
PyInstaller Documentation
Release 6.4.0

David Cortesi

2024-02-10

CONTENTS

1 Quickstart 3

2 Contents: 5
2.1 Requirements . 5
2.2 License . 6
2.3 How To Contribute . 6
2.4 How to Install PyInstaller . 7
2.5 What PyInstaller Does and How It Does It . 9
2.6 Using PyInstaller . 12
2.7 Common Issues and Pitfalls . 25
2.8 Run-time Information . 32
2.9 Using Spec Files . 35
2.10 Notes about specific Features . 48
2.11 When Things Go Wrong . 71
2.12 Advanced Topics . 76
2.13 Understanding PyInstaller Hooks . 84
2.14 Hook Configuration Options . 103
2.15 Building the Bootloader . 109
2.16 Changelog for PyInstaller . 116
2.17 Credits . 189
2.18 Man Pages . 205
2.19 Development Guide . 214
2.20 Indices and tables . 224

Python Module Index 225

Index 227

i

ii

PyInstaller Documentation, Release 6.4.0

Version PyInstaller 6.4.0

Homepage https://pyinstaller.org/

Contact pyinstaller@googlegroups.com

Authors David Cortesi, based on structure by Giovanni Bajo & William Caban, based on Gordon McMil-
lan’s manual

Copyright This document has been placed in the public domain.

PyInstaller bundles a Python application and all its dependencies into a single package. The user can run the packaged
app without installing a Python interpreter or any modules. PyInstaller supports Python 3.8 and newer, and correctly
bundles many major Python packages such as numpy, matplotlib, PyQt, wxPython, and others.

PyInstaller is tested against Windows, MacOS X, and Linux. However, it is not a cross-compiler; to make a Windows
app you run PyInstaller on Windows, and to make a Linux app you run it on Linux, etc. x PyInstaller has been used suc-
cessfully with AIX, Solaris, FreeBSD and OpenBSD but testing against them is not part of our continuous integration
tests, and the development team offers no guarantee (all code for these platforms comes from external contributions)
that PyInstaller will work on these platforms or that they will continue to be supported.

CONTENTS 1

https://pyinstaller.org/
mailto:pyinstaller@googlegroups.com

PyInstaller Documentation, Release 6.4.0

2 CONTENTS

CHAPTER

ONE

QUICKSTART

Make sure you have the Requirements installed, and then install PyInstaller from PyPI:

pip install -U pyinstaller

Open a command prompt/shell window, and navigate to the directory where your .py file is located, then build your
app with the following command:

pyinstaller your_program.py

Your bundled application should now be available in the dist folder.

3

PyInstaller Documentation, Release 6.4.0

4 Chapter 1. Quickstart

CHAPTER

TWO

CONTENTS:

2.1 Requirements

2.1.1 Windows

PyInstaller runs in Windows 8 and newer. It can create graphical windowed apps (apps that do not need a command
window).

2.1.2 macOS

PyInstaller runs on macOS 10.15 (Catalina) or newer. It can build graphical windowed apps (apps that do not use a
terminal window). PyInstaller builds apps that are compatible with the macOS release in which you run it, and following
releases. It can build x86_64, arm64 or hybrid universal2 binaries on macOS machines of either architecture. See
macOS multi-arch support for details.

2.1.3 GNU/Linux

PyInstaller requires the ldd terminal application to discover the shared libraries required by each program or shared
library. It is typically found in the distribution-package glibc or libc-bin.

It also requires the objdump terminal application to extract information from object files and the objcopy terminal
application to append data to the bootloader. These are typically found in the distribution-package binutils.

2.1.4 AIX, Solaris, FreeBSD and OpenBSD

Users have reported success running PyInstaller on these platforms, but it is not tested on them. The ldd and objdump
commands are needed.

Each bundled app contains a copy of a bootloader, a program that sets up the application and starts it (see The Bootstrap
Process in Detail).

When you install PyInstaller using pip, the setup will attempt to build a bootloader for this platform. If that succeeds,
the installation continues and PyInstaller is ready to use.

If the pip setup fails to build a bootloader, or if you do not use pip to install, you must compile a bootloader manually.
The process is described under Building the Bootloader.

5

http://www.pip-installer.org/
http://www.pip-installer.org/
http://www.pip-installer.org/

PyInstaller Documentation, Release 6.4.0

2.2 License

PyInstaller is distributed under a dual-licensing scheme using both the GPL 2.0 License, with an exception that allows
you to use it to build commercial products - listed below - and the Apache License, version 2.0, which only applies
to a certain few files. To see which files the Apache license applies to, and to which the GPL applies, please see the
COPYING.txt file which can be found in the root of the PyInstaller source repository.

A quick summary of the GPL license exceptions:

• You may use PyInstaller to bundle commercial applications out of your source code.

• The executable bundles generated by PyInstaller from your source code can be shipped with whatever li-
cense you want, as long as it complies with the licenses of your dependencies.

• You may modify PyInstaller for your own needs but changes to the PyInstaller source code fall under the
terms of the GPL license. That is, if you distribute your modifications you must distribute them under
GPL terms.

2.3 How To Contribute

You are very welcome to contribute! PyInstaller is a maintained by a group of volunteers. All contributions, like
community support, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

PyInstaller is an free software project that is created and maintained by volunteers. It lives-and-dies based on the
support it receives from others, and the fact that you’re even considering contributing to PyInstaller is very generous
of you.

Since as of now all core-developers are working on PyInstaller in their spare-time, you can help us (and the project)
most if you are following some simple guidelines. The higher the quality of your contribution, the less work we have
incorporating them and the earlier we will be able to incorporate them :-)

If you get stuck at any point you can create a ticket on GitHub.

For more about our development process and methods, see the Development Guide.

2.3.1 Some ideas how you can help

Some ideas how you can help:

• Answer support tickets: Often the user just needs to be pointed to the fitting section in the manual.

• Triage open issues, which means: read the report; ask the issue requester to provide missing information and
to try with the latest development version; ensure there is a minimal example; ensure the issue-reporter followed
all steps in When Things Go Wrong. If you are able reproduce the problem and track down the bug, this would
be a great help for the core developers.

• Help improving the documentation: There is a list of documentation issues you can pick one from. Please
provide a pull-request for your changes. Read more »»

• Pick an issue requesting a pull-request and provide one.

• Review pull requests: Are the commit messages following the guideline Please Write Good Commit Messages;
do all new files have a copyright-header (esp. for hooks this is often missing); is the code okay; etc.

• Scan the list of open issues and pick some task :-)

6 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/new
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Akind%3Asupport
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Aarea%3Adocumentation
https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3A%22pull-request+wanted%22
https://github.com/pyinstaller/pyinstaller/pulls
https://github.com/pyinstaller/pyinstaller/issues

PyInstaller Documentation, Release 6.4.0

Thank you very much!

If you plan to contribute frequently, just ask for write access to the main git repository. We would be glad to welcome
you in the team!

2.4 How to Install PyInstaller

PyInstaller is available as a regular Python package. The source archives for released versions are available from PyPi,
but it is easier to install the latest version using pip:

pip install pyinstaller

To upgrade existing PyInstaller installation to the latest version, use:

pip install --upgrade pyinstaller

To install the current development version, use:

pip install https://github.com/pyinstaller/pyinstaller/tarball/develop

To install directly using pip’s built-in git checkout support, use:

pip install git+https://github.com/pyinstaller/pyinstaller

or to install specific branch (e.g., develop):

pip install git+https://github.com/pyinstaller/pyinstaller@develop

2.4.1 Installing from the source archive

The source code archive for released versions of PyInstaller are available at PyPI and on PyInstaller Downloads page.

Note: Even though the source archive provides the setup.py script, installation via python setup.py install has
been deprecated and should not be used anymore. Instead, run pip install . from the unpacked source directory,
as described below.

The installation procedure is:

1. Unpack the source archive.

2. Move into the unpacked source directory.

3. Run pip install . from the unpacked source directory. If installing into system-wide python installa-
tion, administrator privilege is required.

The same procedure applies to installing from manual git checkout:

git clone https://github.com/pyinstaller/pyinstaller
cd pyinstaller
pip install .

If you intend to make changes to the source code and want them to take effect immediately, without re-installing the
package each time, you can install it in editable mode:

2.4. How to Install PyInstaller 7

https://pypi.python.org/pypi/PyInstaller/
http://www.pip-installer.org/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases

PyInstaller Documentation, Release 6.4.0

pip install -e .

For platforms other than Windows, GNU/Linux and macOS, you must first build the bootloader for your platform:
see Building the Bootloader. After the bootloader has been built, use the pip install . command to complete the
installation.

2.4.2 Verifying the installation

On all platforms, the command pyinstaller should now exist on the execution path. To verify this, enter the com-
mand:

pyinstaller --version

The result should resemble 4.n for a released version, and 4.n.dev0-xxxxxx for a development branch.

If the command is not found, make sure the execution path includes the proper directory:

• Windows: C:\PythonXY\Scripts where XY stands for the major and minor Python version number, for exam-
ple C:\Python38\Scripts for Python 3.8)

• GNU/Linux: /usr/bin/

• macOS (using the default Apple-supplied Python) /usr/bin

• macOS (using Python installed by homebrew) /usr/local/bin

• macOS (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path% and in other systems, echo $PATH.

Note: If you cannot use the pyinstaller command due to the scripts directory not being in PATH, you can in-
stead invoke the PyInstaller module, by running python -m PyInstaller (pay attention to the module name,
which is case sensitive). This form of invocation is also useful when you have PyInstaller installed in multiple python
environments, and you cannot be sure from which installation the pyinstaller command will be ran.

2.4.3 Installed commands

The complete installation places these commands on the execution path:

• pyinstaller is the main command to build a bundled application. See Using PyInstaller.

• pyi-makespec is used to create a spec file. See Using Spec Files.

• pyi-archive_viewer is used to inspect a bundled application. See Inspecting Archives.

• pyi-bindepend is used to display dependencies of an executable. See Inspecting Executables.

• pyi-grab_version is used to extract a version resource from a Windows executable. See Capturing Windows
Version Data.

• pyi-set_version can be used to apply previously-extracted version resource to an existing Windows exe-
cutable.

8 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.5 What PyInstaller Does and How It Does It

This section covers the basic ideas of PyInstaller. These ideas apply to all platforms. Options and special cases are
covered below, under Using PyInstaller.

PyInstaller reads a Python script written by you. It analyzes your code to discover every other module and library your
script needs in order to execute. Then it collects copies of all those files – including the active Python interpreter! –
and puts them with your script in a single folder, or optionally in a single executable file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application as a single-file executable,

pyinstaller --onefile --windowed myscript.py

You distribute the bundle as a folder or file to other people, and they can execute your program. To your users, the app
is self-contained. They do not need to install any particular version of Python or any modules. They do not need to
have Python installed at all.

Note: The output of PyInstaller is specific to the active operating system and the active version of Python. This means
that to prepare a distribution for:

• a different OS

• a different version of Python

• a 32-bit or 64-bit OS

you run PyInstaller on that OS, under that version of Python. The Python interpreter that executes PyInstaller is part
of the bundle, and it is specific to the OS and the word size.

2.5.1 Analysis: Finding the Files Your Program Needs

What other modules and libraries does your script need in order to run? (These are sometimes called its “dependen-
cies”.)

To find out, PyInstaller finds all the import statements in your script. It finds the imported modules and looks in them
for import statements, and so on recursively, until it has a complete list of modules your script may use.

PyInstaller understands the “egg” distribution format often used for Python packages. If your script imports a module
from an “egg”, PyInstaller adds the egg and its dependencies to the set of needed files.

PyInstaller also knows about many major Python packages, including the GUI packages Qt (imported via PyQt or
PySide), WxPython, TkInter, matplotlib, and other major packages. For a complete list, see Supported Packages.

Some Python scripts import modules in ways that PyInstaller cannot detect: for example, by using the __import__()
function with variable data, using importlib.import_module(), or manipulating the sys.path value at run time.
If your script requires files that PyInstaller does not know about, you must help it:

• You can give additional files on the pyinstaller command line.

• You can give additional import paths on the command line.

• You can edit the myscript.spec file that PyInstaller writes the first time you run it for your script. In the spec
file you can tell PyInstaller about code modules that are unique to your script.

2.5. What PyInstaller Does and How It Does It 9

http://www.qt-project.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/wiki/About-PySide
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
https://matplotlib.org
https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages
https://docs.python.org/3/library/functions.html#import__
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/sys.html#sys.path

PyInstaller Documentation, Release 6.4.0

• You can write “hook” files that inform PyInstaller of hidden imports. If you create a “hook” for a package that
other users might also use, you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files, you can tell PyInstaller to include them in the bundle as well.
You do this by modifying the spec file, an advanced topic that is covered under Using Spec Files.

In order to locate included files at run time, your program needs to be able to learn its path at run time in a way that
works regardless of whether or not it is running from a bundle. This is covered under Run-time Information.

PyInstaller does not include libraries that should exist in any installation of this OS. For example in GNU/Linux, it
does not bundle any file from /lib or /usr/lib, assuming these will be found in every system.

2.5.2 Bundling to One Folder

When you apply PyInstaller to myscript.py the default result is a single folder named myscript. This folder contains
all your script’s dependencies, and an executable file also named myscript (myscript.exe in Windows).

You compress the folder to myscript.zip and transmit it to your users. They install the program simply by unzipping
it. A user runs your app by opening the folder and launching the myscript executable inside it.

It is easy to debug problems that occur when building the app when you use one-folder mode. You can see exactly what
files PyInstaller collected into the folder.

Another advantage of a one-folder bundle is that when you change your code, as long as it imports exactly the same
set of dependencies, you could send out only the updated myscript executable. That is typically much smaller than
the entire folder. (If you change the script so that it imports more or different dependencies, or if the dependencies are
upgraded, you must redistribute the whole bundle.)

2.5.3 How the One-Folder Program Works

A bundled program always starts execution in the PyInstaller bootloader. This is the heart of the myscript executable
in the folder.

The PyInstaller bootloader is a binary executable program for the active platform (Windows, GNU/Linux, macOS,
etc.). When the user launches your program, it is the bootloader that runs. The bootloader creates a temporary Python
environment such that the Python interpreter will find all imported modules and libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter to execute your script. Everything follows normally from there,
provided that all the necessary support files were included.

(This is an overview. For more detail, see The Bootstrap Process in Detail below.)

2.5.4 Bundling to One File

PyInstaller can bundle your script and all its dependencies into a single executable named myscript (myscript.exe
in Windows).

The advantage is that your users get something they understand, a single executable to launch. A disadvantage is that
any related files such as a README must be distributed separately. Also, the single executable is a little slower to start
up than the one-folder bundle.

Before you attempt to bundle to one file, make sure your app works correctly when bundled to one folder. It is is much
easier to diagnose problems in one-folder mode.

10 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.5.5 How the One-File Program Works

The bootloader is the heart of the one-file bundle also. When started it creates a temporary folder in the appropriate
temp-folder location for this OS. The folder is named _MEIxxxxxx, where xxxxxx is a random number.

The one executable file contains an embedded archive of all the Python modules used by your script, as well as com-
pressed copies of any non-Python support files (e.g. .so files). The bootloader uncompresses the support files and
writes copies into the the temporary folder. This can take a little time. That is why a one-file app is a little slower to
start than a one-folder app.

Note: PyInstaller currently does not preserve file attributes. see #3926.

After creating the temporary folder, the bootloader proceeds exactly as for the one-folder bundle, in the context of the
temporary folder. When the bundled code terminates, the bootloader deletes the temporary folder.

(In GNU/Linux and related systems, it is possible to mount the /tmp folder with a “no-execution” option. That option
is not compatible with a PyInstaller one-file bundle. It needs to execute code out of /tmp. If you know the target
environment, --runtime-tmpdir might be a workaround.)

Because the program makes a temporary folder with a unique name, you can run multiple copies of the app; they won’t
interfere with each other. However, running multiple copies is expensive in disk space because nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes or is killed (kill -9 on Unix, killed by the Task Manager
on Windows, “Force Quit” on macOS). Thus if your app crashes frequently, your users will lose disk space to multiple
_MEIxxxxxx temporary folders.

It is possible to control the location of the _MEIxxxxxx folder by using the --runtime-tmpdir command line option.
The specified path is stored in the executable, and the bootloader will create the _MEIxxxxxx folder inside of the
specified folder. Please see Defining the Extraction Location for details.

Note: Do not give administrator privileges to a one-file executable on Windows (“Run this program as an administra-
tor”). There is an unlikely but not impossible way in which a malicious attacker could corrupt one of the shared libraries
in the temp folder while the bootloader is preparing it. When distributing a privileged program in general, ensure that
file permissions prevent shared libraries or executables from being tampered with. Otherwise, an unelevated process
which has write access to these files may escalate privileges by modifying them.

Note: Applications that use os.setuid() may encounter permissions errors. The temporary folder where the bundled
app runs may not being readable after setuid is called. If your script needs to call setuid, it may be better to use
one-folder mode so as to have more control over the permissions on its files.

2.5.6 Using a Console Window

By default the bootloader creates a command-line console (a terminal window in GNU/Linux and macOS, a command
window in Windows). It gives this window to the Python interpreter for its standard input and output. Your script’s use
of print and input() are directed here. Error messages from Python and default logging output also appear in the
console window.

An option for Windows and macOS is to tell PyInstaller to not provide a console window. The bootloader starts Python
with no target for standard output or input. Do this when your script has a graphical interface for user input and can
properly report its own diagnostics.

