine
https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler
https://docs.microsoft.com/en-us/windows/console/handlerroutine#remarks
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/console/handlerroutine#timeouts

Pyinstaller Documentation, Release 5.13.2

(continued from previous page)

def console_handler(signal):
print(f"Console handler (signal {signal})!™)
global keep_running
keep_running = False
Sleep until process either finishes or is killed by the 0S
time.sleep(20)
return True

if __name__ == '__main__':

keep_running = True

Install console handler
win32api.SetConsoleCtrlHandler(console_handler, 1)

Restore state, if available
state_file = pathlib.Path.home() / 'counter_state.txt'
if state_file.is_file(Q):
print(f"Restoring state from {state_file}...
try:
with open(state_file, 'r') as fp:
counter = int(fp.readline())
except Exception:
print("Failed to restore state from file!", file=sys.stderr)
counter = 0

, file=sys.stderr)

else:
print("State file does not exist!", file=sys.stderr)
counter = 0

print(f"Initial counter value: {counter}", file=sys.stderr)

Main loop

while keep_running:
print(f"Counter value: {counter}")
counter += 1
time.sleep(1)

Clean-up
print(f"Storing state to {state_file}...
try:
with open(state_file, 'w') as fp:
print(f" {counter}", file=£fp)
except Exception:
print(f"Failed to store state to {state_file}!", file=sys.stderr)

, file=sys.stderr)

print ("Goodbye!™)
time.sleep(l) # Delay exit for another second

The console control signal handler in the above code handles all console signals. This includes Ctri+C event, which
would otherwise generate a KeyboardInterrupt exception in the program’s main thread®. After signalling the loop

3 The KeyboardInterrupt exception could have been used to terminate the loop as well. However, that would not handle the Ctrl+Break key
combination nor console window being closed.

2.9. Notes about specific Features 55

Pyinstaller Documentation, Release 5.13.2

in the main thread to exit via the global boolean variable, the handler sleeps “forever”. This approach works because
the handler is executed in a separate thread, and this thread is terminated once the process ends - either due to main
thread reaching its end, or due to the operating system terminating the process.

The above code should work as expected when executed as an unfrozen python script, and also when frozen by PyIn-
staller as a onedir application. However, onefile applications frozen with PylInstaller versions prior to 5.3 exhibit
a problem; due to the lack of console control signals handling in the parent application process, the latter is always
terminated immediately and leaves behind the unpacked temporary directory.

Changed in version 5.3: implemented handling of console control signals in the frozen application’s parent process,
which allows us to delay its termination until after the child process is terminated, and clean up the unpacked temporary
directory. However, various caveats still apply, as discussed in the following sub-sections.

Onefile mode and temporary directory cleanup

The onefile mode in Pylnstaller uses two processes. When the application is launched, the parent process extracts
the contents of the embedded archive into a temporary directory, sets up the environment and library search paths,
and launches the child process. The child process sets up the embedded python interpreter and runs the frozen python
application. Meanwhile, the parent process waits for the child process to exit; when that happens, it cleans up the
extracted temporary data, and exits.

From the perspective of the parent process, it does not matter whether the child process exits cleanly (i.e., with success
code), or exits with an error code (for example, python code throws an exception that is not handled), or exits abnormally
(e.g., crashes due to abnormal operation raising the SIGABRT signal), or is terminated by the OS (for example, from
the Task Manager). In all cases, after the child process exits or is terminated, the parent process performs the cleanup,
then exits with the exit code that was returned from the child process.

Therefore, in order for the application’s temporary directory to be cleaned up, the parent process must never be forcefully
terminated (for example, via the TerminateProcess function). If that happens, the clean-up code has no chance to run,
and the temporary directory is left behind. On the other hand, from the perspective of the temporary directory clean-up,
the child process can be terminated in any way, even forcefully. For the proper clean-up during a graceful shutdown
triggered via console control signal (for example, due to Ctrl+C being pressed, or due to console window being closed),
the bootloader in PylInstaller 5.3 and later attempts to delay the shut-down of the parent process so that the child process
has time to exit and the main thread of the parent process has the chance to run the clean-up code.

The following sections provide additional details on this behavior for different situations.

Interrupting via Ctrl+C or Ctrl+Break

When Ctrl+C or Ctrl+Break is pressed in the console window, the CTRL_C_EVENT or CTRL_BREAK_EVENT is sent to
all processes attached to that console®.

In a onefile frozen application, the parent process ignores/suppresses the signal, so the outcome depends on how
the frozen python code in the child process handles the signal. If the python code exits (for example, no handler is
installed and KeyboardInterrupt exception interrupts the program flow), the parent process performs the clean-up
and exits as well. If the python code in the child process handles the signal without shutting the child process down,
the application keeps running.

This behavior is readily available in any PyInstaller version; in versions prior to 5.3, the parent process explicitly ignores
SIGABRT and SIGBREAK signals, which achieves the same result as handling the corresponding console control signals,
which is implemented from version 5.3 on.

41f a windowed/noconsole application is started from a console, it is completely independent from it as long as it has a window. If the
application has no window (i.e., a “hidden” application), its process does not receive CTRL_C_EVENT and CTRL_BREAK_EVENT signals in response
to Ctrl+C and Ctrl+Break being pressed in the console, but is nevertheless terminated when the console is closed. The termination seems to be
immediate and uncodnitional, i.e., without CTRL_CLOSE_EVENT signal being received.

56 Chapter 2. Contents:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess

Pyinstaller Documentation, Release 5.13.2

Closing the console window

When the console window is closed (by pressing X button on title bar), the CTRL_CLOSE_EVENT is sent to all processes
attached to that console’.

In a onefile frozen application, the parent process receives the signal and suspends the handler’s execution thread
for 20 seconds. This way, the termination of the parent process is delayed, in order to give time to the child process
(who also received the signal) to exit, and to the main thread of the parent process to perform cleanup and exit (which
then also terminates the handler’s execution thread). This behavior was implemented in PyInstaller 5.3 to ensure that
closing the console window cleans up the application’s temporary directory.

In versions prior to 5.3, the CTRL_CLOSE_EVENT is not handled; the parent process is terminated immediately without
having the chance to perform the cleanup, leaving the application’s temporary directory behind.

Note: The child process (i.e., the frozen python application code) might install its own console control signal handler
in order to perform its own cleanup (for example, save the application’s state). If so, it is important to keep in mind the
system-imposed five-second timeout, and the fact that the parent process can perform the temporary directory cleanup
only after the child process exits. In other words, if the clean up in the child process takes close to five seconds, the
parent process may not have a chance to peform its own clean up before the OS Kkills the process.

Terminating the application via the Task Manager

Terminating the application via the Task Manager is somewhat unpredictable due to distinction between “Apps” and
“Background processes”.

“Apps” are closed by sending a close request to the application. Such applications may close gracefully if they close
their window in response to the request, of, if they have a console, they handle the resulting CTRL_CLOSE_EVENT
console control signal.

“Background processes” are terminated unconditionally using the TerminateProcess, leaving no hope for graceful shut-
down and clean up.

The distinction between the two is based on whether the program has a visible window or not, but in practice, there are
additional nuances when it comes to console-enabled applications and applications with multiple processes.

To see the detailed classification on per-process basis, right click on the header of the process list view in the Task
Manager, and enable display of the Type column. The newly added column will show the process classification for
each process, and not just for the whole process group.

In the following sub-sections, we detail the behavior when attempting to shut down different processes involved with
frozen applications. Roughly, the behavior higly depends on the following factors:

* build type: onedir (single-process) vs. onefile (two-process) Pylnstaller build option.
 console enabled or not: console vs. noconsole/windowed Pylnstaller build option.

* application has a window or not: regardless of whether an application has console enabled or not, it might have a
window (window + console) or not (pure console-based application; or a “hidden”, window-less and console-less,
application that runs as a background process).

* how the application is launched: by double-clicking on the executable (“stand-alone”, with its own console
window) or by running it in an already-opened command prompt.

2.9. Notes about specific Features 57

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess
https://devblogs.microsoft.com/oldnewthing/20171219-00/?p=97606

Pyinstaller Documentation, Release 5.13.2

Windowed/noconsole onedir applications

Windowed/noconsole onedir applications are single-process applications without console, so they are the easiest to
understand when it comes to the Task Manager and the shutdown behavior.

If the application has a window (for example, a Qt-based GUI), it is treated as an “App”. It is listed under “Apps”, and
its process name is listed next to the top-level entry in the list. Shutting it down via the “End task” results in a window
close event being posted, which allows for graceful application shutdown.

If the application has no window (a window-less and console-less “hidden” application), it is treated as a “Background
process”, and is listed under “Background processes”. Shutting it down via the “End task” results in its unconditional
termination, with no hope for graceful application shutdown.

As noted in earlier sections, windowed/noconsole applications are independent of the console even if they are
launched from one, as long as they have a window. On the other hand, if an application has no window, the shutdown
of the console process results in the immediate and uncoditional termination of the application process (background
process within the console).