2.5. What PyInstaller Does and How It Does It 11

https://github.com/pyinstaller/pyinstaller/issues/3926

PyInstaller Documentation, Release 6.4.0

As noted in the CPython tutorial Appendix, for Windows a file extension of .pyw suppresses the console window
that normally appears. Likewise, a console window will not be provided when using a myscript.pyw script with
PyInstaller.

2.5.7 Hiding the Source Code

The bundled app does not include any source code. However, PyInstaller bundles compiled Python scripts (.pyc files).
These could in principle be decompiled to reveal the logic of your code.

If you want to hide your source code more thoroughly, one possible option is to compile some of your modules with
Cython. Using Cython you can convert Python modules into C and compile the C to machine language. PyInstaller
can follow import statements that refer to Cython C object modules and bundle them.

2.6 Using PyInstaller

The syntax of the pyinstaller command is:

pyinstaller [options] script [script . . .] | specfile

In the most simple case, set the current directory to the location of your program myscript.py and execute:

pyinstaller myscript.py

PyInstaller analyzes myscript.py and:

• Writes myscript.spec in the same folder as the script.

• Creates a folder build in the same folder as the script if it does not exist.

• Writes some log files and working files in the build folder.

• Creates a folder dist in the same folder as the script if it does not exist.

• Writes the myscript executable folder in the dist folder.

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line. If you name more, all are analyzed and included in the output.
However, the first script named supplies the name for the spec file and for the executable folder or file. Its code is the
first to execute at run-time.

For certain uses you may edit the contents of myscript.spec (described under Using Spec Files). After you do this,
you name the spec file to PyInstaller instead of the script:

pyinstaller myscript.spec

The myscript.spec file contains most of the information provided by the options that were specified when
pyinstaller (or pyi-makespec) was run with the script file as the argument. You typically do not need to specify
any options when running pyinstaller with the spec file. Only a few command-line options have an effect when
building from a spec file.

You may give a path to the script or spec file, for example

pyinstaller options. . . ~/myproject/source/myscript.py

or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

12 Chapter 2. Contents:

https://docs.python.org/3/tutorial/appendix.html#executable-python-scripts
http://www.cython.org/

PyInstaller Documentation, Release 6.4.0

2.6.1 Options

A full list of the pyinstaller command’s options are as follows:

Positional Arguments

scriptname
Name of scriptfiles to be processed or exactly one .spec file. If a .spec file is specified, most options are unnec-
essary and are ignored.

Options

-h, --help
show this help message and exit

-v, --version
Show program version info and exit.

--distpath DIR
Where to put the bundled app (default: ./dist)

--workpath WORKPATH
Where to put all the temporary work files, .log, .pyz and etc. (default: ./build)

-y, --noconfirm
Replace output directory (default: SPECPATH/dist/SPECNAME) without asking for confirmation

--upx-dir UPX_DIR
Path to UPX utility (default: search the execution path)

--clean
Clean PyInstaller cache and remove temporary files before building.

--log-level LEVEL
Amount of detail in build-time console messages. LEVEL may be one of TRACE, DEBUG, INFO, WARN,
DEPRECATION, ERROR, FATAL (default: INFO). Also settable via and overrides the PYI_LOG_LEVEL
environment variable.

What To Generate

-D, --onedir
Create a one-folder bundle containing an executable (default)

-F, --onefile
Create a one-file bundled executable.

--specpath DIR
Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME
Name to assign to the bundled app and spec file (default: first script’s basename)

--contents-directory CONTENTS_DIRECTORY
For onedir builds only, specify the name of the directory in which all supporting files (i.e. everything except the
executable itself) will be placed in. Use “.” to re-enable old onedir layout without contents directory.

2.6. Using PyInstaller 13

PyInstaller Documentation, Release 6.4.0

What To Bundle, Where To Search

--add-data SOURCE:DEST
Additional data files or directories containing data files to be added to the application. The argument value
should be in form of “source:dest_dir”, where source is the path to file (or directory) to be collected, dest_dir is
the destination directory relative to the top-level application directory, and both paths are separated by a colon
(:). To put a file in the top-level application directory, use . as a dest_dir. This option can be used multiple times.

--add-binary SOURCE:DEST
Additional binary files to be added to the executable. See the --add-data option for the format. This option
can be used multiple times.

-p DIR, --paths DIR
A path to search for imports (like using PYTHONPATH). Multiple paths are allowed, separated by ':', or use
this option multiple times. Equivalent to supplying the pathex argument in the spec file.

--hidden-import MODULENAME, --hiddenimport MODULENAME
Name an import not visible in the code of the script(s). This option can be used multiple times.

--collect-submodules MODULENAME
Collect all submodules from the specified package or module. This option can be used multiple times.

--collect-data MODULENAME, --collect-datas MODULENAME
Collect all data from the specified package or module. This option can be used multiple times.

--collect-binaries MODULENAME
Collect all binaries from the specified package or module. This option can be used multiple times.

--collect-all MODULENAME
Collect all submodules, data files, and binaries from the specified package or module. This option can be used
multiple times.

--copy-metadata PACKAGENAME
Copy metadata for the specified package. This option can be used multiple times.

--recursive-copy-metadata PACKAGENAME
Copy metadata for the specified package and all its dependencies. This option can be used multiple times.

--additional-hooks-dir HOOKSPATH
An additional path to search for hooks. This option can be used multiple times.

--runtime-hook RUNTIME_HOOKS
Path to a custom runtime hook file. A runtime hook is code that is bundled with the executable and is executed
before any other code or module to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES
Optional module or package (the Python name, not the path name) that will be ignored (as though it was not
found). This option can be used multiple times.

--splash IMAGE_FILE
(EXPERIMENTAL) Add an splash screen with the image IMAGE_FILE to the application. The splash screen
can display progress updates while unpacking.

14 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

How To Generate

-d {all,imports,bootloader,noarchive}, --debug {all,imports,bootloader,noarchive}
Provide assistance with debugging a frozen application. This argument may be provided multiple times to select
several of the following options. - all: All three of the following options. - imports: specify the -v option to the
underlying Python interpreter, causing it to print a message each time a module is initialized, showing the place
(filename or built-in module) from which it is loaded. See https://docs.python.org/3/using/cmdline.html#id4. -
bootloader: tell the bootloader to issue progress messages while initializing and starting the bundled app. Used
to diagnose problems with missing imports. - noarchive: instead of storing all frozen Python source files as an
archive inside the resulting executable, store them as files in the resulting output directory.

--python-option PYTHON_OPTION
Specify a command-line option to pass to the Python interpreter at runtime. Currently supports “v” (equivalent
to “–debug imports”), “u”, “W <warning control>”, “X <xoption>”, and “hash_seed=<value>”. For details, see
the section “Specifying Python Interpreter Options” in PyInstaller manual.

-s, --strip
Apply a symbol-table strip to the executable and shared libs (not recommended for Windows)

--noupx
Do not use UPX even if it is available (works differently between Windows and *nix)

--upx-exclude FILE
Prevent a binary from being compressed when using upx. This is typically used if upx corrupts certain binaries
during compression. FILE is the filename of the binary without path. This option can be used multiple times.

Windows And Mac Os X Specific Options

-c, --console, --nowindowed
Open a console window for standard i/o (default). On Windows this option has no effect if the first script is a
‘.pyw’ file.

-w, --windowed, --noconsole
Windows and Mac OS X: do not provide a console window for standard i/o. On Mac OS this also triggers
building a Mac OS .app bundle. On Windows this option is automatically set if the first script is a ‘.pyw’ file.
This option is ignored on *NIX systems.

--hide-console {hide-early,minimize-late,minimize-early,hide-late}
Windows only: in console-enabled executable, have bootloader automatically hide or minimize the console win-
dow if the program owns the console window (i.e., was not launched from an existing console window).

-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">, --icon <FILE.ico or FILE.
exe,ID or FILE.icns or Image or "NONE">

FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the icon with ID from an exe. FILE.icns:
apply the icon to the .app bundle on Mac OS. If an image file is entered that isn’t in the platform format (ico
on Windows, icns on Mac), PyInstaller tries to use Pillow to translate the icon into the correct format (if Pillow
is installed). Use “NONE” to not apply any icon, thereby making the OS show some default (default: apply
PyInstaller’s icon). This option can be used multiple times.

--disable-windowed-traceback
Disable traceback dump of unhandled exception in windowed (noconsole) mode (Windows and macOS only),
and instead display a message that this feature is disabled.

2.6. Using PyInstaller 15

https://docs.python.org/3/using/cmdline.html#id4

PyInstaller Documentation, Release 6.4.0

Windows Specific Options

--version-file FILE
Add a version resource from FILE to the exe.

-m <FILE or XML>, --manifest <FILE or XML>
Add manifest FILE or XML to the exe.

-r RESOURCE, --resource RESOURCE
Add or update a resource to a Windows executable. The RESOURCE is one to four items,
FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file or an exe/dll. For data files, at least TYPE and
NAME must be specified. LANGUAGE defaults to 0 or may be specified as wildcard * to update all resources
of the given TYPE and NAME. For exe/dll files, all resources from FILE will be added/updated to the final
executable if TYPE, NAME and LANGUAGE are omitted or specified as wildcard *. This option can be used
multiple times.

--uac-admin
Using this option creates a Manifest that will request elevation upon application start.

--uac-uiaccess
Using this option allows an elevated application to work with Remote Desktop.

Mac Os Specific Options

--argv-emulation
Enable argv emulation for macOS app bundles. If enabled, the initial open document/URL event is processed
by the bootloader and the passed file paths or URLs are appended to sys.argv.

--osx-bundle-identifier BUNDLE_IDENTIFIER
Mac OS .app bundle identifier is used as the default unique program name for code signing purposes. The
usual form is a hierarchical name in reverse DNS notation. For example: com.mycompany.department.appname
(default: first script’s basename)

--target-architecture ARCH, --target-arch ARCH
Target architecture (macOS only; valid values: x86_64, arm64, universal2). Enables switching between univer-
sal2 and single-arch version of frozen application (provided python installation supports the target architecture).
If not target architecture is not specified, the current running architecture is targeted.

--codesign-identity IDENTITY
Code signing identity (macOS only). Use the provided identity to sign collected binaries and generated exe-
cutable. If signing identity is not provided, ad- hoc signing is performed instead.

--osx-entitlements-file FILENAME
Entitlements file to use when code-signing the collected binaries (macOS only).

Rarely Used Special Options

--runtime-tmpdir PATH
Where to extract libraries and support files in onefile-mode. If this option is given, the bootloader will ignore
any temp-folder location defined by the run-time OS. The _MEIxxxxxx-folder will be created here. Please use
this option only if you know what you are doing.

--bootloader-ignore-signals
Tell the bootloader to ignore signals rather than forwarding them to the child process. Useful in situations where
for example a supervisor process signals both the bootloader and the child (e.g., via a process group) to avoid
signalling the child twice.

16 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.6.2 Shortening the Command

Because of its numerous options, a full pyinstaller command can become very long. You will run the same com-
mand again and again as you develop your script. You can put the command in a shell script or batch file, using line
continuations to make it readable. For example, in GNU/Linux:

pyinstaller --noconfirm --log-level=WARN \
--onefile --nowindow \
--add-data="README:." \
--add-data="image1.png:img" \
--add-binary="libfoo.so:lib" \
--hidden-import=secret1 \
--hidden-import=secret2 \
--upx-dir=/usr/local/share/ \
myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN ^
--onefile --nowindow ^
--add-data="README:." ^
--add-data="image1.png:img" ^
--add-binary="libfoo.so:lib" ^
--hidden-import=secret1 ^
--hidden-import=secret2 ^
--icon=..\MLNMFLCN.ICO ^
myscript.spec

2.6.3 Running PyInstaller from Python code

If you want to run PyInstaller from Python code, you can use the run function defined in PyInstaller.__main__.
For instance, the following code:

import PyInstaller.__main__

PyInstaller.__main__.run([
'my_script.py',
'--onefile',
'--windowed'

])

Is equivalent to:

pyinstaller my_script.py --onefile --windowed

2.6. Using PyInstaller 17

PyInstaller Documentation, Release 6.4.0

2.6.4 Using UPX

UPX is a free utility for compressing executable files and libraries. It is available for most operating systems and can
compress a large number of executable file formats. See the UPX home page for downloads, and for the list of supported
file formats.

When UPX is available, PyInstaller uses it to individually compress each collected binary file (executable, shared
library, or python extension) in order to reduce the overall size of the frozen application (the one-dir bundle directory,
or the one-file executable). The frozen application’s executable itself is not UPX-compressed (regardless of one-dir or
one-file mode), as most of its size comprises the embedded archive that already contains individually compressed files.

PyInstaller looks for the UPX in the standard executable path(s) (defined by PATH environment variable), or in the
path specified via the --upx-dir command-line option. If found, it is used automatically. The use of UPX can be
completely disabled using the --noupx command-line option.

Note: UPX is currently used only on Windows. On other operating systems, the collected binaries are not processed
even if UPX is found. The shared libraries (e.g., the Python shared library) built on modern linux distributions seem to
break when processed with UPX, resulting in defunct application bundles. On macOS, UPX currently fails to process
.dylib shared libraries; furthermore the UPX-compressed files fail the validation check of the codesign utility, and
therefore cannot be code-signed (which is a requirement on the Apple M1 platform).

Excluding problematic files from UPX processing

Using UPX may end up corrupting a collected shared library. Known examples of such corruption are Windows DLLs
with Control Flow Guard (CFG) enabled, as well as Qt5 and Qt6 plugins. In such cases, individual files may be need
to be excluded from UPX processing, using the --upx-exclude option (or using the upx_exclude argument in the
.spec file).

Changed in version 4.2: PyInstaller detects CFG-enabled DLLs and automatically excludes them from UPX processing.

Changed in version 4.3: PyInstaller automatically excludes Qt5 and Qt6 plugins from UPX processing.

Although PyInstaller attempts to automatically detect and exclude some of the problematic files from UPX processing,
there are cases where the UPX excludes need to be specified manually. For example, 32-bit Windows binaries from the
PySide2 package (Qt5 DLLs and python extension modules) have been reported to be corrupted by UPX.

Changed in version 5.0: Unlike earlier releases that compared the provided UPX-exclude names against basenames of
the collect binary files (and, due to incomplete case normalization, required provided exclude names to be lowercase
on Windows), the UPX-exclude pattern matching now uses OS-default case sensitivity and supports the wildcard (*)
operator. It also supports specifying (full or partial) parent path of the file.

The provided UPX exclude patterns are matched against source (origin) paths of the collected binary files, and the
matching is performed from right to left.

For example, to exclude Qt5 DLLs from the PySide2 package, use --upx-exclude "Qt*.dll", and to exclude the
python extensions from the PySide2 package, use --upx-exclude "PySide2*.pyd".

18 Chapter 2. Contents:

https://upx.github.io/
https://upx.github.io/
https://github.com/upx/upx/issues/398
https://github.com/upx/upx/issues/107
https://github.com/pyinstaller/pyinstaller/issues/4178#issuecomment-868985789

PyInstaller Documentation, Release 6.4.0

2.6.5 Splash Screen (Experimental)

Note: This feature is incompatible with macOS. In the current design, the splash screen operates in a secondary thread,
which is disallowed by the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

Some applications may require a splash screen as soon as the application (bootloader) has been started, because espe-
cially in onefile mode large applications may have long extraction/startup times, while the bootloader prepares every-
thing, where the user cannot judge whether the application was started successfully or not.

The bootloader is able to display a one-image (i.e. only an image) splash screen, which is displayed before the ac-
tual main extraction process starts. The splash screen supports non-transparent and hard-cut-transparent images as
background image, so non-rectangular splash screens can also be displayed.

This splash screen is based on Tcl/Tk, which is the same library used by the Python module tkinter. PyInstaller bundles
the dynamic libraries of tcl and tk into the application at compile time. These are loaded into the bootloader at startup
of the application after they have been extracted (if the program has been packaged as an onefile archive). Since the
file sizes of the necessary dynamic libraries are very small, there is almost no delay between the start of the application
and the splash screen. The compressed size of the files necessary for the splash screen is about 1.5 MB.

As an additional feature, text can optionally be displayed on the splash screen. This can be changed/updated from
within Python. This offers the possibility to display the splash screen during longer startup procedures of a Python
program (e.g. waiting for a network response or loading large files into memory). You can also start a GUI behind the
splash screen, and only after it is completely initialized the splash screen can be closed. Optionally, the font, color and
size of the text can be set. However, the font must be installed on the user system, as it is not bundled. If the font is not
available, a fallback font is used.

If the splash screen is configured to show text, it will automatically (as onefile archive) display the name of the file that
is currently being unpacked, this acts as a progress bar.

2.6.6 The pyi_splash Module

The splash screen is controlled from within Python by the pyi_splash module, which can be imported at runtime.
This module cannot be installed by a package manager because it is part of PyInstaller and is included as needed. This
module must be imported within the Python program. The usage is as follows:

import pyi_splash

Update the text on the splash screen
pyi_splash.update_text("PyInstaller is a great software!")
pyi_splash.update_text("Second time's a charm!")

Close the splash screen. It does not matter when the call
to this function is made, the splash screen remains open until
this function is called or the Python program is terminated.
pyi_splash.close()

Of course the import should be in a try ... except block, in case the program is used externally as a normal Python
script, without a bootloader. For a detailed description see pyi_splash Module (Detailed).

2.6. Using PyInstaller 19

http://www.tcl.tk/
http://wiki.python.org/moin/TkInter

PyInstaller Documentation, Release 6.4.0

2.6.7 Defining the Extraction Location

In rare cases, when you bundle to a single executable (see Bundling to One File and How the One-File Program
Works), you may want to control the location of the temporary directory at compile time. This can be done using the
--runtime-tmpdir option. If this option is given, the bootloader will ignore any temp-folder location defined by the
run-time OS. Please use this option only if you know what you are doing.

2.6.8 Supporting Multiple Platforms

If you distribute your application for only one combination of OS and Python, just install PyInstaller like any other
package and use it in your normal development setup.

Supporting Multiple Python Environments

When you need to bundle your application within one OS but for different versions of Python and support libraries –
for example, a Python 3.6 version and a Python 3.7 version; or a supported version that uses Qt4 and a development
version that uses Qt5 – we recommend you use venv. With venv you can maintain different combinations of Python
and installed packages, and switch from one combination to another easily. These are called virtual environments or
venvs in short.

• Use venv to create as many different development environments as you need, each with its unique combination
of Python and installed packages.

• Install PyInstaller in each virtual environment.

• Use PyInstaller to build your application in each virtual environment.

Note that when using venv, the path to the PyInstaller commands is:

• Windows: ENV_ROOT\Scripts

• Others: ENV_ROOT/bin

Under Windows, the pip-Win package makes it especially easy to set up different environments and switch between
them. Under GNU/Linux and macOS, you switch environments at the command line.

See PEP 405 and the official Python Tutorial on Virtual Environments and Packages for more information about Python
virtual environments.

Supporting Multiple Operating Systems

If you need to distribute your application for more than one OS, for example both Windows and macOS, you must
install PyInstaller on each platform and bundle your app separately on each.

You can do this from a single machine using virtualization. The free virtualBox or the paid VMWare and Parallels
allow you to run another complete operating system as a “guest”. You set up a virtual machine for each “guest” OS. In
it you install Python, the support packages your application needs, and PyInstaller.

A File Sync & Share system like NextCloud is useful with virtual machines. Install the synchronization client in each
virtual machine, all linked to your synchronization account. Keep a single copy of your script(s) in a synchronized
folder. Then on any virtual machine you can run PyInstaller thus:

cd ~/NextCloud/project_folder/src # GNU/Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \

--distpath=path-to-local-dist-folder \
(continues on next page)

20 Chapter 2. Contents:

https://docs.python.org/3/library/venv.html
https://sites.google.com/site/pydatalog/python/pip-for-windows
https://www.python.org/dev/peps/pep-0405
https://docs.python.org/3/tutorial/venv.html
https://www.virtualbox.org
http://www.vmware.com/solutions/desktop/
http://www.parallels.com
https://en.wikipedia.org/wiki/Enterprise_file_synchronization_and_sharing
https://nextcloud.org

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

...other options as required... \

./myscript.py

PyInstaller reads scripts from the common synchronized folder, but writes its work files and the bundled app in folders
that are local to the virtual machine.

If you share the same home directory on multiple platforms, for example GNU/Linux and macOS, you will need to set
the PYINSTALLER_CONFIG_DIR environment variable to different values on each platform otherwise PyInstaller
may cache files for one platform and use them on the other platform, as by default it uses a subdirectory of your home
directory as its cache location.

It is said to be possible to cross-develop for Windows under GNU/Linux using the free Wine environment. Further
details are needed, see How to Contribute.

2.6.9 Capturing Windows Version Data

A Windows app may require a Version resource file. A Version resource contains a group of data structures, some
containing binary integers and some containing strings, that describe the properties of the executable. For details see
the Microsoft Version Information Structures page.

Version resources are complex and some elements are optional, others required. When you view the version tab of a
Properties dialog, there’s no simple relationship between the data displayed and the structure of the resource. For this
reason PyInstaller includes the pyi-grab_version command. It is invoked with the full path name of any Windows
executable that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents a Version resource in readable form to standard output. You can copy it from
the console window or redirect it to a file. Then you can edit the version information to adapt it to your program. Using
pyi-grab_version you can find an executable that displays the kind of information you want, copy its resource data,
and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters. (Unicode characters are allowed in
Version resource string fields.) Be sure to edit and save the text file in UTF-8 unless you are certain it contains only
ASCII string values.

Your edited version text file can be given with the --version-file option to pyinstaller or pyi-makespec. The
text data is converted to a Version resource and installed in the bundled app.

In a Version resource there are two 64-bit binary values, FileVersion and ProductVersion. In the version text file
these are given as four-element tuples, for example:

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

The elements of each tuple represent 16-bit values from most-significant to least-significant. For example the value
(2, 0, 4, 0) resolves to 0002000000040000 in hex.

You can also install a Version resource from a text file after the bundled app has been created, using the
pyi-set_version command:

pyi-set_version version_text_file executable_file

The pyi-set_version utility reads a version text file as written by pyi-grab_version, converts it to a Version
resource, and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version. You find it is Python code that creates
a VSVersionInfo object. The class definition for VSVersionInfo is found in utils/win32/versioninfo.py in

2.6. Using PyInstaller 21

http://www.winehq.org/
https://pyinstaller.readthedocs.io/en/latest/contributing.html
http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx

PyInstaller Documentation, Release 6.4.0

the PyInstaller distribution folder. You can write a program that imports versioninfo. In that program you can eval
the contents of a version info text file to produce a VSVersionInfo object. You can use the .toRaw() method of
that object to produce a Version resource in binary form. Or you can apply the unicode() function to the object to
reproduce the version text file.

2.6.10 Building macOS App Bundles

Under macOS, PyInstaller always builds a UNIX executable in dist. If you specify --onedir, the output is a folder
named myscript containing supporting files and an executable named myscript. If you specify --onefile, the
output is a single UNIX executable named myscript. Either executable can be started from a Terminal command line.
Standard input and output work as normal through that Terminal window.

If you specify --windowed with either option, the dist folder also contains a macOS app bundle named myscript.
app.

Note: Generating app bundles with onefile executables (i.e., using the combination of --onefile and --windowed
options), while possible, is not recommended. Such app bundles are inefficient, because they require unpacking on
each run (and the unpacked content might be scanned by the OS each time). Furthermore, onefile executables will not
work when signed/notarized with sandbox enabled (which is a requirement for distribution of apps through Mac App
Store).

As you are likely aware, an app bundle is a special type of folder. The one built by PyInstaller always contains a folder
named Contents, which contains:

• A file named Info.plist that describes the app.

• A folder named MacOS that contains the program executable.

• A folder named Frameworks that contains the collected binaries (shared libraries, python extensions) and nested
.framework bundles. It also contains symbolic links to data files and directories from the Resources directory.

• A folder named Resources that contains the icon file and all collected data files. It also contains symbolic links
to binaries and directories from the Resources directory.

Note: The contents of the Frameworks and Resources directories are cross-linked between the two directories in an
effort to maintain an illusion of a single content directory (which is required by some packages), while also trying to
satisfy the Apple’s file placement requirements for codesigning.

Use the --icon argument to specify a custom icon for the application. It will be copied into the Resources folder.
(If you do not specify an icon file, PyInstaller supplies a file icon-windowed.icns with the PyInstaller logo.)

Use the --osx-bundle-identifier argument to add a bundle identifier. This becomes the CFBundleIdentifier
used in code-signing (see the PyInstaller code signing recipe and for more detail, the Apple code signing overview
technical note).

You can add other items to the Info.plist by editing the spec file; see Spec File Options for a macOS Bundle below.

22 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing
https://developer.apple.com/library/mac/technotes/tn2206/_index.html

PyInstaller Documentation, Release 6.4.0

2.6.11 Platform-specific Notes

GNU/Linux

Making GNU/Linux Apps Forward-Compatible

Under GNU/Linux, PyInstaller does not bundle libc (the C standard library, usually glibc, the Gnu version) with the
app. Instead, the app expects to link dynamically to the libc from the local OS where it runs. The interface between
any app and libc is forward compatible to newer releases, but it is not backward compatible to older releases.

For this reason, if you bundle your app on the current version of GNU/Linux, it may fail to execute (typically with a
runtime dynamic link error) if it is executed on an older version of GNU/Linux.

The solution is to always build your app on the oldest version of GNU/Linux you mean to support. It should continue
to work with the libc found on newer versions.

The GNU/Linux standard libraries such as glibc are distributed in 64-bit and 32-bit versions, and these are not com-
patible. As a result you cannot bundle your app on a 32-bit system and run it on a 64-bit installation, nor vice-versa.
You must make a unique version of the app for each word-length supported.

Note that PyInstaller does bundle other shared libraries that are discovered via dependency analysis, such as lib-
stdc++.so.6, libfontconfig.so.1, libfreetype.so.6. These libraries may be required on systems where older (and thus
incompatible) versions of these libraries are available. On the other hand, the bundled libraries may cause issues when
trying to load a system-provided shared library that is linked against a newer version of the system-provided library.

For example, system-installed mesa DRI drivers (e.g., radeonsi_dri.so) depend on the system-provided version of lib-
stdc++.so.6. If the frozen application bundles an older version of libstdc++.so.6 (as collected from the build system),
this will likely cause missing symbol errors and prevent the DRI drivers from loading. In this case, the bundled lib-
stdc++.so.6 should be removed. However, this may not work on a different distribution that provides libstdc++.so.6
older than the one from the build system; in that case, the bundled version should be kept, because the system-provided
version may lack the symbols required by other collected binaries that depend on libstdc++.so.6.

Windows

The developer needs to take special care to include the Visual C++ run-time .dlls: Python 3.5+ uses Visual Studio 2015
run-time, which has been renamed into “Universal CRT“ and has become part of Windows 10. For Windows Vista
through Windows 8.1 there are Windows Update packages, which may or may not be installed in the target-system. So
you have the following options:

1. Build on Windows 7 which has been reported to work.

2. Include one of the VCRedist packages (the redistributable package files) into your application’s installer. This is
Microsoft’s recommended way, see “Distributing Software that uses the Universal CRT“ in the above-mentioned
link, numbers 2 and 3.

3. Install the Windows Software Development Kit (SDK) for Windows 10 and expand the .spec-file to include the
required DLLs, see “Distributing Software that uses the Universal CRT“ in the above-mentioned link, number 6.

If you think, PyInstaller should do this by itself, please help improving PyInstaller.

2.6. Using PyInstaller 23

https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt/
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

PyInstaller Documentation, Release 6.4.0

macOS

Making macOS apps Forward-Compatible

On macOS, system components from one version of the OS are usually compatible with later versions, but they may
not work with earlier versions. While PyInstaller does not collect system components of the OS, the collected 3rd party
binaries (e.g., python extension modules) are built against specific version of the OS libraries, and may or may not
support older OS versions.

As such, the only way to ensure that your frozen application supports an older version of the OS is to freeze it on the
oldest version of the OS that you wish to support. This applies especially when building with Homebrew python, as its
binaries usually explicitly target the running OS.

For example, to ensure compatibility with “Mojave” (10.14) and later versions, you should set up a full environment
(i.e., install python, PyInstaller, your application’s code, and all its dependencies) in a copy of macOS 10.14, using a
virtual machine if necessary. Then use PyInstaller to freeze your application in that environment; the generated frozen
application should be compatible with that and later versions of macOS.

Building 32-bit Apps in macOS

Note: This section is largely obsolete, as support for 32-bit application was removed in macOS 10.15 Catalina (for
64-bit multi-arch support on modern versions of macOS, see here). However, PyInstaller still supports building 32-bit
bootloader, and 32-bit/64-bit Python installers are still available from python.org for (some) versions of Python 3.7
which PyInstaller dropped support for in v6.0.

Older versions of macOS supported both 32-bit and 64-bit executables. PyInstaller builds an app using the the word-
length of the Python used to execute it. That will typically be a 64-bit version of Python, resulting in a 64-bit executable.
To create a 32-bit executable, run PyInstaller under a 32-bit Python.

To verify that the installed python version supports execution in either 64- or 32-bit mode, use the file command on
the Python executable:

$ file /usr/local/bin/python3
/usr/local/bin/python3: Mach-O universal binary with 2 architectures
/usr/local/bin/python3 (for architecture i386): Mach-O executable i386
/usr/local/bin/python3 (for architecture x86_64): Mach-O 64-bit executable x86_64

The OS chooses which architecture to run, and typically defaults to 64-bit. You can force the use of either architecture
by name using the arch command:

$ /usr/local/bin/python3
Python 3.7.6 (v3.7.6:43364a7ae0, Dec 18 2019, 14:12:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
9223372036854775807

$ arch -i386 /usr/local/bin/python3
Python 3.7.6 (v3.7.6:43364a7ae0, Dec 18 2019, 14:12:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
2147483647

24 Chapter 2. Contents:

http://brew.sh/

PyInstaller Documentation, Release 6.4.0

Note: PyInstaller does not provide pre-built 32-bit bootloaders for macOS anymore. In order to use PyInstaller with
32-bit python, you need to build the bootloader yourself, using an XCode version that still supports compiling 32-
bit. Depending on the compiler/toolchain, you may also need to explicitly pass --target-arch=32bit to the waf
command.

Getting the Opened Document Names

When user double-clicks a document of a type that is registered with your application, or when a user drags a document
and drops it on your application’s icon, macOS launches your application and provides the name(s) of the opened
document(s) in the form of an OpenDocument AppleEvent.

These events are typically handled via installed event handlers in your application (e.g., using Carbon API via ctypes,
or using facilities provided by UI toolkits, such as tkinter or PyQt5).

Alternatively, PyInstaller also supports conversion of open document/URL events into arguments that are appended to
sys.argv. This applies only to events received during application launch, i.e., before your frozen code is started. To
handle events that are dispatched while your application is already running, you need to set up corresponding event
handlers.

For details, see this section.

AIX

Depending on whether Python was build as a 32-bit or a 64-bit executable you may need to set or unset the environment
variable OBJECT_MODE. To determine the size the following command can be used:

$ python -c "import sys; print(sys.maxsize <= 2**32)"
True

When the answer is True (as above) Python was build as a 32-bit executable.

When working with a 32-bit Python executable proceed as follows:

$ unset OBJECT_MODE
$ pyinstaller <your arguments>

When working with a 64-bit Python executable proceed as follows:

$ export OBJECT_MODE=64
$ pyinstaller <your arguments>

2.7 Common Issues and Pitfalls

This section attempts to document common issues and pitfalls that users need to be aware of when trying to freeze
their applications with PyInstaller, as certain features require special care and considerations that might not be obvious
when developing and running unfrozen python programs.

2.7. Common Issues and Pitfalls 25

https://docs.python.org/3/library/sys.html#sys.argv

PyInstaller Documentation, Release 6.4.0

2.7.1 Requirements Imposed by Symbolic Links in Frozen Application

Starting with PyInstaller 6.0, the frozen application bundles generated by PyInstaller on non-Windows systems make
extensive use of symbolic links. Therefore, creation and distribution of PyInstaller-frozen applications requires special
considerations.

Failing to preserve symbolic links will turn them into full file copies; the duplicated files will balloon the size of your
frozen application, and may also lead to run-time issues.

Note: In PyInstaller versions prior to 6.0, symbolic links were used only in generated macOS .app bundles. From
6.0 on, they are also used in “regular” POSIX builds on all POSIX systems (macOS, Linux, FreeBSD, etc.), both in
onefile and onedir mode.

In onefile builds, the use of symbolic links imposes run-time requirements for the temporary directory into which
the program unpacks itself before running - the temporary directory must be located on filesystem that supports
symbolic links. Otherwise, the program will fail to unpack itself, as it will encounter an error when trying to (re)create
a symbolic link.

The onedir builds can only be generated on a filesystem that supports symbolic links. Similarly, they can only be
moved or copied to a filesystem that supports symbolic links. If you plan to distribute your onedir application as an
archive, ensure that archive format supports preservation of symbolic links.

Note: When copying the generated onedir application bundle, ensure that you use copy command with options that
preserve symbolic links. For example, on Linux, both cp -fr <source> <dest> and cp -fR <source> <dest>
preserve symbolic links. On macOS, on the other hand, cp -fr <source> <dest> does not preserve symbolic links,
while cp -fR <source> <dest> does.

Note: Creation of a zip archive by default does not preserve symbolic links; preservation needs to be explicitly
enabled via --symlinks / -y command-line switch to the zip command.

2.7.2 Launching External Programs from the Frozen Application

In a PyInstaller-frozen application, the run-time environment of the application’s process is often modified to ensure
that when it comes to loading of the shared libraries, the bundled copies of shared libraries are preferred over the
copies that might be available on the target system. The exact way of modifying the library search order (environment
variables versus low-level API) depends on the operating system, but in general, changes made to the frozen applica-
tion’s run-time environment are also inherited by subprocesses launched by the frozen application. This ensures that
the application itself (for example, the binary python extensions it loads) as well as bundled helper programs that the
application might run as a subprocess (for example, gspawn when using GLib/Gio via gi.repository on Windows,
QtWebEngineHelper from PyQt and PySide packages, and so on) use the shared libraries they they were originally
built against and thus have compatible ABI. This makes frozen applications portable, more or less self-contained, and
isolated from the target environment.

The above paradigm is inherently at odds with code that is trying to launch an external program, i.e., a program that
is available on the target system (and launched, for example, via subprocess.run()). System-installed external pro-
grams are built against shared libraries provided by the system, which might be of different and incompatible versions
compared to the ones bundled with the frozen application. And because in the run-time environment of the PyInstaller-
frozen application (which is inherited by the launched subprocesses) the library search path is modified to prefer the
bundled shared libraries, trying to launch an external program might fail due to shared library conflicts.