Because onedir applications do not need to unpack their contents to the temporary directory, the termination mode
does not really affect the clean-up from PylInstaller’s perspective. But it may be of concern if the application wishes to
perform some clean-up on its own; for example, saving the current state during the shutdown as was done in the earlier
example.

Console-enabled onedir applications

The shutdown behavior of Task Manager and console-enabled onedir applications depends on whether the appli-
cation itself has a window (for example, a Qt-based GUI application with console enabled) or not (a “pure” console
application), and whether the application owns the console window or not.

Pure console onedir application, ran via double-click

Running a pure-console application by double clicking on the executable opens a new console with the application
running in it. The top-level entry in the process list is placed under “Apps”’; however, it does not have a process name
listed next to it. Instead, it is a group consisting of a “Console Window Host” (a “Windows process”) and the actual
application process, which is classified as an “App”.

Shutting down the whole group (i.e., the top-level entry) via the “End task” results in everything being unconditionally
terminated.

Shutting down the application process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Pure console onedir application, ran in existing console

Opening a new command prompt results in a new “Windows Command Processor” group entry being added under
“Apps”. It consists of a “Console Window Host” (a “Windows process”) and a “Command Prompt” (an “App”).
Running a pure-console application from the opened command prompt results in a new process being added to the
existing “Windows Command Processor” group, and the process is classified as a “Background process”.

Therefore, shutting down the whole group results in everything being unconditionally terminated.
Shutting down the application process results in it being unconditionally terminated.

Shutting down the “Command Prompt” process results in application process receiving the CTRL_CLOSE_EVENT for
graceful shutdown.

58 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

Console-enabled onedir application with window, ran via double-click

Running a console-enabled application with a window via double-click behaves similarly to the corresponding pure-
console application case. The resulting process list entry is placed under “Apps”, and is a group consisting of a “Console
Window Host” (a “Windows process”) and the actual application process, which is classified as an “App”.

Shutting down the whole group results in everything being unconditionally terminated.

Shutting down the application process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onedir application with window, ran in existing console

Running a console-enabled application with a window from an existing command prompt does not place the application
process under the existing “Windows Command Processor” group, but rather results in a new “App” top-level entry in
the process list. This entry behaves similarly to the windowed onedir case; it has process name listed nex to it and
shutting it down via the “End task” results in a window close event being posted, which allows for graceful application
shutdown.

Shutting down the whole “Windows Command Processor” closes the console, but the application itself keeps running
(although its console handles likely become invalid®).

Shutting down the “Command Prompt” process within the “Windows Command Processor” group results in the ap-
plication process receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onefile applications

The shutdown behavior of onefile applications is complicated by the fact that two processes are involved, and that
application contents need to be extracted to the temporary directory that should, ideally, be cleaned up when the appli-
cation is shut down.

Pure-console onefile application, ran via double-click

Running a pure-console application by double clicking on the executable opens a new console with the application
running in it. The top-level entry in the process list is placed under “Apps”, and is a group consisting of:

* a “Console Window Host” (a “Windows process”)
* the parent process, classified as an “App”
* the child process, classified as a “Background process”

Shutting down the whole group results in everything being unconditionally terminated. The temporary directory is left
behind.

Shutting down the child process results in its immediate and unconditional termination. After the child process is
terminated, the parent process performs temporary directory cleanup and exits, which also closes the console. The
only potential drawback of this situation is that the application code cannot perform its own clean up.

Shutting down the parent process results in the CTRL_CLOSE_EVENT received by both parent and child process. After
the child performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well.
This is the ideal situation®.

5 Invalid console handles might, in turn, end up causing an error when the application code tries to use them, for example to print a message to
the (now non-existent) console.

6 Assuming the potential cleanup in the application code does not delay the shutdown to the point where the OS ends up killing the parent process
before it has the chance to perform the temporary directory cleanup...

2.9. Notes about specific Features 59

Pyinstaller Documentation, Release 5.13.2

Pure console onefile application, ran in existing console

Running a pure-console application from the opened command prompt results in two new processes being added to the
existing “Windows Command Processor” group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results in everything being unconditionally termi-
nated, and the temporary directory being left behind.

Shutting down the parent process results in its immediate and unconditional termination. The console accepts input
again, while the child process (the actual application) keeps running in the background (i.e., still writing its output to
the console). Since the parent process was terminated before it could perform clean-up, the temporary directory is left
behind.

Shutting down the child process similarly results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Shutting down the “Command Prompt” process is the best choice, as it results in both the parent and the child process
receiving the CTRL_CLOSE_EVENT for graceful shutdown.

But perhaps the most surefire way of closing the application in this case would be using Ctrl+C or Ctrl+Break, or even
closing the console window.

Console-enabled onefile application with window, ran via double-click

Running a console-enabled application with a window via double-click results in two top-level entries in the process
list.

The first entry is a group that belongs to the parent process; it contains a “Console Window Host” (a “Windows
process”) and the parent process, which is classified as an “App”.

The child process is listed as a separate top-level entry that is also classified as an “App” and has process name listed
next to it.

Shutting down the whole parent process group results in everything in that group being unconditionally terminated,
while the child process (the actual application) keeps running. The temporary directory is left behind.

Shutting down the parent process results in the CTRL_CLOSE_EVENT received by both the parent and the child process.
After the child performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as
well. This is the ideal situation’.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Console-enabled onefile application with window, ran in existing console

Running a console-enabled application with a window from the opened command prompt results in parent process
being added to the existing “Windows Command Processor” group, as a “Background process”.

The child process is listed as a separate top-level entry that is classified as an “App” and has process name listed next
to it.

Shutting down the whole “Windows Command Processor” closes the console and results in immediate and uncondi-
tional termination of the parent process. The child process (the application itself) keeps running (although its console
handles likely become invalid”). The temporary directory is left behind.

60 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

Shutting down the parent process results in its immediate and unconditional termination. The console is left open and
accepts input again, while the child process (the actual application) keeps running in the background (i.e., still writing
its output to the console). Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Shutting down the “Command Prompt” process results in both the parent and the child application process receiving
the CTRL_CLOSE_EVENT for graceful shutdown. This is the ideal situation’.

Windowed/noconsole onefile applications

In case of windowed/noconsole onefile applications, the application’s parent process is usually classified as a
“Background process”. The classification of the child process depends on whether the application has a window or not.

Noconsole onefile application without window, ran via double-click

Running a “hidden” application (noconsole/windowed application without a window) by double clicking on the
executable results in parent and child process being added to the process list as two distinct top-level entries, under
“Background processes”.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running. Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process also results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Noconsole onefile application without window, ran in existing console

Running a “hidden” application from the opened command prompt results in two new processes being added to the
existing “Windows Command Processor” group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results in everything being unconditionally termi-
nated, and the temporary directory being left behind.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running as a background process. Since the parent process was terminated before it could perform
clean-up, the temporary directory is left behind.

Shutting down the child process similarly results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Shutting down the “Command Prompt” process closes the console, but both parent and child process keep on running
as background processes. Their entries are moved from the removed “Windows Command Processor” group into a
new group entry under “Background processes”.

2.9. Notes about specific Features 61

Pyinstaller Documentation, Release 5.13.2

Noconsole onefile application with window, ran via double-click

Running a regular GUI noconsole application via double click results in the parent process being classified as a
“Background process” and the child process being classified as an “App”. Each of them get their own top-level entry
in the process list (under “Background processes” and under “Apps”, respectively), and both have their process name
listed next to them.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running. Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process results in a window close request (and the CTRL_CLOSE_EVENT signal) being sent to
the child process for a graceful shutdown. After the child performs its cleanup (if any) and exits, the parent performs
temporary directory cleanup and exits as well. This is the ideal situation; in this case, the parent process performs
temporary directory cleanup even if the child process exceeds the signal handling timeout and is forcefully terminated
by the operating system.

Noconsole onefile application with window, ran in existing console

Running a regular GUI noconsole application from an existing console is similar to running it via double-click, except
that the parent process (classified as a “Background process”) is listed under the “Windows Command Processor” group
under “Apps” instead of a stand-alone entry under “Background processes”.

Shutting down the whole “Windows Command Processor” closes the console and results in immediate and uncon-
ditional termination of the parent process. The child process (the application itself) keeps running. The temporary
directory is left behind.

Shutting down the parent process results in its immediate and unconditional termination. This affects neither console
nor the child process, both of which keep running. Since the parent process was terminated before it could perform
clean-up, the temporary directory is left behind.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Shutting down the “Command Prompt” process results in console being closed and the parent process being immedi-
ately and unconditionally terminated. The child process keeps running. Since the parent process was terminated before
it could perform clean-up, the temporary directory is left behind.

2.10 When Things Go Wrong

The information above covers most normal uses of Pylnstaller. However, the variations of Python and third-party
libraries are endless and unpredictable. It may happen that when you attempt to bundle your app either PylInstaller
itself, or your bundled app, terminates with a Python traceback. Then please consider the following actions in sequence,
before asking for technical help.