26 Chapter 2. Contents:

https://docs.python.org/3/library/subprocess.html#subprocess.run

PyInstaller Documentation, Release 6.4.0

Therefore, if your code (or the 3rd party code you are using) is trying to launch an external program, you need to ensure
that the changes to the library search paths, made for the frozen application’s main process, are reset or reverted. The
specifics of such run-time environment sanitization are OS-dependent, and are outlined in the following sub-sections.

Note: On some operating systems, the library search path is modified only via environment variables; in such cases, if
you are launching the subprocess in your code (e.g., via subprocess.run()), you can pass the sanitized environment
to the subprocess via the env argument. This way, only the environment of the sub-process is modified, while the
environment of the frozen application itself (i.e., its search paths) are left unchanged.

If this is not possible, however, you might need to temporarily sanitize the environment of the main application, launch
the external program (so it inherits the sanitized environment), and then restore the main application’s environment
back to the original (PyInstaller-adjusted) version.

If you are launching the external program after all modules have been imported and their dependencies have been
loaded, and if your frozen application does not include any helper programs that might be launched after your external
program, you can simply sanitize main application’s run-time environment, without having to worry about restoring it
after your external program is launched.

Linux and Unix-like OSes

On POSIX systems (with exception of macOS - see its dedicated sub-section), the library search path is modified via
the LD_LIBRARY_PATH environment variable (LIBPATH on AIX).

During the frozen application’s startup, the PyInstaller’s bootloader checks whether the LD_LIBRARY_PATH environ-
ment variable is already set, and, if necessary, creates a copy of its contents into LD_LIBRARY_PATH_ORIG environment
variable. Then, it modifies LD_LIBRARY_PATH by prepending the application’s top level directory (i.e., the path that is
also available in sys._MEIPASS).

Therefore, prior to launching an external program, the LD_LIBRARY_PATH should be either cleared (to use the system
default) or reset to the value stored in LD_LIBRARY_PATH_ORIG (if available). See LD_LIBRARY_PATH / LIBPATH
considerations for details and an example.

Windows

On Windows, the PyInstaller’s bootloader sets the library search path to the top-level application directory (i.e., the
path that is also available in sys._MEIPASS) using the SetDllDirectoryW Win32 API function.

As noted in the API documentation, calling this function also affects the children processes started from the frozen
application. To undo the effect of this call and restore standard search paths, SetDllDirectory function should be
called with NULL argument. As discussed in #3795, the most practical way to achieve this from python code is to use
ctypes, for example:

import sys
if sys.platform == "win32":

import ctypes
ctypes.windll.kernel32.SetDllDirectoryW(None)

PyInstaller’s bootloader does not modify the PATH environment variable. However, the PATH environment variable may
be modified by run-time hooks for specific packages, in order to facilitate discovery of dynamic dependencies that are
loaded at run-time.

Therefore, it may also be necessary to sanitize the PATH environment variable, and (temporarily) remove any paths
anchored in top-level application directory (sys._MEIPASS) prior to launching the external program.

2.7. Common Issues and Pitfalls 27

https://docs.python.org/3/library/subprocess.html#subprocess.run
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-setdlldirectoryw
https://github.com/pyinstaller/pyinstaller/issues/3795

PyInstaller Documentation, Release 6.4.0

macOS

On macOS, PyInstaller rewrites the library paths in collected binaries to refer to copies (or symbolic links) in the top-
level application directory, relative to the binary’s location. Therefore, PyInstaller’s bootloader does not need to modify
the DYLD_LIBRARY_PATH environment variable.

However, the DYLD_LIBRARY_PATH environment variable may be modified by run-time hooks for specific packages,
in order to facilitate discovery of dynamic dependencies that are loaded at run-time.

Therefore, it may also be necessary to sanitize the DYLD_LIBRARY_PATH environment variable, and (temporarily)
remove any paths anchored in top-level application directory (sys._MEIPASS) prior to launching the external program.

Note: If you are building a macOS .app bundle, you should be aware that when launched from Finder, the app process
runs in an environment with reduced set of environment variables. Most notably, the PATH environment variable is
set to only /usr/bin:/bin:/usr/sbin:/sbin. Therefore, programs installed in locations that are typically in PATH
when running a Terminal session (e.g., /usr/local/bin, /opt/homebrew/bin) will not be visible to the app, unless
referenced by their full path.

2.7.3 Multi-processing

Currently, the only supported multi-processing framework is the multiprocessing module from the Python stan-
dard library, and even that requires you to make a multiprocessing.freeze_support() call before using any
multiprocessing functionality.

A typical symptom of failing to call multiprocessing.freeze_support() before your code (or 3rd party code
you are using) attempts to make use of multiprocessing functionality is an endless spawn loop of your application
process.

Note: multiprocessing supports different start modes: spawn, fork, and forkserver. Of these, fork is the only
one that might work in the frozen application without calling multiprocessing.freeze_support(). The default
start method on Windows and macOS is spawn, while fork is default on other POSIX systems (however, Python 3.14
plans to change that).

Why is calling multiprocessing.freeze_support() required?

As implied by its name, the multiprocessingmodule spawns several processes; typically, these are worker processes
running your tasks. On POSIX systems, spawn and forkserver start methods also spawn a dedicated resource tracker
process that tracks and handles clean-up of unlinked shared resources (e.g., shared memory segments, semaphores).

The sub-processes started by multiprocessing are spawned using sys.executable - when running an unfrozen
python script, this corresponds to your python interpreter executable (e.g., python.exe). The command-line arguments
instruct the interpreter to run a corresponding function from the multiprocessingmodule. For example, the spawned
worker process on Windows looks as follows:

python.exe -c "from multiprocessing.spawn import spawn_main; spawn_main(parent_pid=6872,␣
→˓pipe_handle=520)" --multiprocessing-fork

Similarly, when using the spawn start method on a POSIX system, the resource tracker process is started with the
following arguments:

python -c from multiprocessing.resource_tracker import main;main(5)

28 Chapter 2. Contents:

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

PyInstaller Documentation, Release 6.4.0

while the worker process is started with the following arguments:

python -c "from multiprocessing.spawn import spawn_main; spawn_main(tracker_fd=6, pipe_
→˓handle=8)" --multiprocessing-fork

In the frozen application, sys.executable points to your application executable. So when the multiprocessing
module in your main process attempts to spawn a subprocess (a worker or the resource tracker), it runs another instance
of your program, with the following arguments for resource tracker:

my_program -B -S -I -c "from multiprocessing.resource_tracker import main;main(5)"

and for the worker process:

my_program --multiprocessing-fork tracker_fd=6 pipe_handle=8

On Windows, the worker process looks similar:

my_program.exe --multiprocessing-fork parent_pid=8752 pipe_handle=1552

If no special handling is in place in the program code, the above invocations end up executing your program code,
which leads to one of the two outcomes:

• this second program instance again reaches the point where multiprocessing module attempts to spawn a
subprocess, leading to an endless recursive spawn loop that eventually crashes your system.

• if you have command-line parsing implemented in your program code, the command-line parser raises an error
about unrecognized parameters. Which may lead to periodic attempts at spawning the resource tracker process.

Enter multiprocessing.freeze_support() - PyInstaller provides a custom override of this function, which is
required to be called on all platforms (in contrast to original standard library implementation, which, as suggested
by its documentation, caters only to Windows). Our implementation inspects the arguments (sys.argv) passed to
the process, and if they match the arguments used by multiprocessing for a worker process or resource tracker, it
diverts the program flow accordingly (i.e., executes the corresponding multiprocessing code and exits after finished
execution).

This ensures that multiprocessing sub-processes, while re-using the application executable, execute their intended
multiprocessing functionality instead of executing your main program code.

When to call multiprocessing.freeze_support()?

The rule of thumb is, multiprocessing.freeze_support() should be called before trying to use any of
multiprocessing functionality (such as spawning a process or opening process pool, or allocating a shared resource,
for example a semaphore).

Therefore, as documented in original implementation of multiprocessing.freeze_support(), a typical call looks
like this:

from multiprocessing import Process, freeze_support

def f():
print('hello world!')

if __name__ == '__main__':
freeze_support()
Process(target=f).start()

2.7. Common Issues and Pitfalls 29

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support

PyInstaller Documentation, Release 6.4.0

However, there are scenarios where you might need to make the call even sooner, before (at least some of) the imports
at the top of your script. This might be necessary if your script imports a module that does one of the following during
its initialization (i.e., when it is imported):

• makes use of multiprocessing functionality.

• parses command-line arguments for your program.

• imports and initializes a GUI framework. While this might not result in an error, it should be avoided in the
worker processes by diverting the program flow before it happens.

Similarly, if both of the following conditions are true:

• your script imports several heavy-weight modules that are needed by the main program but not by the worker
process

• your script does not directly use multiprocessing functionality itself, but rather imports a 3rd party module
and calls a function from it that uses multiprocessing,

then it might be worth placing the multiprocessing.freeze_support() before the imports, to avoid unnecessarily
slowing the worker processes:

Divert the program flow in worker sub-process as soon as possible,
before importing heavy-weight modules.
if __name__ == '__main__':

import multiprocessing
multiprocessing.freeze_support()

Import several heavy-weight modules
import numpy as np
import cv2
...
import some_module

if __name__ == '__main__':
Call some 3rd party function that internally uses multiprocessing
some_module.some_function_that_uses_multiprocessing()

Note: If multiprocessing is used only in an external module that is imported and used by your script, then the
multiprocessing worker sub-process needs to load and initialize only that module; therefore, diverting the program
flow using multiprocessing.freeze_support() before performing heavy-weight imports avoids unnecessarily
slowing down the worker process.

On the other hand, if your main script (also) uses multiprocessing functionality, then the corresponding worker
sub-process also need to execute the remainder of your script, including the imports; which limits the performance
benefits of an early multiprocessing.freeze_support() call.

30 Chapter 2. Contents:

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support

PyInstaller Documentation, Release 6.4.0

What about other multi-processing frameworks?

The Python ecosystem provides several alternatives to the multiprocessing from the Python standard library - none
of them are supported by PyInstaller.

The PyInstaller-frozen application does not have access to python interpreter executable (python or python.exe)
and its environment, and must therefore use its embedded python interpreter. Therefore, any other alternative python-
based multi-processing solution would also need to spawn its worker subprocesses using the program executable (sys.
executable).

Even if the alternative multi-processing framework uses sys.executable to spawn its subprocesses, your program
code would need to be made aware of such attempts, and handle them accordingly. In other words, you would need to
implement inspection of program arguments (sys.argv), detect attempts at spawning worker subprocesses based on
the arguments, and divert the program flow into corresponding framework’s function instead of letting it reach your
main program code.

2.7.4 sys.stdin, sys.stdout, and sys.stderr in noconsole/windowed Applications
(Windows only)

On Windows, the --noconsole allows you to build a frozen application using the “windowed” bootloader variant,
which was built with /SUBSYSTEM:WINDOWED option (as opposed to /SUBSYSTEM:CONSOLE; see here for details), and
thus has no console attached. This is similar to the windowed python interpreter executable, pythonw.exe, which can
be used to run python scripts that do not require a console, nor want to open a console window when launched.

A direct consequence of building your frozen application in the windowed/no-console mode is that standard input/output
file objects, sys.stdin, sys.stdout, and sys.stderr are unavailable, and are set to None. The same would happen
if you ran your unfrozen code using the pythonw.exe interpreter, as documented under sys.__stderr__ in Python
standard library documentation.

Therefore, if your code (or the 3rd party code you are using) naively attempts to access attributes of sys.stdout
and sys.stderr objects without first ensuring that the objects are available, the frozen application will raise an
AttributeError; for example, trying to access sys.stderr.flush will result in 'NoneType' object has no
attribute 'flush'.

The best practice would be to fix the offending code so that it checks for availability of the standard I/O file objects
before trying to use them; this will ensure compatibility with both pythonw.exe interpreter and with PyInstaller’s
noconsole mode. However, if fixing the problem is not an option (for example, the problem originates from a 3rd
party module and is beyond your control), you can work around it by setting dummy file handles at the very start of
your program:

import sys
import os

if sys.stdout is None:
sys.stdout = open(os.devnull, "w")

if sys.stderr is None:
sys.stderr = open(os.devnull, "w")

the rest of your imports

and the rest of your program

Note: If you plan to build your frozen application in windowed/no-console mode, we recommend that you first try
running your unfrozen script using the pythonw.exe interpreter to ensure that it works correctly when console is

2.7. Common Issues and Pitfalls 31

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.argv
https://learn.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem
https://docs.python.org/3/library/sys.html#sys.stdin
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.__stderr__
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr

PyInstaller Documentation, Release 6.4.0

unavailable.

2.8 Run-time Information

Your app should run in a bundle exactly as it does when run from source. However, you may want to learn at run-time
whether the app is running from source or whether it is bundled (“frozen”). You can use the following code to check
“are we bundled?”:

import sys
if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):

print('running in a PyInstaller bundle')
else:

print('running in a normal Python process')

When a bundled app starts up, the bootloader sets the sys.frozen attribute and stores the absolute path to the bundle
folder in sys._MEIPASS. For a one-folder bundle, this is the path to the _internal folder within the bundle. For
a one-file bundle, this is the path to the temporary folder created by the bootloader (see How the One-File Program
Works).

When your app is running, it may need to access data files in one of the following locations:

• Files that were bundled with it (see Adding Data Files).

• Files the user has placed with the app bundle, say in the same folder.

• Files in the user’s current working directory.

The program has access to several variables for these uses.

2.8.1 Using __file__

When your program is not bundled, the Python variable __file__ refers to the current path of the module it is contained
in. When importing a module from a bundled script, the PyInstaller bootloader will set the module’s __file__ attribute
to the correct path relative to the bundle folder.

For example, if you import mypackage.mymodule from a bundled script, then the __file__ attribute of that module
will be sys._MEIPASS + 'mypackage/mymodule.pyc'. So if you have a data file at mypackage/file.dat that
you added to the bundle at mypackage/file.dat, the following code will get its path (in both the non-bundled and
the bundled case):

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file__), 'file.dat'))

In the main script (the __main__ module) itself, the __file__ variable contains path to the script file. In Python 3.8
and earlier, this path is either absolute or relative (depending on how the script was passed to the python interpreter),
while in Python 3.9 and later, it is always an absolute path. In the bundled script, the PyInstaller bootloader always
sets the __file__ variable inside the __main__ module to the absolute path inside the bundle directory, as if the
byte-compiled entry-point script existed there.

For example, if your entry-point script is called program.py, then the __file__ attribute inside the bundled script
will point to sys._MEIPASS + 'program.py'. Therefore, locating a data file relative to the main script can be either
done directly using sys._MEIPASS or via the parent path of the __file__ inside the main script.

The following example will get the path to a file other-file.dat located next to the main script if not bundled and
inside the bundle folder if it is bundled:

32 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

from os import path
bundle_dir = path.abspath(path.dirname(__file__))
path_to_dat = path.join(bundle_dir, 'other-file.dat')

Or, if you’d rather use pathlib:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("other-file.dat")

Changed in version 4.3: Formerly, the __file__ attribute of the entry-point script (the __main__ module) was set
to only its basename rather than its full (absolute or relative) path within the bundle directory. Therefore, PyInstaller
documentation used to suggest sys._MEIPASS as means for locating resources relative to the bundled entry-point
script. Now, __file__ is always set to the absolute full path, and is the preferred way of locating such resources.

Placing data files at expected locations inside the bundle

To place the data-files where your code expects them to be (i.e., relative to the main script or bundle directory), you can
use the dest parameter of the --add-data="source:dest" command-line switches. Assuming you normally use the
following code in a file named my_script.py to locate a file file.dat in the same folder:

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file__), 'file.dat'))

Or the pathlib equivalent:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("file.dat")

And my_script.py is not part of a package (not in a folder containing an __init_.py), then __file__ will be [app
root]/my_script.pyc meaning that if you put file.dat in the root of your package, using:

PyInstaller --add-data="/path/to/file.dat:."

It will be found correctly at runtime without changing my_script.py.

If __file__ is checked from inside a package or library (say my_library.data) then __file__ will be [app
root]/my_library/data.pyc and --add-data should mirror that:

PyInstaller --add-data="/path/to/my_library/file.dat:./my_library"

However, in this case it is much easier to switch to the spec file and use the PyInstaller.utils.hooks.
collect_data_files() helper function:

from PyInstaller.utils.hooks import collect_data_files

a = Analysis(...,
datas=collect_data_files("my_library"),
...)

2.8. Run-time Information 33

https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html

PyInstaller Documentation, Release 6.4.0

2.8.2 Using sys.executable and sys.argv[0]

When a normal Python script runs, sys.executable is the path to the program that was executed, namely, the Python
interpreter. In a frozen app, sys.executable is also the path to the program that was executed, but that is not Python;
it is the bootloader in either the one-file app or the executable in the one-folder app. This gives you a reliable way to
locate the frozen executable the user actually launched.

The value of sys.argv[0] is the name or relative path that was used in the user’s command. It may be a relative path
or an absolute path depending on the platform and how the app was launched.

If the user launches the app by way of a symbolic link, sys.argv[0] uses that symbolic name, while sys.executable
is the actual path to the executable. Sometimes the same app is linked under different names and is expected to behave
differently depending on the name that is used to launch it. For this case, you would test os.path.basename(sys.
argv[0])

On the other hand, sometimes the user is told to store the executable in the same folder as the files it will operate on, for
example a music player that should be stored in the same folder as the audio files it will play. For this case, you would
use os.path.dirname(sys.executable).

The following small program explores some of these possibilities. Save it as directories.py. Execute it as a Python
script, then bundled as a one-folder app. Then bundle it as a one-file app and launch it directly and also via a symbolic
link:

#!/usr/bin/env python3
import sys, os
frozen = 'not'
if getattr(sys, 'frozen', False):

we are running in a bundle
frozen = 'ever so'
bundle_dir = sys._MEIPASS

else:
we are running in a normal Python environment
bundle_dir = os.path.dirname(os.path.abspath(__file__))

print('we are',frozen,'frozen')
print('bundle dir is', bundle_dir)
print('sys.argv[0] is', sys.argv[0])
print('sys.executable is', sys.executable)
print('os.getcwd is', os.getcwd())

2.8.3 LD_LIBRARY_PATH / LIBPATH considerations

This environment variable is used to discover libraries, it is the library search path - on GNU/Linux and *BSD
LD_LIBRARY_PATH is used, on AIX it is LIBPATH.

If it exists, PyInstaller saves the original value to *_ORIG, then modifies the search path so that the bundled libraries
are found first by the bundled code.

But if your code executes a system program, you often do not want that this system program loads your bundled libraries
(that are maybe not compatible with your system program) - it rather should load the correct libraries from the system
locations like it usually does.

Thus you need to restore the original path before creating the subprocess with the system program.

env = dict(os.environ) # make a copy of the environment
lp_key = 'LD_LIBRARY_PATH' # for GNU/Linux and *BSD.
lp_orig = env.get(lp_key + '_ORIG')

(continues on next page)

34 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

if lp_orig is not None:
env[lp_key] = lp_orig # restore the original, unmodified value

else:
This happens when LD_LIBRARY_PATH was not set.
Remove the env var as a last resort:
env.pop(lp_key, None)

p = Popen(system_cmd, ..., env=env) # create the process

See also: Launching External Programs from the Frozen Application

2.9 Using Spec Files

When you execute

pyinstaller options.. myscript.py

the first thing PyInstaller does is to build a spec (specification) file myscript.spec. That file is stored in the
--specpath directory, by default the current directory.

The spec file tells PyInstaller how to process your script. It encodes the script names and most of the options you give to
the pyinstaller command. The spec file is actually executable Python code. PyInstaller builds the app by executing
the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file. It is usually enough to give all the
needed information (such as hidden imports) as options to the pyinstaller command and let it run.

There are four cases where it is useful to modify the spec file:

• When you want to bundle data files with the app.

• When you want to include run-time libraries (.dll or .so files) that PyInstaller does not know about from any
other source.

• When you want to add Python run-time options to the executable.

• When you want to create a multiprogram bundle with merged common modules.

These uses are covered in topics below.

You create a spec file using this command:

pyi-makespec options name.py [other scripts . . .]

The options are the same options documented above for the pyinstaller command. This command creates the
name.spec file but does not go on to build the executable.

After you have created a spec file and modified it as necessary, you build the application by passing the spec file to the
pyinstaller command:

pyinstaller options name.spec

When you create a spec file, most command options are encoded in the spec file. When you build from a spec file,
those options cannot be changed. If they are given on the command line they are ignored and replaced by the options
in the spec file.

Only the following command-line options have an effect when building from a spec file:

• --upx-dir

• --distpath

2.9. Using Spec Files 35

PyInstaller Documentation, Release 6.4.0

• --workpath

• --noconfirm

• --clean

• --log-level

2.9.1 Spec File Operation

After PyInstaller creates a spec file, or opens a spec file when one is given instead of a script, the pyinstaller
command executes the spec file as code. Your bundled application is created by the execution of the spec file. The
following is a shortened example of a spec file for a minimal, one-folder app:

a = Analysis(['minimal.py'],
pathex=['/Developer/PItests/minimal'],
binaries=None,
datas=None,
hiddenimports=[],
hookspath=None,
runtime_hooks=None,
excludes=None)

pyz = PYZ(a.pure)
exe = EXE(pyz,...)
coll = COLLECT(...)

The statements in a spec file create instances of four classes, Analysis, PYZ, EXE and COLLECT.

• A new instance of class Analysis takes a list of script names as input. It analyzes all imports and other depen-
dencies. The resulting object (assigned to a) contains lists of dependencies in class members named:

– scripts: the python scripts named on the command line;

– pure: pure python modules needed by the scripts;

– pathex: a list of paths to search for imports (like using PYTHONPATH), including paths given by the
--paths option.

– binaries: non-python modules needed by the scripts, including names given by the --add-binary op-
tion;

– datas: non-binary files included in the app, including names given by the --add-data option.

• An instance of class PYZ is a .pyz archive (described under Inspecting Archives below), which contains all the
Python modules from a.pure.

• An instance of EXE is built from the analyzed scripts and the PYZ archive. This object creates the executable file.

• An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the EXE instance receives all of the scripts, modules and binaries.

You modify the spec file to pass additional values to Analysis and to EXE.

36 Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

PyInstaller Documentation, Release 6.4.0

2.9.2 Adding Files to the Bundle

To add files to the bundle, you create a list that describes the files and supply it to the Analysis call. When you bundle
to a single folder (see Bundling to One Folder), the added data files are copied into the folder with the executable. When
you bundle to a single executable (see Bundling to One File), copies of added files are compressed into the executable,
and expanded to the _MEIxxxxxx temporary folder before execution. This means that any changes a one-file executable
makes to an added file will be lost when the application ends.

In either case, to find the data files at run-time, see Run-time Information.

Adding Data Files

You can add data files to the bundle by using the --add-data command option, or by adding them as a list to the spec
file.

When using the spec file, provide a list that describes the files as the value of the datas= argument to Analysis. The
list of data files is a list of tuples. Each tuple has two values, both of which must be strings:

• The first string specifies the file or files as they are in this system now.

• The second specifies the name of the folder to contain the files at run-time.

For example, to add a single README file to the top level of a one-folder app, you could modify the spec file as
follows:

a = Analysis(...
datas=[('src/README.txt', '.')],
...
)

And the command line equivalent:

pyinstaller --add-data "src/README.txt:." myscript.py

You have made the datas= argument a one-item list. The item is a tuple in which the first string says the existing file
is src/README.txt. That file will be looked up (relative to the location of the spec file) and copied into the top level
of the bundled app.

The strings may use either / or \ as the path separator character. You can specify input files using “glob” abbreviations.
For example to include all the .mp3 files from a certain folder:

a = Analysis(...
datas= [('/mygame/sfx/*.mp3', 'sfx')],
...
)

All the .mp3 files in the folder /mygame/sfx will be copied into a folder named sfx in the bundled app.

The spec file is more readable if you create the list of added files in a separate statement:

added_files = [
('src/README.txt', '.'),
('/mygame/sfx/*.mp3', 'sfx')
]

a = Analysis(...
datas = added_files,

(continues on next page)

2.9. Using Spec Files 37

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

...
)

You can also include the entire contents of a folder:

added_files = [
('src/README.txt', '.'),
('/mygame/data', 'data'),
('/mygame/sfx/*.mp3', 'sfx')
]

The folder /mygame/data will be reproduced under the name data in the bundle.

Using Data Files from a Module

If the data files you are adding are contained within a Python module, you can retrieve them using pkgutil.
get_data().

For example, suppose that part of your application is a module named helpmod. In the same folder as your script and
its spec file you have this folder arrangement:

helpmod
__init__.py
helpmod.py
help_data.txt

Because your script includes the statement import helpmod, PyInstaller will create this folder arrangement in your
bundled app. However, it will only include the .py files. The data file help_data.txt will not be automatically
included. To cause it to be included also, you would add a datas tuple to the spec file:

a = Analysis(...
datas= [('helpmod/help_data.txt', 'helpmod')],
...
)

When your script executes, you could find help_data.txt by using its base folder path, as described in the previous
section. However, this data file is part of a module, so you can also retrieve its contents using the standard library
function pkgutil.get_data():

import pkgutil
help_bin = pkgutil.get_data('helpmod', 'help_data.txt')

This returns the contents of the help_data.txt file as a binary string. If it is actually characters, you must decode it:

help_utf = help_bin.decode('UTF-8', 'ignore')

38 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Adding Binary Files

Note: Binary files refers to DLLs, dynamic libraries, shared object-files, and such, which PyInstaller is going to search
for further binary dependencies. Files like images and PDFs should go into the datas.

You can add binary files to the bundle by using the --add-binary command option, or by adding them as a list to the
spec file. In the spec file, make a list of tuples that describe the files needed. Assign the list of tuples to the binaries=
argument of Analysis.

Adding binary files works in a similar way as adding data files. As described in Adding Binary Files, each tuple should
have two values:

• The first string specifies the file or files as they are in this system now.

• The second specifies the name of the folder to contain the files at run-time.

Normally PyInstaller learns about .so and .dll libraries by analyzing the imported modules. Sometimes it is not clear
that a module is imported; in that case you use a --hidden-import command option. But even that might not find
all dependencies.

Suppose you have a module special_ops.so that is written in C and uses the Python C-API. Your program im-
ports special_ops, and PyInstaller finds and includes special_ops.so. But perhaps special_ops.so links to
libiodbc.2.dylib. PyInstaller does not find this dependency. You could add it to the bundle this way:

a = Analysis(...
binaries=[('/usr/lib/libiodbc.2.dylib', '.')],
...

Or via the command line:

pyinstaller --add-binary "/usr/lib/libiodbc.2.dylib:." myscript.py

If you wish to store libiodbc.2.dylib on a specific folder inside the bundle, for example vendor, then you could
specify it, using the second element of the tuple:

a = Analysis(...
binaries=[('/usr/lib/libiodbc.2.dylib', 'vendor')],
...

As with data files, if you have multiple binary files to add, to improve readability, create the list in a separate statement
and pass the list by name.

Advanced Methods of Adding Files

PyInstaller supports a more advanced (and complex) way of adding files to the bundle that may be useful for special
cases. See The Table of Contents (TOC) lists and the Tree Class below.

2.9. Using Spec Files 39

PyInstaller Documentation, Release 6.4.0

2.9.3 Specifying Python Interpreter Options

PyInstaller-frozen application runs the application code in isolated, embedded Python interpreter. Therefore, the typ-
ical means of passing options to Python interpreter do not apply, including:

• environment variables (such as PYTHONUTF8 and PYTHONHASHSEED) - because the frozen application is
supposed to be isolated from python environment that might be present on the target system

• command-line arguments (such as -v and -O) - because command-line arguments are reserved for application.

Instead, PyInstaller offers an option to specify permanent run-time options for the application’s Python interpreter via
its own OPTIONS mechanism. To pass run-time options, create a list of three-element tuples: (‘option string’, None,
‘OPTION’), and pass it as an additional argument to EXE before the keyword arguments. The first element of the option
tuple is the option string (see below for valid options), the second is always None, and the third is always ‘OPTION’.

An example spec file, modified to specify two run-time options:

options = [
('v', None, 'OPTION'),
('W ignore', None, 'OPTION'),

]

a = Analysis(
...

)
...
exe = EXE(

pyz,
a.scripts,
options, # <-- the options list, passed to EXE
exclude_binaries=...
...

)

The following options are supported by this mechanism:

• 'v' or 'verbose': increment the value of sys.flags.verbose, which causes messages to be written to
stdout each time a module is initialized. This option is equivalent to Python’s -v command-line option. It is
automatically enabled when verbose imports are enabled via PyInstaller’s own ˙˙–debug imports`` option.

• 'u' or 'unbuffered': enable unbuffered stdout and stderr. Equivalent to Python’s -u command-line option.

• 'O' or 'optimize': increment the value of sys.flags.optimize. Equivalent to Python’s -O command-line
option.

• 'W <arg>': a pass-through for Python’s W-options that control warning messages.

• 'X <arg>': a pass-through for Python’s X-options. The utf8 and dev X-options, which control UTF-8
mode and developer mode, are explicitly parsed by PyInstaller’s bootloader and used during interpreter pre-
initialization; the rest of X-options are just passed on to the interpreter configuration.

• 'hash_seed=<value>': an option to set Python’s hash seed within the frozen application to a fixed value.
Equivalent to PYTHONHASHSEED environment variable. At the time of writing, this does not exist as an X-option,
so it is implemented as a custom option.

Further examples to illustrate the syntax:

options = [
Warning control

(continues on next page)

40 Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#environment-variables
https://docs.python.org/3/using/cmdline.html#miscellaneous-options
https://docs.python.org/3/using/cmdline.html#cmdoption-W
https://docs.python.org/3/using/cmdline.html#cmdoption-X

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

('W ignore', None, 'OPTION'), # disable all warnings
('W ignore::DeprecationWarning', None, 'OPTION') # disable deprecation warnings

UTF-8 mode; unless explicitly enabled/disabled, it is auto enabled based on locale
('X utf8', None, 'OPTION), # force UTF-8 mode on
('X utf8=1', None, 'OPTION), # force UTF-8 mode on
('X utf8=0', None, 'OPTION), # force UTF-8 mode off

Developer mode; disabled by default
('X dev', None, 'OPTION), # enable dev mode
('X dev=1', None, 'OPTION), # enable dev mode

Hash seed
('hash_seed=0', None, 'OPTION'), # disable hash randomization; sys.flags.hash_

→˓randomization=0
('hash_seed=123', None, 'OPTION'), # hash randomization with fixed seed value

]

2.9.4 Spec File Options for a macOS Bundle

When you build a windowed macOS app (that is, running under macOS, you specify the --windowed option), the spec
file contains an additional statement to create the macOS application bundle, or app folder:

app = BUNDLE(exe,
name='myscript.app',
icon=None,
bundle_identifier=None)

The icon= argument to BUNDLE will have the path to an icon file that you specify using the --icon option. The
bundle_identifier will have the value you specify with the --osx-bundle-identifier option.

An Info.plist file is an important part of a macOS app bundle. (See the Apple bundle overview for a discussion of
the contents of Info.plist.)

PyInstaller creates a minimal Info.plist. The version option can be used to set the application version using the
CFBundleShortVersionString Core Foundation Key.

You can add or overwrite entries in the plist by passing an info_plist= parameter to the BUNDLE call. Its argument
should be a Python dict with keys and values to be included in the Info.plist file. PyInstaller creates Info.plist
from the info_plist dict using the Python Standard Library module plistlib. plistlib can handle nested Python objects
(which are translated to nested XML), and translates Python data types to the proper Info.plist XML types. Here’s
an example:

app = BUNDLE(exe,
name='myscript.app',
icon=None,
bundle_identifier=None,
version='0.0.1',
info_plist={
'NSPrincipalClass': 'NSApplication',
'NSAppleScriptEnabled': False,
'CFBundleDocumentTypes': [

(continues on next page)

2.9. Using Spec Files 41

https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html
https://docs.python.org/3/library/plistlib.html

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

{
'CFBundleTypeName': 'My File Format',
'CFBundleTypeIconFile': 'MyFileIcon.icns',
'LSItemContentTypes': ['com.example.myformat'],
'LSHandlerRank': 'Owner'
}

]
},

)

In the above example, the key/value 'NSPrincipalClass': 'NSApplication' is necessary to allow macOS to ren-
der applications using retina resolution. The key 'NSAppleScriptEnabled' is assigned the Python boolean False,
which will be output to Info.plist properly as <false/>. Finally the key CFBundleDocumentTypes tells macOS
what filetypes your application supports (see Apple document types).

2.9.5 POSIX Specific Options

By default all required system libraries are bundled. To exclude all or most non-Python shared system libraries from
the bundle, you can add a call to the function exclude_system_libraries from the Analysis class. System libraries
are defined as files that come from under /lib* or /usr/lib* as is the case on POSIX and related operating systems.
The function accepts an optional parameter that is a list of file wildcards exceptions, to not exclude library files that
match those wildcards in the bundle. For example to exclude all non-Python system libraries except “libexpat” and
anything containing “krb” use this:

a = Analysis(...)

a.exclude_system_libraries(list_of_exceptions=['libexpat*', '*krb*'])

2.9.6 The Splash Target

For a splash screen to be displayed by the bootloader, the Splash target must be called at build time. This class can
be added when the spec file is created with the command-line option --splash IMAGE_FILE. By default, the option
to display the optional text is disabled (text_pos=None). For more information about the splash screen, see Splash
Screen (Experimental) section. The Splash Target looks like this:

a = Analysis(...)

splash = Splash('image.png',
binaries=a.binaries,
datas=a.datas,
text_pos=(10, 50),
text_size=12,
text_color='black')

Splash bundles the required resources for the splash screen into a file, which will be included in the CArchive.

A Splash has two outputs, one is itself and one is stored in splash.binaries. Both need to be passed on to other
build targets in order to enable the splash screen. To use the splash screen in a onefile application, please follow this
example:

42 Chapter 2. Contents:

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685

PyInstaller Documentation, Release 6.4.0

a = Analysis(...)

splash = Splash(...)

onefile
exe = EXE(pyz,

a.scripts,
splash, # <-- both, splash target
splash.binaries, # <-- and splash binaries
...)

In order to use the splash screen in a onedir application, only a small change needs to be made. The splash.binaries
attribute has to be moved into the COLLECT target, since the splash binaries do not need to be included into the exe-
cutable:

a = Analysis(...)

splash = Splash(...)

onedir
exe = EXE(pyz,

splash, # <-- splash target
a.scripts,
...)

coll = COLLECT(exe,
splash.binaries, # <-- splash binaries
...)

On Windows/macOS images with per-pixel transparency are supported. This allows non-rectangular splash screen
images. On Windows the transparent borders of the image are hard-cuted, meaning that fading transparent values are
not supported. There is no common implementation for non-rectangular windows on Linux, so images with per- pixel
transparency is not supported.