62 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

2.10.1 Recipes and Examples for Specific Problems

The PylInstaller FAQ page has work-arounds for some common problems. Code examples for some advanced uses and
some common problems are available on our PylInstaller Recipes page. Some of the recipes there include:

* A more sophisticated way of collecting data files than the one shown above (Adding Files to the Bundle).
* Bundling a typical Django app.

* A use of a run-time hook to set the PyQt5 API level.

* A workaround for a multiprocessing constraint under Windows.

and others. Many of these Recipes were contributed by users. Please feel free to contribute more recipes!

2.10.2 Finding out What Went Wrong

Build-time Messages

When the Analysis step runs, it produces error and warning messages. These display after the command line if the
--log-Ilevel option allows it. Analysis also puts messages in a warnings file named build/name/warn-name. txt
in the work-path= directory.

Analysis creates a message when it detects an import and the module it names cannot be found. A message may also
be produced when a class or function is declared in a package (an __init__.py module), and the import specifies
package.name. In this case, the analysis can’t tell if name is supposed to refer to a submodule or package.

The “module not found” messages are not classed as errors because typically there are many of them. For example,
many standard modules conditionally import modules for different platforms that may or may not be present.

All “module not found” messages are written to the build/name/warn-name.txt file. They are not displayed to
standard output because there are many of them. Examine the warning file; often there will be dozens of modules not
found, but their absence has no effect.

When you run the bundled app and it terminates with an ImportError, that is the time to examine the warning file. Then
see Helping Pylnstaller Find Modules below for how to proceed.

Build-Time Dependency Graph

On each run Pylnstaller writes a cross-referencing file about dependencies into the build folder: build/name/
xref-name.html in the work-path=directory is an HTML file that lists the full contents of the import graph, showing
which modules are imported by which ones. You can open it in any web browser. Find a module name, then keep click-
ing the “imported by” links until you find the top-level import that causes that module to be included.

If you specify --Iog-1level=DEBUG to the pyinstaller command, Pylnstaller additionally generates a GraphViz
input file representing the dependency graph. The file is build/name/graph-name.dot in the work-path=directory.
You can process it with any GraphViz command, e.g. dot, to produce a graphical display of the import dependencies.

These files are very large because even the simplest “hello world” Python program ends up including a large number
of standard modules. For this reason the graph file is not very useful in this release.

2.10. When Things Go Wrong 63

https://github.com/pyinstaller/pyinstaller/wiki/FAQ
https://github.com/pyinstaller/pyinstaller/wiki/Recipes
https://graphviz.org/
https://graphviz.org/

Pyinstaller Documentation, Release 5.13.2

Build-Time Python Errors

Pylnstaller sometimes terminates by raising a Python exception. In most cases the reason is clear from the exception
message, for example “Your system is not supported”, or “Pyinstaller requires at least Python 3.7”. Others clearly
indicate a bug that should be reported.

One of these errors can be puzzling, however: IOError("Python library not found!") Pylnstaller needs to
bundle the Python library, which is the main part of the Python interpreter, linked as a dynamic load library. The
name and location of this file varies depending on the platform in use. Some Python installations do not include a
dynamic Python library by default (a static-linked one may be present but cannot be used). You may need to install a
development package of some kind. Or, the library may exist but is not in a folder where PylInstaller is searching.

The places where PylInstaller looks for the python library are different in different operating systems, but /1ib and
/usr/lib are checked in most systems. If you cannot put the python library there, try setting the correct path in the
environment variable LD_LIBRARY_PATH in GNU/Linux or DYLD_LIBRARY_PATH in macOS.

Getting Debug Messages

The --debug=all option (and its choices) provides a significant amount of diagnostic information. This can be useful
during development of a complex package, or when your app doesn’t seem to be starting, or just to learn how the
runtime works.

Normally the debug progress messages go to standard output. If the --windowed option is used when bundling a Win-
dows app, they are sent to any attached debugger. If you are not using a debugger (or don’t have one), the DebugView
the free (beer) tool can be used to display such messages. It has to be started before running the bundled application.

For a --windowed macOS app they are not displayed.

Consider bundling without --debug for your production version. Debugging messages require system calls and have
an impact on performance.

Getting Python’s Verbose Imports

You can build the app with the --debug=imports option (see Getting Debug Messages above), which will pass the
-v (verbose imports) flag to the embedded Python interpreter. This can be extremely useful. It can be informative even
with apps that are apparently working, to make sure that they are getting all imports from the bundle, and not leaking
out to the local installed Python.

Python verbose and warning messages always go to standard output and are not visible when the --windowed option
is used. Remember to not use this for your production version.

Figuring Out Why Your GUI Application Won’t Start
If you are using the --windowed option, your bundled application may fail to start with an error message like Failed
to execute script my_gui. In this case, you will want to get more verbose output to find out what is going on.

* For macOS, you can run your application on the command line, i.e. ./dist/my_gui in Terminal instead of
clicking on my_gui . app.

» For Windows, you will need to re-bundle your application without the --windowed option. Then you can run
the resulting executable from the command line, i.e. my_gui . exe.

¢ For Unix and GNU/Linux there in no --windowed option. Anyway, if a your GUI application fails, you can run
your application on the command line, i.e. ./dist/my_gui.

This should give you the relevant error that is preventing your application from initializing, and you can then move on
to other debugging steps.

64 Chapter 2. Contents:

https://docs.microsoft.com/en-us/sysinternals/downloads/debugview

Pyinstaller Documentation, Release 5.13.2

Operation not permitted error

If you use the —onefile and it fails to run you program with error like:

./hello: error while loading shared libraries: libz.so.1:
failed to map segment from shared object: Operation not permitted

This can be caused by wrong permissions for the /tmp directory (e.g. the filesystem is mounted with noexec flags).

A simple way to solve this issue is to set, in the environment variable TMPDIR, a path to a directory in a filesystem
mounted without noexec flags, e.g.:

export TMPDIR=/var/tmp/

2.10.3 Helping Pylnstaller Find Modules

Extending the Path

If Analysis recognizes that a module is needed, but cannot find that module, it is often because the script is manipulating
sys.path. The easiest thing to do in this case is to use the --paths option to list all the other places that the script
might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
--paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file in the pathex argument. They will be added to the current sys.path during
analysis.

Listing Hidden Imports

If Analysis thinks it has found all the imports, but the app fails with an import error, the problem is a hidden import;
that is, an import that is not visible to the analysis phase.

Hidden imports can occur when the code is using __import__(), importlib.import_module () or perhaps exec ()
or eval (). Hidden imports can also occur when an extension module uses the Python/C API to do an import. When
this occurs, Analysis can detect nothing. There will be no warnings, only an ImportError at run-time.

To find these hidden imports, build the app with the --debug=imports flag (see Getting Python’s Verbose Imports
above) and run it.

Once you know what modules are needed, you add the needed modules to the bundle using the --hidden-import
command option, or by editing the spec file, or with a hook file (see Understanding Pylnstaller Hooks below).

Extending a Package’s __path__

Python allows a script to extend the search path used for imports through the __path__ mechanism. Normally, the
__path__ of an imported module has only one entry, the directory in which the __init__.py was found. But
__init__.pyis free to extend its __path__ to include other directories. For example, the win32com. shell. shell
module actually resolves to win32com/win32comext/shell/shell.pyd. Thisis because win32com/__init__.py
appends . ./win32comext toits __path__.

Because the __init__.py of an imported module is not actually executed during analysis, changes it makes to
__path__ are not seen by PyInstaller. We fix the problem with the same hook mechanism we use for hidden imports,
with some additional logic; see Understanding Pylnstaller Hooks below.

2.10. When Things Go Wrong 65

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/functions.html#import__
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__

Pyinstaller Documentation, Release 5.13.2

Note that manipulations of __path__ hooked in this way apply only to the Analysis. At runtime all imports are inter-
cepted and satisfied from within the bundle. win32com. shell is resolved the same way as win32com.anythingelse,
and win32com.__path__ knows nothing of ../win32comext.

Once in a while, that’s not enough.

Changing Runtime Behavior

More bizarre situations can be accommodated with runtime hooks. These are small scripts that manipulate the envi-
ronment before your main script runs, effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks. You can name them with the option --runtime-hook=path-to-script.

Second, some runtime hooks are provided. At the end of an analysis, the names in the module list produced by the
Analysis phase are looked up in loader/rthooks.dat in the Pylnstaller install folder. This text file is the string
representation of a Python dictionary. The key is the module name, and the value is a list of hook-script pathnames. If
there is a match, those scripts are included in the bundled app and will be called before your main script starts.