The splash target can be configured in various ways. The constructor of the Splash target is as follows:

Splash.__init__(image_file, binaries, datas, **kwargs)

Parameters

• image_file (str) – A path-like object to the image to be used. Only the PNG file format
is supported.

Note: If a different file format is supplied and PIL (Pillow) is installed, the file will be
converted automatically.

Note: Windows: The color 'magenta' / '#ff00ff' must not be used in the image or
text, as it is used by splash screen to indicate transparent areas. Use a similar color (e.g.,
'#ff00fe') instead.

Note: If PIL (Pillow) is installed and the image is bigger than max_img_size, the image

2.9. Using Spec Files 43

https://docs.python.org/3/library/stdtypes.html#str

PyInstaller Documentation, Release 6.4.0

will be resized to fit into the specified area.

• binaries (list) – The TOC list of binaries the Analysis build target found. This TOC
includes all extension modules and their binary dependencies. This is required to determine
whether the user’s program uses tkinter.

• datas (list) – The TOC list of data the Analysis build target found. This TOC includes all
data-file dependencies of the modules. This is required to check if all splash screen require-
ments can be bundled.

Keyword Arguments

• text_pos – An optional two-integer tuple that represents the origin of the text on the splash
screen image. The origin of the text is its lower left corner. A unit in the respective coordinate
system is a pixel of the image, its origin lies in the top left corner of the image. This parameter
also acts like a switch for the text feature. If omitted, no text will be displayed on the splash
screen. This text will be used to show textual progress in onefile mode.

• text_size – The desired size of the font. If the size argument is a positive number, it is
interpreted as a size in points. If size is a negative number, its absolute value is interpreted
as a size in pixels. Default: 12

• text_font – An optional name of a font for the text. This font must be installed on the user
system, otherwise the system default font is used. If this parameter is omitted, the default
font is also used.

• text_color – An optional color for the text. HTML color codes ('#40e0d0') and color
names ('turquoise') are supported. Default: 'black' (Windows: the color 'magenta'
/ '#ff00ff' is used to indicate transparency, and should not be used)

• text_default – The default text which will be displayed before the extraction starts. De-
fault: "Initializing"

• full_tk – By default Splash bundles only the necessary files for the splash screen (some
tk components). This options enables adding full tk and making it a requirement, meaning
all tk files will be unpacked before the splash screen can be started. This is useful during
development of the splash screen script. Default: False

• minify_script – The splash screen is created by executing an Tcl/Tk script. This option
enables minimizing the script, meaning removing all non essential parts from the script.
Default: True

• rundir – The folder name in which tcl/tk will be extracted at runtime. There should be no
matching folder in your application to avoid conflicts. Default: '__splash'

• name – An optional alternative filename for the .res file. If not specified, a name is generated.

• script_name – An optional alternative filename for the Tcl script, that will be generated. If
not specified, a name is generated.

• max_img_size – Maximum size of the splash screen image as a tuple. If the supplied image
exceeds this limit, it will be resized to fit the maximum width (to keep the original aspect
ratio). This option can be disabled by setting it to None. Default: (760, 480)

• always_on_top – Force the splashscreen to be always on top of other windows. If disabled,
other windows (e.g., from other applications) can cover the splash screen by user bringing
them to front. This might be useful for frozen applications with long startup times. Default:
True

44 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyInstaller Documentation, Release 6.4.0

2.9.7 Multipackage Bundles

Some products are made of several different apps, each of which might depend on a common set of third-party libraries,
or share code in other ways. When packaging such a product it would be a pity to treat each app in isolation, bundling
it with all its dependencies, because that means storing duplicate copies of code and libraries.

You can use the multipackage feature to bundle a set of executable apps so that they share single copies of libraries.
You can do this with either one-file or one-folder apps.

Multipackaging with One-Folder Apps

For combining multiple one-folder applications, use a shared COLLECT statement. This will collect the external
resources for all of the one-folder apps into one directory.

Multipackaging with One-File Apps

Each dependency (a DLL, for example) is packaged only once, in one of the apps. Any other apps in the set that depend
on that DLL have an “external reference” to it, telling them to extract that dependency from the executable file of the
app that contains it.

This saves disk space because each dependency is stored only once. However, to follow an external reference takes
extra time when an app is starting up. All but one of the apps in the set will have slightly slower launch times.

The external references between binaries include hard-coded paths to the output directory, and cannot be rearranged.
You must place all the related applications in the same directory when you install the application.

To build such a set of apps you must code a custom spec file that contains a call to the MERGE function. This function
takes a list of analyzed scripts, finds their common dependencies, and modifies the analyses to minimize the storage
cost.

The order of the analysis objects in the argument list matters. The MERGE function packages each dependency into
the first script from left to right that needs that dependency. A script that comes later in the list and needs the same
file will have an external reference to the prior script in the list. You might sequence the scripts to place the most-used
scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE(*args)

MERGE is used after the analysis phase and before EXE. Its variable-length list of arguments consists of a list of tuples,
each tuple having three elements:

• The first element is an Analysis object, an instance of class Analysis, as applied to one of the apps.

• The second element is the script name of the analyzed app (without the .py extension).

• The third element is the name for the executable (usually the same as the script).

MERGE examines the Analysis objects to learn the dependencies of each script. It modifies these objects to avoid
duplication of libraries and modules. As a result the packages generated will be connected.

2.9. Using Spec Files 45

https://www.zacoding.com/en/post/pyinstaller-create-multiple-executables/

PyInstaller Documentation, Release 6.4.0

Example MERGE spec file

One way to construct a spec file for a multipackage bundle is to first build a spec file for each app in the package.
Suppose you have a product that comprises three apps named (because we have no imagination) foo, bar and zap:

pyi-makespec options as appropriate. . . foo.py

pyi-makespec options as appropriate. . . bar.py

pyi-makespec options as appropriate. . . zap.py

Check for warnings and test each of the apps individually. Deal with any hidden imports and other problems. When
all three work correctly, combine the statements from the three files foo.spec, bar.spec and zap.spec as follows.

First copy the Analysis statements from each, changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
pathex=['/the/path/to/foo'],
hiddenimports=[],
hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a, bar_a, and zap_a are modified so that the latter two refer to the first for common depen-
dencies.

Following this you can copy the PYZ, EXE and COLLECT statements from the original three spec files, substituting the
unique names of the Analysis objects where the original spec files have a. Modify the EXE statements to pass in
Analysis.dependencies, in addition to all other arguments that are passed in the original EXE statements. For
example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.dependencies, foo_a.scripts, ... etc.

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.dependencies, bar_a.scripts, ... etc.

Save the combined spec file as foobarzap.spec and then build it:

pyinstaller foobarzap.spec

The output in the dist folder will be all three apps, but the apps dist/bar and dist/zap will refer to the contents of
dist/foo for shared dependencies.

Remember that a spec file is executable Python. You can use all the Python facilities (for and with and the members
of sys and io) in creating the Analysis objects and performing the PYZ, EXE and COLLECT statements. You may also
need to know and use The Table of Contents (TOC) lists and the Tree Class described below.

46 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.9.8 Globals Available to the Spec File

While a spec file is executing it has access to a limited set of global names. These names include the classes defined
by PyInstaller: Analysis, BUNDLE, COLLECT, EXE, MERGE, PYZ, TOC, Tree and Splash, which are discussed in the
preceding sections.

Other globals contain information about the build environment:

DISTPATH The relative path to the dist folder where the application will be stored. The default path is relative to the
current directory. If the --distpath option is used, DISTPATH contains that value.

HOMEPATH The absolute path to the PyInstaller distribution, typically in the current Python site-packages folder.

SPEC The complete spec file argument given to the pyinstaller command, for example myscript.spec or
source/myscript.spec.

SPECPATH The path prefix to the SPEC value as returned by os.path.split().

specnm The name of the spec file, for example myscript.

workpath The path to the build directory. The default is relative to the current directory. If the workpath= option
is used, workpath contains that value.

WARNFILE The full path to the warnings file in the build directory, for example build/warn-myscript.txt.

2.9.9 Adding parameters to spec files

Sometimes, you may wish to have different build modes (e.g. a debug build and a production build) from the same spec
file. Any command line arguments to pyinstaller given after a -- separator will not be parsed by PyInstaller and
will instead be forwarded to the spec file where you can implement your own argument parsing and handle the options
accordingly. For example, the following spec file will create a onedir application with console enabled if invoked via
pyinstaller example.spec -- --debug or a onefile console-less application if invoked with just pyinstaller
example.spec. If you use an argparse based parser rather than rolling your own using sys.argv then pyinstaller
example.spec -- --help will display your spec options.

example.spec

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--debug", action="store_true")
options = parser.parse_args()

a = Analysis(
['example.py'],

)
pyz = PYZ(a.pure)

if options.debug:
exe = EXE(

pyz,
a.scripts,
exclude_binaries=True,
name='example',

)
coll = COLLECT(

(continues on next page)

2.9. Using Spec Files 47

https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/sys.html#sys.argv

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

exe,
a.binaries,
a.datas,
name='example_debug',

)
else:

exe = EXE(
pyz,
a.scripts,
a.binaries,
a.datas,
name='example',
console=False,

)

2.10 Notes about specific Features

2.10.1 Ctypes Dependencies

Ctypes is a foreign function library for Python, that allows calling functions present in shared libraries. Those libraries
are not imported as Python packages, because they are not picked up via Python imports: their path is passed to ctypes
instead, which deals with the shared library directly; this caused <1.4 PyInstaller import detect machinery to miss those
libraries, failing the goal to build self-contained PyInstaller executables:

from ctypes import *
This will pass undetected under PyInstaller detect machinery,
because it's not a direct import.
handle = CDLL("/usr/lib/library.so")
handle.function_call()

Solution in PyInstaller

PyInstaller contains a pragmatic implementation of Ctypes dependencies: it will search for simple standard usages of
ctypes and automatically track and bundle the referenced libraries. The following usages will be correctly detected:

CDLL("library.so")
WinDLL("library.so")
ctypes.DLL("library.so")
cdll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
windll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
cdll.LoadLibrary("library.so")
windll.LoadLibrary("library.so")

More in detail, the following restrictions apply:

• only libraries referenced by bare filenames (e.g. no leading paths) will be handled; handling absolute paths
would be impossible without modifying the bytecode as well (remember that while running frozen, ctypes would
keep searching the library at that very absolute location, whose presence on the host system nobody can guaran-
tee), and relative paths handling would require recreating in the frozen executable the same hierarchy of directo-
ries leading to the library, in addition of keeping track of which the current working directory is;

48 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• only library paths represented by a literal string will be detected and included in the final executable:
PyInstaller import detection works by inspecting raw Python bytecode, and since you can pass the library path
to ctypes using a string (that can be represented by a literal in the code, but also by a variable, by the return value
of an arbitrarily complex function, etc. . .), it’s not reasonably possible to detect all ctypes dependencies;

• only libraries referenced in the same context of ctypes’ invocation will be handled.

We feel that it should be enough to cover most ctypes’ usages, with little or no modification required in your code.

If PyInstaller does not detect a library, you can add it to your bundle by passing the respective information to
--add-binary option or listing it in the .spec-file. If your frozen application will be able to pick up the library at
run-time can not be guaranteed as it depends on the detailed implementation.

Gotchas

The ctypes detection system at Analysis time is based on ctypes.util.find_library(). This means that you
have to make sure that while performing Analysis and running frozen, all the environment values find_library()
uses to search libraries are aligned to those when running un-frozen. Examples include using LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH to widen find_library() scope.

2.10.2 SWIG support

PyInstaller tries to detect binary modules created by SWIG. This detection requires:

• The Python wrapper module must be imported somewhere in your application (or by any of the modules it uses).

• The wrapper module must be available as source-code and it’s first line must contain the text automatically
generated by SWIG.

• The C-module must have the same name as the wrapper module prefixed with an underscore (_). (This is a SWIG
restriction already.)

• The C-module must sit just beside the wrapper module (thus a relative import would work).

Also some restrictions apply, due to the way the SWIG wrapper is implemented:

• The C-module will become a global module. As a consequence, you can not use two SWIG modules with the
same basename (e.g. pkg1._cmod and pkg2._cmod), as one would overwrite the other.

2.10.3 Cython support

PyInstaller can follow import statements that refer to Cython C object modules and bundle them – like for any other
module implemented in C.

But – again, as for any other module implemented in C – PyInstaller can not determine if the Cython C object module
is importing some Python module. These will typically show up as in a traceback like this (mind the .pyx extension):

Traceback (most recent call last):
[...]
File "myapp\cython_module.pyx", line 3, in init myapp.cython_module
ModuleNotFoundError: No module named 'csv'

So if you are using a Cython C object module, which imports Python modules, you will have to list these as
--hidden-import.

2.10. Notes about specific Features 49

https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library

PyInstaller Documentation, Release 6.4.0

2.10.4 macOS multi-arch support

With the introduction of Apple Silicon M1, there are now several architecture options available for python:

• single-arch x86_64 with thin binaries: older python.org builds, Homebrew python running natively on Intel
Macs or under rosetta2 on M1 Macs

• single-arch arm64 with thin binaries: Homebrew python running natively on M1 macs

• multi-arch universal2 with fat binaries (i.e., containing both x86_64 and arm64 slices): recent universal2
python.org builds

PyInstaller aims to support all possible combinations stemming from the above options:

• single-arch application created using corresponding single-arch python

• universal2 application created using universal2 python

• single-arch application created using universal2 python (i.e., reducing universal2 fat binaries into either
x86_64 or arm64 thin binaries)

By default, PyInstaller targets the current running architecture and produces a single-arch binary (x86_64when
running on Intel Mac or under rosetta2 on M1 Mac, or arm64 when running on M1 Mac). The reason for that is that
even with a universal2 python environment, some packages may end up providing only single-arch binaries, making
it impossible to create a functional universal2 frozen application.

The alternative options, such as creating a universal2 version of frozen application, or creating a non-native single-
arch version using universal2 environment, must therefore be explicitly enabled. This can be done either by speci-
fying the target architecture in the .spec file via the target_arch= argument to EXE(), or on command-line via the
--target-arch switch. Valid values are x86_64, arm64, and universal2.

Architecture validation during binary collection

To prevent run-time issues caused by missing or mismatched architecture slices in binaries, the binary collection process
performs strict architecture validation. It checks whether collected binary files contain required arch slice(s), and if
not, the build process is aborted with an error message about the problematic binary.

In such cases, creating frozen application for the selected target architecture will not be possible unless the problem
of missing arch slices is manually addressed (for example, by downloading the wheel corresponding to the missing
architecture, and stiching the offending binary files together using the lipo utility).

Changed in version 4.10: In earlier PyInstaller versions, the architecture validation was performed on all collected
binaries, such as python extension modules and the shared libraries referenced by those extensions. As of PyInstaller
4.10, the architecture validation is limited to only python extension modules.

The individual architecture slices in a multi-arch universal2 extension may be linked against (slices in) universal2
shared libraries, or against distinct single-arch thin shared libraries. This latter case makes it impossible to reliably
validate architecture of the collected shared libraries w.r.t. the target application architecture.

However, the extension modules do need to be fully compatible with the target application architecture. Therefore, their
continued validation should hopefully suffice to detect attempts at using incompatible single-arch python packages*0.

0 Although nothing really prevents a package from having distinct, architecture-specific extension modules. . .

50 Chapter 2. Contents:

http://brew.sh/
http://brew.sh/

PyInstaller Documentation, Release 6.4.0

Trimming fat binaries for single-arch targets

When targeting a single architecture, the build process extracts the corresponding arch slice from any collected fat
binaries, including the bootloader. This results in a completely thin build even when building in universal2 python
environment.

2.10.5 macOS binary code signing

With Apple Silicon M1 architecture, macOS introduced mandatory code signing, even if ad-hoc (i.e., without actual
code-signing identity). This means that arm64 arch slices (but possibly also x86_64 ones, especially in universal2
binaries) in collected binaries always come with signature.

The processing of binaries done by PyInstaller (e.g., library path rewriting in binaries’ headers) invalidates their sig-
natures. Therefore, the signatures need to be re-generated, otherwise the OS refuses to load a binary.

By default, PyInstaller ad-hoc (re)signs all collected binaries and the generated executable itself. Instead of ad-
hoc signing, it is also possible to use real code-signing identity. To do so, either specify your identity in the .spec file
via codesign_identity= argument to EXE() , or on command-line via the --codesign-identity switch.

Being able to provide codesign identity allows user to ensure that all collected binaries in either onefile or onedir
build are signed with their identity. This is useful because for onefile builds, signing of embedded binaries cannot
be performed in a post-processing step.

Note: When codesign identity is specified, PyInstaller also turns on hardened runtime by passing
--options=runtime to the codesign command. This requires the codesign identity to be a valid Apple-issued
code signing certificate, and will not work with self-signed certificates.

Trying to use self-signed certificate as a codesign identity will result in shared libraries failing to load, with the following
reason reported:

[libname]: code signature in ([libname]) not valid for use in process using Library Validation: mapped
file has no Team ID and is not a platform binary (signed with custom identity or adhoc?)

Furthermore, it is possible to specify entitlements file to be used when signing the collected binaries and the exe-
cutable. This can be done in the .spec file via entitlements_file= argument to EXE(), or on command-line via
the --osx-entitlements-file switch.

App bundles

PyInstaller also automatically attempts to sign .app bundles, either using ad-hoc identity or actual signing identity, if
provided via --codesign-identity switch. In addition to passing same options as when signing collected binaries
(identity, hardened runtime, entitlement), deep signing is also enabled via by passing --deep option to the codesign
utility.

Should the signing of the bundle fail for whatever reason, the error message from the codesign utility will be printed
to the console, along with a warning that manual intervention and manual signing of the bundle are required.

2.10. Notes about specific Features 51

PyInstaller Documentation, Release 6.4.0

2.10.6 macOS event forwarding and argv emulation in app bundles

The user interaction with macOS app bundles takes place via so called Apple Events. When the user double clicks on the
application’s icon, the application is started and receives an Open Application ('oapp') event. Dragging a document
on the application’s icon or attempting to open an application-registered file generates an Open Document ('odoc')
event. Similarly, launching an URL with application-registered schema generates a Launch/Get URL ('GURL') event.
Typically, a long-running UI application installs Carbon or Cocoa event handlers (or their equivalents provided by
higher-level UI toolkit) to handle these requests during its runtime.

PyInstaller provides two aspects of support for macOS event handling; automatic event forwarding, which enables
frozen application to receive events in onefile mode, and optional argv emulation for converting initial opening event
into sys.argv arguments. Both aspects apply only to app bundles (i.e., the windowed bootloader variant) and not to
POSIX (command-line) frozen applications.

Changed in version 5.0: In earlier PyInstaller versions, argv emulation was always enabled in onefile mode and was
unavailable in onedir mode. As PyInstaller 5.0, argv emulation must be explicitly opted-in, and is available in both
onefile and onedir mode.

Event forwarding

In PyInstaller onedir bundles, the application runs as a single process, and therefore receives Apple Events normally,
as other macOS applications would.

In onefile bundles, the application has a parent launcher process and the child process; the open document requests
generated by user are received by the parent process, and are automatically forwarded to the child process, where the
frozen python code is running.

Event forwarding is implemented for the following types of Apple Events:

• kAEOpenDocuments ('odoc'): open document request

• kAEGetURL ('GURL'): open/launch URL request

• kAEReopenApplication ('rapp'): reopen application

• kAEActivate ('actv'): activate application (bring to front)

Optional argv emulation

PyInstaller implements an optional feature called argv emulation, which can be toggled via argv_emulation= argu-
ment to EXE() in the .spec file, or enabled on command-line via --argv-emulation flag.

If enabled, the bootloader performs initial Apple Event handling to intercept events during the application’s start-up
sequence, and appends file paths or URLs received via Open Document/URL (‘odoc’ and ‘GURL’) events to sys.argv,
as if they were received via command-line.

This feature is intended for simple applications that do not implement the event handling, but still wish to process initial
open document request. This applies only to initial open events; events that occur after the frozen python code is started
are dispatched via event queue (in onedir mode directly, and forwarded to child process in onefile mode.) and as
such need to be handled via event handlers.

Note: This feature is not suitable for long-running applications that may need to service multiple open requests during
their lifetime. Such applications will require proper event handling anyay, and therefore do not benefit from having
initial events processed by argv emulation.

52 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#sys.argv

PyInstaller Documentation, Release 6.4.0

Warning: The initial event processing performed by bootloader in onedir mode may interfere with UI toolkit
used by frozen python application, such as Tcl/Tk via tkinter module. The symptoms may range from window
not being brought to front when the application startup to application crash with segmentation fault.

While PyInstaller tries to mitigate the issue on its end, we recommend against using argv emulation in combination
with UI toolkits.

Practical examples

This section provides some practical examples on handling file and URL open events in macOS application bundles,
via argv emulation in a simple one-shot program, or via installed event handlers in a GUI application.

Registering supported file types and custom URL schemas

In order for macOS application bundle to handle open operations on files and custom URL schemas, the OS needs to
be informed what file types and what URL schemas the application supports. This is done in the bundle’s Info.plist
file, via CFBundleDocumentTypes and CFBundleURLTypes entries:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
[...] <!-- preceding entries --->
<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeName</key>
<string>MyCustomFileType</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>mcf</string>

</array>
<key>CFBundleTypeRole</key>
<string>Viewer</string>

</dict>
</array>
<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>MyCustomUrlSchema</string>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>CFBundleURLSchemes</key>
<array>
<string>my-url</string>

</array>
</dict>

</array>
(continues on next page)

2.10. Notes about specific Features 53

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

</dict>
</plist>

In the above example, the application declares itself a viewer for made-up .mcf files, and as a viewer for URLs beginning
with my-url://.

PyInstaller automatically generates an Info.plist file for your application bundle; to have it include the entries shown
above, add the info_plist argument to the BUNDLE() directive in the .spec file, and set its content as follows:

app = BUNDLE(
[...]
info_plist={

'CFBundleURLTypes': [{
'CFBundleURLName': 'MyCustomUrlSchema',
'CFBundleTypeRole': 'Viewer',
'CFBundleURLSchemes': ['my-url',],

}],
'CFBundleDocumentTypes': [{

'CFBundleTypeName': 'MyCustomFileType',
'CFBundleTypeExtensions': ['mcf',],
'CFBundleTypeRole': "Viewer",

}],
}

)

Open event handling with argv emulation

Consider the following python script that began its life as a command-line utility, to be invoked from the terminal:

python3 img2gray.py image1.png image2.png ...

The script processes each passed image, converts it to grayscale, and saves it next to the original, with -gray appended
to the file name:

img2gray.py
import sys
import os

import PIL.Image

if len(sys.argv) < 2:
print(f"Usage: {sys.argv[0]} <filename> [filenames...]")
sys.exit(1)

Convert all given files
for input_filename in sys.argv[1:]:

filename, ext = os.path.splitext(input_filename)
output_filename = filename + '-gray' + ext

img = PIL.Image.open(input_filename)
(continues on next page)

54 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

img_g = img.convert('L')
img_g.save(output_filename)

If you generate an application bundle (as opposed to a command-line POSIX application), the most likely way of user
interaction will be dragging image files onto the bundle’s icon or using Open with... entry from the image file’s
context menu. Such interaction generates open file events, and in general requires your application code to implement
event handling.

Enabling argv emulation in PyInstaller causes its bootloader to process events during the application startup, and extend
sys.argv with any file paths or URLs that might have been received via open file or URL requests. This allows your
application to process the received filenames as if they were passed via command-line, without any modifications to
the code itself.

The following .spec file provides a complete example for a onedir application bundle that allows conversion of .png
and .jpg images:

img2gray.spec
a = Analysis(['img2gray.py'],)

pyz = PYZ(a.pure)

exe = EXE(
pyz,
a.scripts,
exclude_binaries=True,
name='img2gray',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
console=False,
argv_emulation=True, # enable argv emulation

)

coll = COLLECT(
exe,
a.binaries,
a.datas,
strip=False,
upx=False,
upx_exclude=[],
name='img2gray'

)

app = BUNDLE(
coll,
name='img2gray.app',
Register .png and .jpg as supported file types
info_plist={

'CFBundleDocumentTypes': [{
'CFBundleTypeName': "Convertible image types",
'CFBundleTypeExtensions': [

'png', 'jpg',
(continues on next page)

2.10. Notes about specific Features 55

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

],
'CFBundleTypeRole': "Viewer",

}],
}

)

The user can now drag image file(s) onto the icon of the resulting img2gray application bundle, or select img2gray
under the Open with... entry in the image file’s context menu.

Note: The argv emulation handles only initial open event, which is received before your frozen python code is started.
If you wish to handle subsequent open requests while the application is still running, you need to implement proper
event handling in your python code.

Open event handling in a tkinter-based GUI application

The Tcl/Tk framework used by tkinter allows application to provide event handlers for pre-defined types of Apple
Events, by registering macOS-specific commands.

The handler for open file events can be registered via ::tk::mac::OpenDocument command, while the handler for
open URL events can be registered via ::tk::mac::LaunchURL command. The latter is available starting with Tcl/Tk
8.6.10†0.

The following application illustrates the event handling using tkinter, by logging all received open file/URL events
into a scrollable text widget:

eventlogger_tk.py
import sys

import tkinter
import tkinter.scrolledtext

class Application:
def __init__(self):

Create UI
self.window = tkinter.Tk()
self.window.geometry('800x600')
self.window.title("Tk-based event logger")

self.text_view = tkinter.scrolledtext.ScrolledText()
self.text_view.pack(fill=tkinter.BOTH, expand=1)
self.text_view.configure(state='disabled')

Register event handlers
See https://tcl.tk/man/tcl/TkCmd/tk_mac.html for list of
macOS-specific commands
self.window.createcommand("::tk::mac::OpenDocument", self.open_document_handler)

(continues on next page)

0 At the time of writing, python.org builds use Tcl/Tk 8.6.5, except for the Python 3.9.x macOS 64-bit universal2 installer builds, which use
Tcl/Tk 8.6.10. Homebrew Python requires tkinter to be explicitly installed as python-tk, and uses latest version of Tcl/Tk, 8.6.11. Registering
::tk::mac::LaunchURL command with versions of Tcl/Tk older than 8.6.10 is essentially no-op.

56 Chapter 2. Contents:

https://www.tcl.tk/man/tcl8.6/TkCmd/tk_mac.html

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

self.window.createcommand("::tk::mac::LaunchURL", self.open_url_handler) #␣
→˓works with Tcl/Tk >= 8.6.10

def append_message(self, msg):
"""Append message to text view."""
self.text_view.configure(state='normal')
self.text_view.insert('end', msg + '\n')
self.text_view.configure(state='disabled')

def run(self):
"""Run the main loop."""
app.append_message("Application started!")
app.append_message(f"Args: {sys.argv[1:]}")
self.window.mainloop()

Event handlers
def open_document_handler(self, *args):

app.append_message(f"Open document event: {args}")

def open_url_handler(self, *args):
app.append_message(f"Open URL event: {args}")

if __name__ == '__main__':
app = Application()
app.run()

The corresponding .spec file that builds a onedir application bundle with a custom file association (.pyi_tk) and a
custom URL schema (pyi-tk://):

a = Analysis(['eventlogger_tk.py'])

pyz = PYZ(a.pure)

exe = EXE(
pyz,
a.scripts,
exclude_binaries=True,
name='eventlogger_tk',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
console=False,
argv_emulation=False, # unnecessary as app handles events

)

coll = COLLECT(
exe,
a.binaries,
a.datas,
strip=False,

(continues on next page)

2.10. Notes about specific Features 57

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

upx=False,
name='eventlogger_tk'

)

app = BUNDLE(
coll,
name='eventlogger_tk.app',
Register custom protocol handler and custom file extension
info_plist={

'CFBundleURLTypes': [{
'CFBundleURLName': 'MyCustomUrlSchemaTk',
'CFBundleTypeRole': 'Viewer',
'CFBundleURLSchemes': ['pyi-tk'],

}],
'CFBundleDocumentTypes': [{

'CFBundleTypeName': 'MyCustomFileTypeTk',
'CFBundleTypeExtensions': [

'pyi_tk',
],
'CFBundleTypeRole': "Viewer",

}],
}

)

Once running, the application logs all received open file and open URL requests. These are generated either by trying
to open a file with .pyi_tk extension using the UI, or using open command from the terminal:

$ touch file1.pyi_tk file2.pyi_tk file3.pyi_tk file4.pyi_tk

$ open file1.pyi_tk
$ open file2.pyi_tk

$ open pyi-tk://test1
$ open pyi-tk://test2

$ open file3.pyi_tk file4.pyi_tk

Open event handling in a Qt-based GUI application

In Qt-based applications, open file and open URL requests are handled by installing application-wide event filter for
QFileOpenEvent.

This event abstracts both open file and open URL request, with file open requests having file:// URL schema.
An event contains a single file name or URL, so an open request containing multiple targets generates corresponding
number of QFileOpenEvent events.

Below is an example application and its corresponding .spec file:

eventlogger_qt.py
import sys
import signal

(continues on next page)

58 Chapter 2. Contents:

https://doc.qt.io/qt-5/qfileopenevent.html

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

from PySide2 import QtCore, QtWidgets

class Application(QtWidgets.QApplication):
"""
QtWidgets.QApplication with extra handling for macOS Open
document/URL events.
"""
openFileRequest = QtCore.Signal(QtCore.QUrl, name='openFileRequest')

def event(self, event):
if event.type() == QtCore.QEvent.FileOpen:

Emit signal so that main window can handle the given URL.
Or open a new application window for the file, or whatever
is appropriate action for your application.
self.openFileRequest.emit(event.url())
return True

return super().event(event)

class MainWindow(QtWidgets.QMainWindow):
"""
Main window.
"""
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

self.resize(800, 600)

self.setWindowTitle("Qt-based event logger")

Construct the UI
self.scroll_area = QtWidgets.QScrollArea()
self.scroll_area.setWidgetResizable(True)
self.setCentralWidget(self.scroll_area)

self.text_edit = QtWidgets.QTextEdit()
self.scroll_area.setWidget(self.text_edit)
self.text_edit.setReadOnly(True)

def append_message(self, msg):
"""
Append message to text view.
"""
self.text_edit.append(msg)

def handle_open_file_request(self, url):
self.append_message(f"Open request: {url.toString()}")

if __name__ == '__main__':
Make Ctrl+C work

(continues on next page)

2.10. Notes about specific Features 59

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

signal.signal(signal.SIGINT, signal.SIG_DFL)

app = Application(list(sys.argv))

window = MainWindow()
window.show()

window.append_message("Application started!")
window.append_message(f"Args: {sys.argv[1:]}")

app.openFileRequest.connect(window.handle_open_file_request)

app.exec_()

eventlogger_qt.spec
a = Analysis(['eventlogger_qt.py'])

pyz = PYZ(a.pure)

exe = EXE(
pyz,
a.scripts,
exclude_binaries=True,
name='eventlogger_qt',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
console=False,
argv_emulation=False, # unnecessary as app handles events

)

coll = COLLECT(
exe,
a.binaries,
a.datas,
strip=False,
upx=False,
name='eventlogger_qt'

)

app = BUNDLE(
coll,
name='eventlogger_qt.app',
Register custom protocol handler and custom file extension
info_plist={

'CFBundleURLTypes': [{
'CFBundleURLName': 'MyCustomUrlSchemaQt',
'CFBundleTypeRole': 'Viewer',
'CFBundleURLSchemes': ['pyi-qt'],

}],
'CFBundleDocumentTypes': [{

(continues on next page)

60 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

'CFBundleTypeName': 'MyCustomFileTypeQt',
'CFBundleTypeExtensions': [

'pyi_qt',
],
'CFBundleTypeRole': "Viewer",

}],
}

)

The application behaves in the same way as its tkinter-based counterpart, except that the associated file extension
and URL schema have been adjusted to prevent interference between the two example applications.

Initial open event

This section contains notes about behavior of the initial open event received by appliation, as seen by the frozen python
code (or the UI toolkit it uses).

When application is opened normally, this is done via Open Application ('oapp') event, which is the first event received
by the application. If application is opened in response to open document or open URL request (i.e., it is not yet running
when request is made), then the first received event is 'odoc' or 'GURL', respectively.

In PyInstaller-frozen onefile bundles, the child process always starts with 'oapp' event, regardless how the appli-
cation was started. This is because the child is always started “normally”, and it is the parent who receives the actual
opening event; if the parent was opened with 'odoc' or 'GURL' event, then event is either forwarded to child or
converted to sys.argv that is passed to the child, depending on whether argv emulation is enabled or not.

Therefore, in onefile mode, argv emulation has no direct effect on the initial open event (as seen by the frozen python
code), which is always 'oapp'.

In onedir bundles, there application consists of single process, which receives the events. Without argv emulation,
the initial open event (as seen by the frozen python code) may be either 'oapp', 'odoc', or 'GURL', depending on
how application was started.

However, if argv emulation is enabled in a onedir bundle, its processing of initial event leaves the event queue empty.
The lack of initial open event seems to cause segmentation fault with Tcl/Tk 8.6.11 and Homebrew Python 3.9.6
(#5581). As a work-around, the bootloader attempts to submit an 'oapp' event to itself, so that when the frozen
python code inspects the event queue, it finds an initial open event (i.e., 'oapp'). These potential side effects of argv
emulation on UI toolkits are the reason why we recommend against using them together.

2.10.7 Signal handling in console Windows applications and onefile application
cleanup

The signal handling in console applications on Windows differs from POSIX-based operating systems, such as linux
and macOS. While signals generated by abnormal conditions, such as SIGABRT (abnormal termination; for example
due to C code calling abort), SIGFPE (floating-point error), and SIGSEGV (illegal storage access), are generated and
can be handled using handlers installed via the signal function, this is not the case for signals associated with program
interruption and termination.

Specifically, interrupting a console-enabled program by pressing Ctrl+C does not generate the SIGINT signal, but
rather a special console control signal called CTRL_C_EVENT, which can be handled by a handler installed via the
SetConsoleCtrlHandler win32 API function1. Similarly, as noted in MSDN documentation on signal, the SIGTERM
signal is not generated under Windows. Instead, there are several console control signals:

1 The higher-level programming languages, such as python, might emulate the standard signals; but under-the-hood mechanics still involve
console control signals discussed in this section.

2.10. Notes about specific Features 61

http://brew.sh/
https://github.com/pyinstaller/pyinstaller/issues/5581
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/abort
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal
https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal
https://docs.microsoft.com/en-us/windows/console/handlerroutine

PyInstaller Documentation, Release 6.4.0

• CTRL_C_EVENT: interrupt via Ctrl+C key combination

• CTRL_BREAK_EVENT: interrupt via Ctrl+Break key combination

• CTRL_CLOSE_EVENT: closing the parent console window

• CTRL_LOGOFF_EVENT: a user logging off

• CTRL_SHUTDOWN_EVENT: system shutting down

When a console control signal is generated, the handler installed via SetConsoleCtrlHandler (if any) is executed in a
separate thread, spawned within the program process by the operating system. In other words, the handler function
is executed in parallel to the main program thread, which is necessary as the latter might be waiting on a blocking
operation or performing an endless loop.