Hooks you name with the option are executed in the order given, and before any installed runtime hooks. If you specity
--runtime-hook=filel.py --runtime-hook=fileZ2.py then the execution order at runtime will be:

1. Code of filel.py.

2. Code of file2.py.

3. Any hook specified for an included module that is found in rthooks/rthooks.dat.
4. Your main script.

Hooks called in this way, while they need to be careful of what they import, are free to do almost anything. One reason
to write a run-time hook is to override some functions or variables from some modules. A good example of this is the
Django runtime hook (see loader/rthooks/pyi_rth_django.py in the Pylnstaller folder). Django imports some
modules dynamically and it is looking for some .py files. However .py files are not available in the one-file bundle.
We need to override the function django.core.management . find_commands in a way that will just return a list of
values. The runtime hook does this as follows:

import django.core.management
def _find_commands(_):

return """cleanup shell runfcgi runserver""".split()
django.core.management. find_commands = _find_commands

2.10.4 Getting the Latest Version

If you have some reason to think you have found a bug in PylInstaller you can try downloading the latest development
version. This version might have fixes or features that are not yet at PyPI. You can download the latest stable version
and the latest development version from the PylInstaller Downloads page.

You can also install the latest version of PylInstaller directly using pip:

pip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip

66 Chapter 2. Contents:

https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases
http://www.pip-installer.org/

Pyinstaller Documentation, Release 5.13.2

2.10.5 Asking for Help

When none of the above suggestions help, do ask for assistance on the PylInstaller Email List.

Then, if you think it likely that you see a bug in PylInstaller, refer to the How to Report Bugs page.

2.11 Advanced Topics

The following discussions cover details of Pylnstaller internal methods. You should not need this level of detail for
normal use, but such details are helpful if you want to investigate the PylInstaller code and possibly contribute to it, as
described in How to Contribute.

2.11.1 The Bootstrap Process in Detail

There are many steps that must take place before the bundled script can begin execution. A summary of these steps
was given in the Overview (How the One-Folder Program Works and How the One-File Program Works). Here is more
detail to help you understand what the bootloader does and how to figure out problems.

Bootloader

The bootloader prepares everything for running Python code. It begins the setup and then returns itself in another
process. This approach of using two processes allows a lot of flexibility and is used in all bundles except one-folder
mode in Windows. So do not be surprised if you will see your bundled app as two processes in your system task
manager.

What happens during execution of bootloader:
A. First process: bootloader starts.
1. If one-file mode, extract bundled files to temppath/_MEIxxxxxXx.
2. Modify various environment variables:

¢« GNU/Linux: If set, save the original value of LD_LIBRARY_PATH into
LD_LIBRARY_PATH_ORIG. Prepend our path to LD_LIBRARY_PATH.

* AIX: same thing, but using LIBPATH and LIBPATH_ORIG.
* OSX: unset DYLD_LIBRARY_PATH.
Set up to handle signals for both processes.

Run the child process.

wook W

Wiait for the child process to finish.
6. If one-file mode, delete temppath/_MEIxxxxxx.
B. Second process: bootloader itself started as a child process.
1. On Windows set the activation context.
2. Load the Python dynamic library. The name of the dynamic library is embedded in the executable file.
3. Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.
4. Run python code.

Running Python code requires several steps:

2.11. Advanced Topics 67

https://groups.google.com/forum/#!forum/pyinstaller
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs
https://pyinstaller.readthedocs.io/en/latest/contributing.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx

Pyinstaller Documentation, Release 5.13.2

1. Run the Python initialization code which prepares everything for running the user’s main script. The initialization
code can use only the Python built-in modules because the general import mechanism is not yet available. It sets
up the Python import mechanism to load modules only from archives embedded in the executable. It also adds
the attributes frozen and _MEIPASS to the sys built-in module.

2. Execute any run-time hooks: first those specified by the user, then any standard ones.

3. Install python “egg” files. When a module is part of a zip file (.egg), it has been bundled into the ./eggs
directory. Installing means appending .egg file names to sys.path. Python automatically detects whether an
item in sys.path is a zip file or a directory.

4. Run the main script.

Python imports in a bundled app
PylInstaller embeds compiled python code (. pyc files) within the executable. PylInstaller injects its code into the normal
Python import mechanism. Python allows this; the support is described in PEP 302 “New Import Hooks”.

PylInstaller implements the PEP 302 specification for importing built-in modules, importing “frozen” modules (com-
piled python code bundled with the app) and for C-extensions. The code can be read in ./PyInstaller/loader/
pyi_mod®3_importers.py.

At runtime the Pylnstaller PEP 302 hooks are appended to the variable sys.meta_path. When trying to import
modules the interpreter will first try PEP 302 hooks in sys.meta_path before searching in sys.path. As a result,
the Python interpreter loads imported python modules from the archive embedded in the bundled executable.

This is the resolution order of import statements in a bundled app:
1. Is it a built-in module? A list of built-in modules is in variable sys.builtin_module_names.
2. Is it a module embedded in the executable? Then load it from embedded archive.

3. Isita C-extension? The app will try to find a file with name package. subpackage.module.pyd or package.
subpackage.module. so.

4. Next examine paths in the sys.path. There could be any additional location with python modules or .egg
filenames.

5. If the module was not found then raise ImportError.

Splash screen startup

Note: This feature is incompatible with macOS. In the current design, the splash screen operates in a secondary thread,
which is disallowed by the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

If a splash screen is bundled with the application the bootloaders startup procedure and threading model is a little more
complex. The following describes the order of operation if a splash screen is bundled:

1. The bootloader checks if it runs as the outermost application (Not the child process which was spawned by the
bootloader).

2. If splash screen resources are bundled, try to extract them (onefile mode). The extraction path is inside
temppath/_MEIxxxxxx/__splashx. If in onedir mode, the application assumes the resources are relative
to the executable.

3. Load the tcl and tk shared libraries into the bootloader.
e Windows: tcl86t.d11/tk86t.dl1l

68 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#module-sys
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302
https://docs.python.org/3/library/sys.html#sys.meta_path
https://docs.python.org/3/library/sys.html#sys.meta_path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.builtin_module_names
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/exceptions.html#ImportError

Pyinstaller Documentation, Release 5.13.2

e Linux: libtcl.so/libtk.so
4. Prepare a minimal environment for the Tcl/Tk interpreter by replacing/modifying the following functions:

1. ::tclInit: This command is called to find the standard library of tcl. We replace this command to force
tcl to load/execute only the bundled modules.

2. ::tcl_findLibrary: Tk uses this function to source all its components. The overwritten function sets
the required environment variable and evaluates the requested file.

3. ::exit: This function is modified to ensure a proper exit of the splash screen thread.

4. ::source: This command executes the contents of a passed file. Since we run in a minimal environment
we mock the execution of not bundled files and execute those who are.

5. Start the tcl interpreter and execute the splash screen script which was generated by PylInstaller’s build target
Splash at build time. This script creates the environment variable _PYIBoot_SPLASH, which is also available
to the python interpreter. It also initializes a tcp server socket to receive commands from python.

Note: The tcl interpreter is started in a separate thread. Only after the tcl interpreter has executed the splash screen
script, the bootloader thread, which is responsible for extraction/starting the python interpreter, is resumed.

2.11.2 pyi_splash Module (Detailed)

This module connects to the bootloader to send messages to the splash screen.

It is intended to act as an RPC interface for the functions provided by the bootloader, such as displaying text or closing.
This makes the users python program independent of how the communication with the bootloader is implemented,
since a consistent API is provided.

To connect to the bootloader, it connects to a local tcp server socket whose port is passed through the environment
variable _PYIBoot_SPLASH. The bootloader connects to the socket via the python module _socket. Although this
socket is bidirectional, the module is only configured to send data. Since the os-module, which is needed to request the
environment variable, is not available at boot time, the module does not establish the connection until initialization.

This module does not support reloads while the splash screen is displayed, i.e. it cannot be reloaded (such as by
importlib.reload()), because the splash screen closes automatically when the connection to this instance of the
module is lost.

Functions

Note: Note that if the _PYIBoot_SPLASH environment variable does not exist or an error occurs during the connection,
the module will not raise an error, but simply not initialize itself (i.e. pyi_splash.is_alive() will return False).
Before sending commands to the splash screen, one should check if the module was initialized correctly, otherwise a
RuntimeError will be raised.

is_alive()
Indicates whether the module can be used.

Returns False if the module is either not initialized or was disabled by closing the splash screen. Otherwise,
the module should be usable.

update_text (msg)
Updates the text on the splash screen window.

2.11. Advanced Topics 69

http://www.tcl.tk/
https://docs.python.org/3/library/importlib.html#importlib.reload
https://docs.python.org/3/library/exceptions.html#RuntimeError

Pyinstaller Documentation, Release 5.13.2

Parameters msg (str) — the text to be displayed

Raises
* ConnectionError — If the OS fails to write to the socket
e RuntimeError — If the module is not initialized

close()
Close the connection to the ipc tcp server socket

This will close the splash screen and renders this module unusable. After this function is called, no connection
can be opened to the splash screen again and all functions if this module become unusable

2.11.3 The Table of Contents (TOC) lists and the Tree Class

PylInstaller manages lists of files that are to be collected in the so-called Table of Contents (TOC) list format. These
lists contain three-element tuples that encapsulate information about a file’s destination name, the file’s full source path,
and its type.

As part of utilities for managing the TOC lists, Pylnstaller provides a Tree class as a convenient way to build a TOC
list from the contents of the given directory. This utility class can be used either in the .spec files file or from custom
hooks.

Table of Contents (TOC) lists

The Analysis object produces several TOC lists that provide information about files to be collected. The files are
grouped into distinct lists based on their type or function, for example: - Analysis.scripts: program script(s)
- Analysis.pure: pure-python modules - Analysis.binaries: binary extension modules and shared libraries -
Analysis.datas: data files

The generated TOC lists are passed to various build targets within the spec file, such as PYZ, EXE, and COLLECT.
Each TOC list contains three-element tuples,
(dest_name, src_name , typecode)

where dest_name is the destination file name (i.e., file name within the frozen application; as such, it must always be
arelative name), src_name is the source file name (the path from where the file is collected), and typecode is a string
that denotes the type of the file (or entry).

Internally, PyInstaller uses a number of typecode values, but for the normal case you need to know only these:

type- description dest_name src_name

code

‘DATA Arbitrary (data) files. Name in the frozen application. Full path to the file on the
build system.

‘BI- A shared library. Name in the frozen application. Full path to the file on the

NARY’ build system.

‘EXTEN- | A Python binary exten- | Name in the frozen application. Full path to the file on the

SION’ sion. build system.

‘OP- A Pylnstaller/Python run- | Option name (and optional value, sepa- | Ignored.

TION’ time option. rated by a whitespace).

The destination name corresponds to the name of the final in the frozen application, relative to the top-level application
directory. It may include path elements, for example extras/mydata. txt.

70 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Pyinstaller Documentation, Release 5.13.2

Entries of type BINARY and EXTENSION are assumed to represent a file containing loadable executable code, such as
a dynamic library. Generally, EXTENSION is used to denote Python extensions modules, such as modules compiled by
Cython. The two file types are treated in the same way; PylInstaller scans them for additional link-time dependencies and
collects any dependencies that are discovered. On some operating systems, binaries and extensions undergo additional
processing (such as path rewriting for link-time dependencies and code-signing on macOS).

The TOC lists produced by Analysis can be modified in the spec file file before they are passed on to the build targets
to either include additional entries (although it is preferable to pass extra files to be included via binaries or datas
arguments of Analysis) or remove unwanted entries.

Changed in version 5.11: In Pylnstaller versions prior to 5.11, the TOC lists were in fact instances of the TOC class,
which internally performed implicit entry de-duplication; i.e., trying to insert an entry with existing target name would
result in no changes to the list.

However, due to the shortcomings of the TOC class that resulted from loosely-defined and conflicting semantics, the use
of the TOC class has been deprecated. The TOC lists are now instances of plain 1ist, and PyInstaller performs explicit
list normalization (entry de-duplication). The explicit normalization is performed at the end of Analysis instantiation,
when the lists are stored in the class’ properties (such as Analysis.datas and Analysis.binaries). Similarly,
explicit list normalization is also performed once the build targets (EXE, PYZ, PKG, COLLECT, BUNDLE) consolidate the
input TOC lists into the final list.

The Tree Class

The Tree class offers a convenient way of creating a TOC list that describes contents of the given directory:
Tree(root, prefix=run-time-folder, excludes=string_list, typecode=code| 'DATA')

* The root argument is a string denoting the path to the directory. It may be absolute or relative to the spec file
directory.

* The optional prefix argument is a name for a sub-directory in the application directory into which files are to be
collected. If not specified or set to None, the files will be collected into the top-level application directory.

* The optional excludes argument is a list of one or more strings that match files in the root that should be omitted
from the Tree. An item in the list can be either:

— a name, which causes files or folders with this basename to be excluded
— aglob pattern (e.g., *.ext), which causes matching files to be excluded

» The optional fypecode argument specifies the TOC typecode string that is assigned to all entries in the TOC list.
The default value is DATA, which is appropriate for most cases.

For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=["tmp', "*.pyc'])

This creates extras_toc as a TOC list that contains entries for all files from the relative path . . /src/extras, omitting
those that have the basename (or are in a folder named) tmp or have the . pyc extension. Each tuple in this TOC has:

* A dest_name in form of:file:extras/{filename).

* A src_name that corresponds to the full absolute path to that file in the . ./src/extras folder (relative to the
location of the spec file).

e A typecode of DATA (the default).

An example of creating a TOC listing some binary modules:

cython_mods = Tree('..src/cy_mods', excludes=['*.pyx', '*.py', '"*.pyc'], typecode=
— "EXTENSION')

2.11. Advanced Topics 71

http://www.cython.org/

Pyinstaller Documentation, Release 5.13.2

This creates a TOC list with entries for each file in the cy_mods directory, excluding files with the . pyx, .py, or .pyc
extension (so presumably collecting only the .pyd or .so modules created by Cython). Each tuple in this TOC has:

* A dest_name that corresponds to the file’s basename (all files are collected in top-level application directory).
* A src_name that corresponds to the full absolute path to that file in . . /src/cy_mods relative to the spec file.

* A typecode of EXTENSION (BINARY could be used as well).

2.11.4 Inspecting Archives

An archive is a file that contains other files, for example a . tar file, a . jar file, or a . zip file. Two kinds of archives
are used in Pylnstaller. One is a ZlibArchive, which allows Python modules to be stored efficiently and, with some
import hooks, imported directly. The other, a CArchive, is similar to a .zip file, a general way of packing up (and
optionally compressing) arbitrary blobs of data. It gets its name from the fact that it can be manipulated easily from C
as well as from Python. Both of these derive from a common base class, making it fairly easy to create new kinds of
archives.

ZlibArchive

A ZlibArchive contains compressed .pyc or .pyo files. The PYZ class invocation in a spec file creates a ZlibArchive.

The table of contents in a ZlibArchive is a Python dictionary that associates a key, which is a member’s name as given
in an import statement, with a seek position and a length in the ZlibArchive. All parts of a ZlibArchive are stored in
the marshalled format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules. Even with maximum compression this works
faster than the normal import. Instead of searching sys.path, there’s a lookup in the dictionary. There are no directory
operations and no file to open (the file is already open). There’s just a seek, a read and a decompress.

A Python error trace will point to the source file from which the archive entry was created (the __file__ attribute
from the time the .pyc was compiled, captured and saved in the archive). This will not tell your user anything useful,
but if they send you a Python error trace, you can make sense of it.

CArchive

A CArchive can contain any kind of file. It’s very much like a .zip file. They are easy to create in Python and easy
to unpack from C code. A CArchive can be appended to another file, such as an ELF and COFF executable. To allow
this, the archive is made with its table of contents at the end of the file, followed only by a cookie that tells where the
table of contents starts and where the archive itself starts.

A CArchive can be embedded within another CArchive. An inner archive can be opened and used in place, without
having to extract it.

Each table of contents entry has variable length. The first field in the entry gives the length of the entry. The last field
is the name of the corresponding packed file. The name is null terminated. Compression is optional for each member.

There is also a type code associated with each member. The type codes are used by the self-extracting executables. If
you’re using a CArchive as a . zip file, you don’t need to worry about the code.

The ELF executable format (Windows, GNU/Linux and some others) allows arbitrary data to be concatenated to the
end of the executable without disturbing its functionality. For this reason, a CArchive’s Table of Contents is at the end
of the archive. The executable can open itself as a binary file, seek to the end and ‘open’ the CArchive.

72 Chapter 2. Contents:

http://docs.python.org/library/marshal
https://docs.python.org/3/library/sys.html#sys.path

Pyinstaller Documentation, Release 5.13.2

MAGIC

Ta

osition

of Contents [marshalled dict

Nape

[

ition, Length]

M= mé\

[Fasition, Length]

| Hame : |[F'D?ﬁ73n, Leng‘th]l

Fig. 1: Structure of the ZlibArchive

Fig. 2: Structure of the CArchive

2.11. Advanced Topics

73

Pyinstaller Documentation, Release 5.13.2

\=archlva
ptton 1.

aazaptionspy

Al pyed

win3zaplpyd

Py type il

iltapy

Im putil.py

launeh.py i your main seript, renamed §

your .pyz

TOC

T -

Fig. 3: Structure of the Self Extracting Executable

Using pyi-archive_viewer

Use the pyi-archive_viewer command to inspect any type of archive:
pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with PyInstaller (a PYZ or PKG), or any executable
(.exe file or an ELF or COFF binary). The archive can be navigated using these commands:

O name Open the embedded archive name (will prompt if omitted). For example when looking in a one-file executable,
you can open the PYZ-00.pyz archive inside it.

U Go up one level (back to viewing the containing archive).

X name Extract name (will prompt if omitted). Prompts for an output filename. If none given, the member is extracted

to stdout.
Q Quit.
The pyi-archive_viewer command has these options:
-h, --help Show help.
-1, --log Quick contents log.
-b, --brief Print a python evaluable list of contents filenames.
-1, --recursive Used with -1 or -b, applies recursive behaviour.

74 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

2.11.5 Inspecting Executables

You can inspect any executable file with pyi-bindepend:
pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name and writes to stdout all its binary depen-
dencies. This is handy to find out which DLLs are required by an executable or by another DLL.

pyi-bindepend is used by Pylnstaller to follow the chain of dependencies of binary extensions during Analysis.

2.11.6 Creating a Reproducible Build

In certain cases it is important that when you build the same application twice, using exactly the same set of dependen-
cies, the two bundles should be exactly, bit-for-bit identical.

That is not the case normally. Python uses a random hash to make dicts and other hashed types, and this affects
compiled byte-code as well as Pylnstaller internal data structures. As a result, two builds may not produce bit-for-bit
identical results even when all the components of the application bundle are the same and the two applications execute
in identical ways.

You can ensure that a build will produce the same bits by setting the PYTHONHASHSEED environment variable to a
known integer value before running PylInstaller. This forces Python to use the same random hash sequence until
PYTHONHASHSEED is unset or set to 'random'. For example, execute Pylnstaller in a script such as the following
(for GNU/Linux and macOS):

set seed to a known repeatable integer value

PYTHONHASHSEED=1

export PYTHONHASHSEED

create one-file build as myscript

pyinstaller myscript.spec

make checksum

cksum dist/myscript/myscript | awk '{print $1}' > dist/myscript/checksum.txt
let Python be unpredictable again

unset PYTHONHASHSEED

Changed in version 4.8: The build timestamp in the PE headers of the generated Windows executables is set to the
current time during the assembly process. A custom timestamp value can be specified via the SOURCE_DATE_EPOCH
environment variable to achieve reproducible builds.

2.12 Understanding Pylnstaller Hooks

Note: We strongly encourage package developers to provide hooks with their packages. See section Providing PyIn-
staller Hooks with your Package for how easy this is.

In summary, a “hook” file extends PylInstaller to adapt it to the special needs and methods used by a Python package.
The word “hook” is used for two kinds of files. A runtime hook helps the bootloader to launch an app. For more
on runtime hooks, see Changing Runtime Behavior. Other hooks run while an app is being analyzed. They help the
Analysis phase find needed files.

The majority of Python packages use normal methods of importing their dependencies, and PylInstaller locates all their
files without difficulty. But some packages make unusual uses of the Python import mechanism, or make clever changes

2.12. Understanding PylInstaller Hooks 75

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://reproducible-builds.org/docs/source-date-epoch

Pyinstaller Documentation, Release 5.13.2

to the import system at runtime. For this or other reasons, PyInstaller cannot reliably find all the needed files, or may
include too many files. A hook can tell about additional source files or data files to import, or files not to import.

A hook file is a Python script, and can use all Python features. It can also import helper methods from PyInstaller.
utils.hooks and useful variables from PyInstaller.compat. These helpers are documented below.

The name of a hook file is hook-full. import.name.py, where full.import.name is the fully-qualified name of an
imported script or module. You can browse through the existing hooks in the hooks folder of the PyInstaller distribution
folder and see the names of the packages for which hooks have been written. For example hook-PyQt5.QtCore.py
is a hook file telling about hidden imports needed by the module PyQt5.QtCore. When your script contains import
PyQt5.QtCore (or from PyQt5 import QtCore), Analysis notes that hook-PyQt5.QtCore.py exists, and will
call it.

Many hooks consist of only one statement, an assignment to hiddenimports. For example, the hook for the dnspython
package, called hook-dns.rdata.py, has only this statement:

hiddenimports = [
"dns.rdtypes.*",
"dns.rdtypes.ANY.*"

When Analysis sees import dns.rdata or from dns import rdata it calls hook-dns.rdata.py and examines
its value of hiddenimports. As a result, it is as if your source script also contained:

import dns.rdtypes.*
import dsn.rdtypes.ANY.*

A hook can also cause the addition of data files, and it can cause certain files to not be imported. Examples of these
actions are shown below.

When the module that needs these hidden imports is useful only to your project, store the hook file(s) somewhere
near your source file. Then specify their location to the pyinstaller or pyi-makespec command with the
--additional-hooks-dir option. If the hook file(s) are at the same level as the script, the command could be
simply:

pyinstaller --additional-hooks-dir=. myscript.py

If you write a hook for a module used by others, please ask the package developer to include the hook with her/his
package or send us the hook file so we can make it available.

2.12.1 How a Hook Is Loaded

A hook is a module named hook-full. import.name.py in a folder where the Analysis object looks for hooks. Each
time Analysis detects an import, it looks for a hook file with a matching name. When one is found, Analysis imports
the hook’s code into a Python namespace. This results in the execution of all top-level statements in the hook source,
for example import statements, assignments to global names, and function definitions. The names defined by these
statements are visible to Analysis as attributes of the namespace.

Thus a hook is a normal Python script and can use all normal Python facilities. For example it could test sys.version
and adjust its assignment to hiddenimports based on that. There are many hooks in the PyInstaller installation, but
a much larger collection can be found in the community hooks package. Please browse through them for examples.

76 Chapter 2. Contents:

http://www.dnspython.org/
https://docs.python.org/3/library/sys.html#sys.version
https://github.com/pyinstaller/pyinstaller-hooks-contrib

Pyinstaller Documentation, Release 5.13.2

2.12.2 Providing Pylnstaller Hooks with your Package

As a package developer you can provide hooks for PyInstaller within your package. This has the major benefit that you
can easily adopt the hooks when your package changes. Thus your package’s users don’t need to wait until PyInstaller
might catch up with these changes. If both Pylnstaller and your package provide hooks for some module, your package’s
hooks take precedence, but can still be overridden by the command line option --additional-hooks-dir.

You can tell Pylnstaller about the additional hooks by defining some simple setuptools entry-points in your package.
Therefore add entries like these to your setup.cfg:

[options.entry_points]

pyinstaller4® =
hook-dirs = pyi_hooksample.__pyinstaller:get_hook_dirs
tests = pyi_hooksample.__pyinstaller:get_PyInstaller_tests

This defines two entry-points:

pyinstaller40.hook-dirs for hook registration This entry point refers to a function that will be
invoked with no parameters. It must return a sequence of strings, each element of which
provides an additional absolute path to search for hooks. This is equivalent to passing the
--additional-hooks-dir command-line option to PylInstaller for each string in the sequence.

In this example, the function is get_hook_dirs() -> List[str].

pyinstaller40.tests for test registration This entry point refers to a function that will be invoked
with no parameters. It must return a sequence of strings, each element of which provides an additional
absolute path to a directory tree or to a Python source file. These paths are then passed to pytest for
test discovery. This allows both testing by this package and by PylInstaller.

In this project, the function is get_PyInstaller_tests() -> List[str].

A sample project providing a guide for integrating PyInstaller hooks and tests into a package is available at https:
//github.com/pyinstaller/hooksample. This project demonstrates defining a library which includes Pylnstaller hooks
along with tests for those hooks and sample file for integration into CD/CI testing. Detailed documentation about this
sample project is available at https://pyinstaller-sample-hook.readthedocs.io/en/latest/.

2.12.3 Hook Global Variables

A majority of the existing hooks consist entirely of assignments of values to one or more of the following global
variables. If any of these are defined by the hook, Analysis takes their values and applies them to the bundle being
created.

hiddenimports A list of module names (relative or absolute) that should be part of the bundled app. This has the
same effect as the --hidden-import command line option, but it can contain a list of names and is applied
automatically only when the hooked module is imported. Example:

hiddenimports = ['_gdbm', 'socket', 'hS5py.defs']

excludedimports A list of absolute module names that should not be part of the bundled app. If an excluded module
is imported only by the hooked module or one of its sub-modules, the excluded name and its sub-modules will
not be part of the bundle. (If an excluded name is explicitly imported in the source file or some other module, it
will be kept.) Several hooks use this to prevent automatic inclusion of the tkinter module. Example:

excludedimports = ['tkinter']

2.12. Understanding PylInstaller Hooks 77

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://github.com/pyinstaller/hooksample
https://github.com/pyinstaller/hooksample
https://pyinstaller-sample-hook.readthedocs.io/en/latest/

Pyinstaller Documentation, Release 5.13.2

datas A list of files to bundle with the app as data. Each entry in the list is a tuple containing two strings. The first

string specifies a file (or file “glob”) in this system, and the second specifies the name(s) the file(s) are to have in
the bundle. (This is the same format as used for the datas= argument, see Adding Data Files.) Example:

datas = [('/usr/share/icons/education_*.png', 'icons')]

If you need to collect multiple directories or nested directories, you can use helper functions from the
PyInstaller.utils.hooks module (see below) to create this list, for example:

datas = collect_data_files('submodulel')
datas += collect_data_files('submodule2")

In rare cases you may need to apply logic to locate particular files within the file system, for example because
the files are in different places on different platforms or under different versions. Then you can write a hook ()
function as described below under The hook(hook_api) Function.

binaries A list of files or directories to bundle as binaries. The format is the same as datas (tuples with strings that

specify the source and the destination). Binaries is a special case of datas, in that PyInstaller will check each
file to see if it depends on other dynamic libraries. Example:

binaries = [('C:\\Windows\\System32*.d11l', 'dlls')]

Many hooks use helpers from the PyInstaller.utils.hooks module to create this list (see below):

binaries = collect_dynamic_libs('zmq")

warn_on_missing_hiddenimports A boolean flag indicating whether missing hidden imports from the hook (set

via hiddenimports) should generate warnings or not. By default, missing hidden imports generate warnings,
but individual hooks can opt out of this behavior by setting this variable to False. Example:

warn_on_missing_hiddenimports = False

module_collection_mode A setting controlling the collection mode for module(s). The value can be either a string

or a dictionary.
When set to a string, the variable controls the collection mode for the hooked package/module. Valid values are:

* 'pyz': collect byte-compiled modules into the embedded PYZ archive. This is the default behavior when
no collection mode is specified. If the noarchive flag is used with Analysis, the PYZ archive is not used,
and pyz collection mode is automatically turned into pyc one.

* 'pyc': collect byte-compiled modules as external data files (as opposed to collecting them into the PYZ
archive).

e 'py': collect source .py files as external data files. Do not collect byte-compiled modules.

e 'pyz+py' or 'py+pyz’': collect byte-compiled modules into the embedded PYZ archive and collect cor-
responding source .py files as external data files.

If noarchive flag is in effect, the byte-compiled modules are collected as external data files, which causes
python to ignore them due to the source files being placed next to them.

The setting is applied to all child modules and subpackages, unless overridden by the setting in their correspond-
ing hook.

Alternatively, the variable can be set to a dictionary comprising module/package names and corresponding col-
lection mode strings. This allows a hook to specify different settings for its main package and subpackages, but
also settings for other packages. When multiple hooks provide a setting for the same module name, the end result
depends on the hook execution order.

78

Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

Example:

hook-mypackage.py

This package must be collected in source form, due to its code
searching for .py files on the filesystem...
module_collection_mode = 'py'

Example:

hook-mypackage.py

Collect only a sub-package / module as source

(without creating a hook for the sub-package).

module_collection_mode = {
'mypackage.src_subpackage': 'py

Example:

hook-mypackage.py

Collect whole package as source except for a single sub-package
(without creating a hook for the sub-package).
module_collection_mode = {

'mypackage': 'py',

'mypackage.bin_subpackage': 'pyz'

Example:

hook-mypackage.py

Force collection of other packages in source form.
module_collection_mode = {

'myotherpackagel': 'py',

'myotherpackage2': 'py',

The ability to control collection mode for other modules/packages from a given hook is intended for cases when
the hooked module provides functionality for other modules that requires those other modules to be collected in
the source form (for example, JIT compilation available in some deep learning frameworks). However, detection
of specific function imports and calls via bytecode scanning requires an access to the modulegraph, and conse-
quently the use of the the hook(hook_api) function. In such cases, the collection mode can be modified using the
set_module_collection_mode method from the hook_api object instead of setting the global hook variable.

2.12. Understanding Pyinstaller Hooks 79

Pyinstaller Documentation, Release 5.13.2

2.12.4 Useful Items in PyInstaller.compat

Various classes and functions to provide some backwards-compatibility with previous versions of Python onward.

A hook may import the following names from PyInstaller. compat, for example:

from PyInstaller.compat import base_prefix, is_win

is_py36, is_py37, is_py38, is_py39, is_py310 is_py311

True when the current version of Python is at least 3.6, 3.7, 3.8, 3.9, or 3.10, 3.11 respectively.
is_win

True in a Windows system.

is_cygwin
True when sys.platform == 'cygwin'.

is_darwin
True in macOS.
is_linux
True in any GNU/Linux system.
is_solar
True in Solaris.
is_aix
True in AIX.

is_freebsd
True in FreeBSD.

is_openbsd
True in OpenBSD.

is_venv
True in any virtual environment (either virtualenv or venv).

base_prefix
String, the correct path to the base Python installation, whether the installation is native or a virtual environment.

EXTENSION_SUFFIXES
List of Python C-extension file suffixes. Used for finding all binary dependencies in a folder; see
hook-cryptography . py for an example.

2.12.5 Useful ltems in PyInstaller.utils.hooks

A hook may import useful functions from PyInstaller.utils.hooks. Use a fully-qualified import statement, for
example:

from PyInstaller.utils.hooks import collect_data_files, eval_statement

The functions listed here are generally useful and used in a number of existing hooks.

exec_statement (statement)
Execute a single Python statement in an externally-spawned interpreter, and return the resulting standard output
as a string.

Examples:

80 Chapter 2. Contents:

Pyinstaller Documentation, Release 5.13.2

tk_version = exec_statement("from _tkinter import TK_VERSION; print(TK_VERSION)'")

mpl_data_dir = exec_statement("import matplotlib; print(matplotlib.get_data_path())

"
—

datas = [(mpl_data_dir, "")]

Notes

As of v5.0, usage of this function is discouraged in favour of the new PyInstaller.isolated module.

eval_statement (statement)
Execute a single Python statement in an externally-spawned interpreter, and eval () its output (if any).

Example:

databases = eval_statement('"'
import sqlalchemy.databases
print(sgqlalchemy.databases.__all__)
lll)

for db in databases:
hiddenimports.append("sqglalchemy.databases." + db)

Notes

As of v5.0, usage of this function is discouraged in favour of the new PyInstaller.isolated module.

is_module_satisfies(requirements, version=None, version_attr='__version__")
Test if a PEP 0440 requirement is installed.

Parameters
* requirements (str)— Requirements in pkg_resources.Requirements.parse() format.

* version (str)-— Optional PEP 0440-compliant version (e.g., 3.14-rc5) to be used _instead_
of the current version of this module. If non-None, this function ignores all setuptools distri-
butions for this module and instead compares this version against the version embedded in the
passed requirements. This ignores the module name embedded in the passed requirements,
permitting arbitrary versions to be compared in a robust manner. See examples below.

» version_attr (str) — Optional name of the version attribute defined by this module, de-
faulting to __version__. If a setuptools distribution exists for this module (it usually does)
and the version parameter is None (it usually is), this parameter is ignored.

Returns Boolean result of the desired validation.
Return type bool
Raises

e AttributeError — If no setuptools distribution exists for this module _and_ this module
defines no attribute whose name is the passed version_attr parameter.

e ValueError - If the passed specification does _not_ comply with
pkg_resources.Requirements syntax.

2.12. Understanding PylInstaller Hooks 81

https://docs.python.org/3/library/functions.html#eval
https://www.python.org/dev/peps/pep-0440
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pythonhosted.org/setuptools/pkg_resources.html#id12

Pyinstaller Documentation, Release 5.13.2

Examples

Assume PIL 2.9.0, Sphinx 1.3.1, and SQLAlchemy 0.6 are all installed.
>>> from PyInstaller.utils.hooks import is_module_satisfies
>>> is_module_satisfies('sphinx >= 1.3.1")

True

>>> is_module_satisfies('sqlalchemy != 0.6")

False

>>> is_module_satisfies('sphinx >= 1.3.1; sqglalchemy != 0.6")
False

Compare two arbitrary versions. In this case, the module name "sqlalchemy" is.
—simply ignored.

>>> is_module_satisfies('sqlalchemy != 0.6', version='0.5")

True

Since the "pillow" project providing PIL publishes its version via the custom
— "PILLOW_VERSION" attribute

(rather than the standard "__version__
—as a fallback to validate PIL

when not installed by setuptools. As PIL is usually installed by setuptools, this.
—optional parameter is

usually ignored.

>>> is_module_satisfies('PIL == 2.9.0', version_attr='PILLOW_VERSION'")

True

attribute), an attribute name is passed.

See also:
pkg_resources.Requirements for the syntax details.

collect_all (package_name, include_py_files=True, filter_submodules=None, exclude_datas=None,
include_datas=None, on_error="warn once")
Collect everything for a given package name.

Parameters
» package_name — An import-able package name.
e include_py_files — Forwarded to collect_data_files().
» filter_submodules — Forwarded to collect_submodules().
¢ exclude_datas — Forwarded to collect_data_files().
» include_datas — Forwarded to collect_data_files().
* on_error — Forwarded onto collect_submodules().

Returns

A (datas, binaries, hiddenimports) triplet containing:

* All data files, raw Python files (if include_py_files), and package metadata folders.
* All dynamic libraries as returned by collect_dynamic_Ilibs().
* All submodules of packagename and its dependencies.

Return type tuple

Typical use:

82 Chapter 2. Contents:

https://pythonhosted.org/setuptools/pkg_resources.html#id12
https://docs.python.org/3/library/stdtypes.html#tuple

Pyinstaller Documentation, Release 5.13.2

datas, binaries, hiddenimports = collect_all('my_module_name")

collect_submodules (package, filter=<function <lambda>=>, on_error="warn once")
List all submodules of a given package.

Parameters
» package (str)— An import-able package.

e filter (Callable[[str], bool]) — Filter the submodules found: A callable that takes a
submodule name and returns True if it should be included.

* on_error (str)— The action to take when a submodule fails to import. May be any of:

raise: Errors are reraised and terminate the build.

warn: Errors are downgraded to warnings.

warn once: The first error issues a warning but all subsequent errors are ignored to min-
imise stderr pollution. This is the default.

ignore: Skip all errors. Don’t warn about anything.
Returns All submodules to be assigned to hiddenimports in a hook.
This function is intended to be used by hook scripts, not by main PylInstaller code.

Examples:

Collect all submodules of Sphinx don't contain the word " “test ".
hiddenimports = collect_submodules(
"Sphinx", " filter=lambda name: 'test' not in name)

Changed in version 4.5: Add the on_error parameter.

is_module_or_submodule (name, mod_or_submod)
This helper function is designed for use in the filter argument of collect_submodules(), by returning True
if the given name is a module or a submodule of mod_or_submod.

Examples

The following excludes foo.test and foo.test.one but not foo.testifier.

collect_submodules('foo', lambda name: not is_module_or_submodule(name, 'foo.test

="

is_package (module_name)
Check if a Python module is really a module or is a package containing other modules, without importing anything
in the main process.

Parameters module_name (str) — Module name to check.
Returns True if module is a package else otherwise.

collect_data_files(package, include_py_files=False, subdir=None, excludes=None, includes=None)
This function produces a list of (source, dest) non-Python (i.e., data) files that reside in package. Its output
can be directly assigned to datas in a hook script; for example, see hook-sphinx.py. Parameters:

* The package parameter is a string which names the package.

2.12. Understanding PylInstaller Hooks 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyinstaller Documentation, Release 5.13.2

* By default, all Python executable files (those ending in . py, .pyc, and so on) will NOT be collected; setting
the include_py_files argument to True collects these files as well. This is typically used with Python
functions (such as those in pkgutil) that search a given directory for Python executable files and load them
as extensions or plugins.

* The subdir argument gives a subdirectory relative to package to search, which is helpful when submod-
ules are imported at run-time from a directory lacking __init__.py.

¢ The excludes argument contains a sequence of strings or Paths. These provide a list of globs to exclude
from the collected data files; if a directory matches the provided glob, all files it contains will be excluded
as well. All elements must be relative paths, which are relative to the provided package’s path (/ subdir if
provided).

Therefore, *.txt will exclude only .txt files in package‘s path, while **/*.txt will exclude all .
txt files in package‘s path and all its subdirectories. Likewise, **/__pycache__ will exclude all files
contained in any subdirectory named __pycache__.

* The includes function like excludes, but only include matching paths. excludes override includes:
a file or directory in both lists will be excluded.

This function does not work on zipped Python eggs.
This function is intended to be used by hook scripts, not by main PylInstaller code.

collect_dynamic_libs(package, destdir=None, search_patterns=["*.dll', "*.dylib’, 'lib*.s0'])
This function produces a list of (source, dest) of dynamic library files that reside in package. Its output can
be directly assigned to binaries in a hook script. The package parameter must be a string which names the
package.

Parameters
* destdir - Relative path to ./dist! APPNAME where the libraries should be put.
» search_patterns — List of dynamic library filename patterns to collect.

get_module_file_attribute(package)
Get the absolute path to the specified module or package.

Modules and packages must not be directly imported in the main process during the analysis. Therefore, to avoid
leaking the imports, this function uses an isolated subprocess when it needs to import the module and obtain its
__file__ attribute.

Parameters package (str) — Fully-qualified name of module or package.
Returns Absolute path of this module.
Return type str

get_module_attribute (module_name, attr_name)
Get the string value of the passed attribute from the passed module if this attribute is defined by this module _or_
raise AttributeError otherwise.

Since modules cannot be directly imported during analysis, this function spawns a subprocess importing this
module and returning the string value of this attribute in this module.

Parameters

» module_name (str) — Fully-qualified name of this module.

e attr_name (str)— Name of the attribute in this module to be retrieved.
Returns String value of this attribute.

Return type str

84 Chapter 2. Contents:

https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyinstaller Documentation, Release 5.13.2

Raises AttributeError — If this attribute is undefined.

get_package_paths (package)

Given a package, return the path to packages stored on this machine and also returns the path to this particular
package. For example, if pkg.subpkg lives in /abs/path/to/python/libs, then this function returns (/abs/path/
to/python/libs, /abs/path/to/python/libs/pkg/subpkg).

NOTE: due to backwards compatibility, this function returns only one package path along with its base directory.
In case of PEP 420 namespace package with multiple location, only first location is returned. To obtain all
package paths, use the get_all_package_paths function and obtain corresponding base directories using the
package_base_path helper.

copy_metadata(package_name, recursive=False)

Collect distribution metadata so that pkg_resources.get_distribution() can find it.

This function returns a list to be assigned to the datas global variable. This list instructs PyInstaller to copy the
metadata for the given package to the frozen application’s data directory.

Parameters

» package_name (str) — Specifies the name of the package for which metadata should be
copied.

» recursive (bool) — If true, collect metadata for the package’s dependencies too. This
enables use of pkg_resources.require('package') inside the frozen application.

Returns This should be assigned to datas.

Return type list

Examples

>>> from PyInstaller.utils.hooks import copy_metadata

>>> copy_metadata('sphinx')

[('c:\python27\1ib\site-packages\Sphinx-1.3.2.dist-info"',
'Sphinx-1.3.2.dist-info')]

Some packages rely on metadata files accessed through the pkg_resources module. Normally PylInstaller does
not include these metadata files. If a package fails without them, you can use this function in a hook file to easily
add them to the frozen bundle. The tuples in the returned list have two strings. The first is the full pathname to a
folder in this system. The second is the folder name only. When these tuples are added to datas, the folder will
be bundled at the top level.

Changed in version 4.3.1: Prevent dist-info metadata folders being renamed to egg-info which broke
pkg_resources.require with extras (see #3033).

Changed in version 4.4.0: Add the recursive option.

collect_entry_point (name)

Collect modules and metadata for all exporters of a given entry point.

Parameters name (str)— The name of the entry point. Check the documentation for the library that
uses the entry point to find its name.

Returns A (datas, hiddenimports) pair that should be assigned to the datas and
hiddenimports, respectively.

For libraries, such as pytest or keyring, that rely on plugins to extend their behaviour.

2.12. Understanding PylInstaller Hooks 85

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/pyinstaller/pyinstaller/issues/#3033
https://docs.python.org/3/library/stdtypes.html#str

Pyinstaller Documentation, Release 5.13.2

Examples

Pytest uses an entry point called 'pytest11’ for its extensions. To collect all those extensions use:

datas, hiddenimports = collect_entry_point("'pytestl11")

These values may be used in a hook or added to the datas and hiddenimports arguments in the . spec file.
See Using Spec Files.

New in version 4.3.

get_homebrew_path (formula="")
Return the homebrew path to the requested formula, or the global prefix when called with no argument.

Returns the path as a string or None if not found.

include_or_exclude_file(filename, include_list=None, exclude_list=None)
Generic inclusion/exclusion decision function based on filename and list of include and exclude patterns.

Parameters
» filename - Filename considered for inclusion.
* include_list - List of inclusion file patterns.
* exclude_list — List of exclusion file patterns.
Returns A boolean indicating whether the file should be included or not.

If include_list is provided, True is returned only if the filename matches one of include patterns (and does
not match any patterns in exclude_list, if provided). If include_list is not provided, True is returned if
filename does not match any patterns in exclude 1list, if provided. If neither list is provided, True is returned
for any filename.

collect_delvewheel_libs_directory(package_name, libdir_name=None, datas=None, binaries=None)
Collect data files and binaries from the .libs directory of a delvewheel-enabled python wheel. Such wheels ship
their shared libraries in a .libs directory that is located next to the package directory, and therefore falls outside
the purview of the collect_dynamic_libs() utility function.

Parameters
» package_name — Name of the package (e.g., scipy).

* libdir_name — Optional name of the .libs directory (e.g., scipy.libs). If not provided, “.libs”
is added to package_name.

» datas — Optional list of datas to which collected data file entries are added. The combined
result is retuned as part of the output tuple.

* binaries — Optional list of binaries to which collected binaries entries are added. The
combined result is retuned as part of the output tuple.

Returns A (datas, binaries) pair that should be assigned to the datas and binaries, respec-
tively.

Return type tuple

86 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#tuple

Pyinstaller Documentation, Release 5.13.2

Examples

Collect the scipy.libs delvewheel directory belonging to the Windows scipy wheel:

datas, binaries = collect_delvewheel_libs_directory