As noted here, upon receiving CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT, the handler
function can perform any necessary clean-up2, and either:

• call ExitProcess to terminate the process.

• return FALSE (0). Other registered handlers are called, and if none returned TRUE, the default handler terminates
the process by calling ExitProcess.

• return TRUE (non-zero). The system terminates the process immediately, without calling any other registered
handler functions.

In other words, all options result in eventual program termination.

On the other hand, the default handler for CTRL_C_EVENT and CTRL_BREAK_EVENT also terminates the process, but
this behavior can be modified by suppressing the default handler by returning TRUE in the user-installed one.

Another important aspect of console control signals is that handling CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and
CTRL_SHUTDOWN_EVENT is subject to system-imposed time-outs (e.g., five seconds for the CTRL_CLOSE_EVENT); if
the process does not exit within the time-out limit, the operating system itself unconditionally terminates the process.

The above effectively means that once the program receives such control signal, its termination is inevitable (i.e., the
signal cannot be ignored). At best, the termination can be delayed to perform any necessary clean-up, but even this
must be done within system-imposed time limits.

Example of console control signal handling in python application

The following code demonstrates the basic implementation of a graceful console application shutdown. If the appli-
cation is interrupted by user pressing Ctrl+C or Ctrl+Break, or closed due to user closing the console window, the
application’s state is stored to a file, so it can be restored on a subsequent run.

console_counter.py
import sys
import time
import pathlib

import win32api # pip install pywin32

def console_handler(signal):
print(f"Console handler (signal {signal})!")
global keep_running
keep_running = False
Sleep until process either finishes or is killed by the OS

(continues on next page)

2 Note that at this point, however, the program is essentially a multi-threaded one, so usual multi-threading caveats may apply.

62 Chapter 2. Contents:

https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler
https://docs.microsoft.com/en-us/windows/console/handlerroutine#remarks
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/console/handlerroutine#timeouts

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

time.sleep(20)
return True

if __name__ == '__main__':
keep_running = True

Install console handler
win32api.SetConsoleCtrlHandler(console_handler, 1)

Restore state, if available
state_file = pathlib.Path.home() / 'counter_state.txt'
if state_file.is_file():

print(f"Restoring state from {state_file}...", file=sys.stderr)
try:

with open(state_file, 'r') as fp:
counter = int(fp.readline())

except Exception:
print("Failed to restore state from file!", file=sys.stderr)
counter = 0

else:
print("State file does not exist!", file=sys.stderr)
counter = 0

print(f"Initial counter value: {counter}", file=sys.stderr)

Main loop
while keep_running:

print(f"Counter value: {counter}")
counter += 1
time.sleep(1)

Clean-up
print(f"Storing state to {state_file}...", file=sys.stderr)
try:

with open(state_file, 'w') as fp:
print(f"{counter}", file=fp)

except Exception:
print(f"Failed to store state to {state_file}!", file=sys.stderr)

print("Goodbye!")
time.sleep(1) # Delay exit for another second

The console control signal handler in the above code handles all console signals. This includes Ctrl+C event, which
would otherwise generate a KeyboardInterrupt exception in the program’s main thread3. After signalling the loop
in the main thread to exit via the global boolean variable, the handler sleeps “forever”. This approach works because
the handler is executed in a separate thread, and this thread is terminated once the process ends - either due to main
thread reaching its end, or due to the operating system terminating the process.

The above code should work as expected when executed as an unfrozen python script, and also when frozen by PyIn-
staller as a onedir application. However, onefile applications frozen with PyInstaller versions prior to 5.3 exhibit

3 The KeyboardInterrupt exception could have been used to terminate the loop as well. However, that would not handle the Ctrl+Break key
combination nor console window being closed.

2.10. Notes about specific Features 63

PyInstaller Documentation, Release 6.4.0

a problem; due to the lack of console control signals handling in the parent application process, the latter is always
terminated immediately and leaves behind the unpacked temporary directory.

Changed in version 5.3: implemented handling of console control signals in the frozen application’s parent process,
which allows us to delay its termination until after the child process is terminated, and clean up the unpacked temporary
directory. However, various caveats still apply, as discussed in the following sub-sections.

Onefile mode and temporary directory cleanup

The onefile mode in PyInstaller uses two processes. When the application is launched, the parent process extracts
the contents of the embedded archive into a temporary directory, sets up the environment and library search paths,
and launches the child process. The child process sets up the embedded python interpreter and runs the frozen python
application. Meanwhile, the parent process waits for the child process to exit; when that happens, it cleans up the
extracted temporary data, and exits.

From the perspective of the parent process, it does not matter whether the child process exits cleanly (i.e., with success
code), or exits with an error code (for example, python code throws an exception that is not handled), or exits abnormally
(e.g., crashes due to abnormal operation raising the SIGABRT signal), or is terminated by the OS (for example, from
the Task Manager). In all cases, after the child process exits or is terminated, the parent process performs the cleanup,
then exits with the exit code that was returned from the child process.

Therefore, in order for the application’s temporary directory to be cleaned up, the parent process must never be forcefully
terminated (for example, via the TerminateProcess function). If that happens, the clean-up code has no chance to run,
and the temporary directory is left behind. On the other hand, from the perspective of the temporary directory clean-up,
the child process can be terminated in any way, even forcefully. For the proper clean-up during a graceful shutdown
triggered via console control signal (for example, due to Ctrl+C being pressed, or due to console window being closed),
the bootloader in PyInstaller 5.3 and later attempts to delay the shut-down of the parent process so that the child process
has time to exit and the main thread of the parent process has the chance to run the clean-up code.

The following sections provide additional details on this behavior for different situations.

Interrupting via Ctrl+C or Ctrl+Break

When Ctrl+C or Ctrl+Break is pressed in the console window, the CTRL_C_EVENT or CTRL_BREAK_EVENT is sent to
all processes attached to that console4.

In a onefile frozen application, the parent process ignores/suppresses the signal, so the outcome depends on how
the frozen python code in the child process handles the signal. If the python code exits (for example, no handler is
installed and KeyboardInterrupt exception interrupts the program flow), the parent process performs the clean-up
and exits as well. If the python code in the child process handles the signal without shutting the child process down,
the application keeps running.

This behavior is readily available in any PyInstaller version; in versions prior to 5.3, the parent process explicitly ignores
SIGABRT and SIGBREAK signals, which achieves the same result as handling the corresponding console control signals,
which is implemented from version 5.3 on.

4 If a windowed/noconsole application is started from a console, it is completely independent from it as long as it has a window. If the
application has no window (i.e., a “hidden” application), its process does not receive CTRL_C_EVENT and CTRL_BREAK_EVENT signals in response
to Ctrl+C and Ctrl+Break being pressed in the console, but is nevertheless terminated when the console is closed. The termination seems to be
immediate and uncodnitional, i.e., without CTRL_CLOSE_EVENT signal being received.

64 Chapter 2. Contents:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess

PyInstaller Documentation, Release 6.4.0

Closing the console window

When the console window is closed (by pressing X button on title bar), the CTRL_CLOSE_EVENT is sent to all processes
attached to that console?.

In a onefile frozen application, the parent process receives the signal and suspends the handler’s execution thread
for 20 seconds. This way, the termination of the parent process is delayed, in order to give time to the child process
(who also received the signal) to exit, and to the main thread of the parent process to perform cleanup and exit (which
then also terminates the handler’s execution thread). This behavior was implemented in PyInstaller 5.3 to ensure that
closing the console window cleans up the application’s temporary directory.

In versions prior to 5.3, the CTRL_CLOSE_EVENT is not handled; the parent process is terminated immediately without
having the chance to perform the cleanup, leaving the application’s temporary directory behind.

Note: The child process (i.e., the frozen python application code) might install its own console control signal handler
in order to perform its own cleanup (for example, save the application’s state). If so, it is important to keep in mind the
system-imposed five-second timeout, and the fact that the parent process can perform the temporary directory cleanup
only after the child process exits. In other words, if the clean up in the child process takes close to five seconds, the
parent process may not have a chance to peform its own clean up before the OS kills the process.

Terminating the application via the Task Manager

Terminating the application via the Task Manager is somewhat unpredictable due to distinction between “Apps” and
“Background processes”.

“Apps” are closed by sending a close request to the application. Such applications may close gracefully if they close
their window in response to the request, of, if they have a console, they handle the resulting CTRL_CLOSE_EVENT
console control signal.

“Background processes” are terminated unconditionally using the TerminateProcess, leaving no hope for graceful shut-
down and clean up.

The distinction between the two is based on whether the program has a visible window or not, but in practice, there are
additional nuances when it comes to console-enabled applications and applications with multiple processes.

To see the detailed classification on per-process basis, right click on the header of the process list view in the Task
Manager, and enable display of the Type column. The newly added column will show the process classification for
each process, and not just for the whole process group.

In the following sub-sections, we detail the behavior when attempting to shut down different processes involved with
frozen applications. Roughly, the behavior higly depends on the following factors:

• build type: onedir (single-process) vs. onefile (two-process) PyInstaller build option.

• console enabled or not: console vs. noconsole/windowed PyInstaller build option.

• application has a window or not: regardless of whether an application has console enabled or not, it might have a
window (window + console) or not (pure console-based application; or a “hidden”, window-less and console-less,
application that runs as a background process).

• how the application is launched: by double-clicking on the executable (“stand-alone”, with its own console
window) or by running it in an already-opened command prompt.

2.10. Notes about specific Features 65

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess
https://devblogs.microsoft.com/oldnewthing/20171219-00/?p=97606

PyInstaller Documentation, Release 6.4.0

Windowed/noconsole onedir applications

Windowed/noconsole onedir applications are single-process applications without console, so they are the easiest to
understand when it comes to the Task Manager and the shutdown behavior.

If the application has a window (for example, a Qt-based GUI), it is treated as an “App”. It is listed under “Apps”, and
its process name is listed next to the top-level entry in the list. Shutting it down via the “End task” results in a window
close event being posted, which allows for graceful application shutdown.

If the application has no window (a window-less and console-less “hidden” application), it is treated as a “Background
process”, and is listed under “Background processes”. Shutting it down via the “End task” results in its unconditional
termination, with no hope for graceful application shutdown.

As noted in earlier sections, windowed/noconsole applications are independent of the console even if they are
launched from one, as long as they have a window. On the other hand, if an application has no window, the shutdown
of the console process results in the immediate and uncoditional termination of the application process (background
process within the console).

Because onedir applications do not need to unpack their contents to the temporary directory, the termination mode
does not really affect the clean-up from PyInstaller’s perspective. But it may be of concern if the application wishes to
perform some clean-up on its own; for example, saving the current state during the shutdown as was done in the earlier
example.

Console-enabled onedir applications

The shutdown behavior of Task Manager and console-enabled onedir applications depends on whether the appli-
cation itself has a window (for example, a Qt-based GUI application with console enabled) or not (a “pure” console
application), and whether the application owns the console window or not.

Pure console onedir application, ran via double-click

Running a pure-console application by double clicking on the executable opens a new console with the application
running in it. The top-level entry in the process list is placed under “Apps”; however, it does not have a process name
listed next to it. Instead, it is a group consisting of a “Console Window Host” (a “Windows process”) and the actual
application process, which is classified as an “App”.

Shutting down the whole group (i.e., the top-level entry) via the “End task” results in everything being unconditionally
terminated.

Shutting down the application process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Pure console onedir application, ran in existing console

Opening a new command prompt results in a new “Windows Command Processor” group entry being added under
“Apps”. It consists of a “Console Window Host” (a “Windows process”) and a “Command Prompt” (an “App”).
Running a pure-console application from the opened command prompt results in a new process being added to the
existing “Windows Command Processor” group, and the process is classified as a “Background process”.

Therefore, shutting down the whole group results in everything being unconditionally terminated.

Shutting down the application process results in it being unconditionally terminated.

Shutting down the “Command Prompt” process results in application process receiving the CTRL_CLOSE_EVENT for
graceful shutdown.

66 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Console-enabled onedir application with window, ran via double-click

Running a console-enabled application with a window via double-click behaves similarly to the corresponding pure-
console application case. The resulting process list entry is placed under “Apps”, and is a group consisting of a “Console
Window Host” (a “Windows process”) and the actual application process, which is classified as an “App”.

Shutting down the whole group results in everything being unconditionally terminated.

Shutting down the application process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onedir application with window, ran in existing console

Running a console-enabled application with a window from an existing command prompt does not place the application
process under the existing “Windows Command Processor” group, but rather results in a new “App” top-level entry in
the process list. This entry behaves similarly to the windowed onedir case; it has process name listed nex to it and
shutting it down via the “End task” results in a window close event being posted, which allows for graceful application
shutdown.

Shutting down the whole “Windows Command Processor” closes the console, but the application itself keeps running
(although its console handles likely become invalid5).

Shutting down the “Command Prompt” process within the “Windows Command Processor” group results in the ap-
plication process receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onefile applications

The shutdown behavior of onefile applications is complicated by the fact that two processes are involved, and that
application contents need to be extracted to the temporary directory that should, ideally, be cleaned up when the appli-
cation is shut down.

Pure-console onefile application, ran via double-click

Running a pure-console application by double clicking on the executable opens a new console with the application
running in it. The top-level entry in the process list is placed under “Apps”, and is a group consisting of:

• a “Console Window Host” (a “Windows process”)

• the parent process, classified as an “App”

• the child process, classified as a “Background process”

Shutting down the whole group results in everything being unconditionally terminated. The temporary directory is left
behind.

Shutting down the child process results in its immediate and unconditional termination. After the child process is
terminated, the parent process performs temporary directory cleanup and exits, which also closes the console. The
only potential drawback of this situation is that the application code cannot perform its own clean up.

Shutting down the parent process results in the CTRL_CLOSE_EVENT received by both parent and child process. After
the child performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well.
This is the ideal situation6.

5 Invalid console handles might, in turn, end up causing an error when the application code tries to use them, for example to print a message to
the (now non-existent) console.

6 Assuming the potential cleanup in the application code does not delay the shutdown to the point where the OS ends up killing the parent process
before it has the chance to perform the temporary directory cleanup. . .

2.10. Notes about specific Features 67

PyInstaller Documentation, Release 6.4.0

Pure console onefile application, ran in existing console

Running a pure-console application from the opened command prompt results in two new processes being added to the
existing “Windows Command Processor” group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results in everything being unconditionally termi-
nated, and the temporary directory being left behind.

Shutting down the parent process results in its immediate and unconditional termination. The console accepts input
again, while the child process (the actual application) keeps running in the background (i.e., still writing its output to
the console). Since the parent process was terminated before it could perform clean-up, the temporary directory is left
behind.

Shutting down the child process similarly results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Shutting down the “Command Prompt” process is the best choice, as it results in both the parent and the child process
receiving the CTRL_CLOSE_EVENT for graceful shutdown.

But perhaps the most surefire way of closing the application in this case would be using Ctrl+C or Ctrl+Break, or even
closing the console window.

Console-enabled onefile application with window, ran via double-click

Running a console-enabled application with a window via double-click results in two top-level entries in the process
list.

The first entry is a group that belongs to the parent process; it contains a “Console Window Host” (a “Windows
process”) and the parent process, which is classified as an “App”.

The child process is listed as a separate top-level entry that is also classified as an “App” and has process name listed
next to it.

Shutting down the whole parent process group results in everything in that group being unconditionally terminated,
while the child process (the actual application) keeps running. The temporary directory is left behind.

Shutting down the parent process results in the CTRL_CLOSE_EVENT received by both the parent and the child process.
After the child performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as
well. This is the ideal situation?.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Console-enabled onefile application with window, ran in existing console

Running a console-enabled application with a window from the opened command prompt results in parent process
being added to the existing “Windows Command Processor” group, as a “Background process”.

The child process is listed as a separate top-level entry that is classified as an “App” and has process name listed next
to it.

Shutting down the whole “Windows Command Processor” closes the console and results in immediate and uncondi-
tional termination of the parent process. The child process (the application itself) keeps running (although its console
handles likely become invalid?). The temporary directory is left behind.

68 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Shutting down the parent process results in its immediate and unconditional termination. The console is left open and
accepts input again, while the child process (the actual application) keeps running in the background (i.e., still writing
its output to the console). Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Shutting down the “Command Prompt” process results in both the parent and the child application process receiving
the CTRL_CLOSE_EVENT for graceful shutdown. This is the ideal situation?.

Windowed/noconsole onefile applications

In case of windowed/noconsole onefile applications, the application’s parent process is usually classified as a
“Background process”. The classification of the child process depends on whether the application has a window or not.

Noconsole onefile application without window, ran via double-click

Running a “hidden” application (noconsole/windowed application without a window) by double clicking on the
executable results in parent and child process being added to the process list as two distinct top-level entries, under
“Background processes”.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running. Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process also results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Noconsole onefile application without window, ran in existing console

Running a “hidden” application from the opened command prompt results in two new processes being added to the
existing “Windows Command Processor” group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results in everything being unconditionally termi-
nated, and the temporary directory being left behind.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running as a background process. Since the parent process was terminated before it could perform
clean-up, the temporary directory is left behind.

Shutting down the child process similarly results in its immediate and unconditional termination. After the child process
is terminated, the parent process performs temporary directory cleanup and exits. The only potential drawback of this
situation is that the application code cannot perform its own clean up.

Shutting down the “Command Prompt” process closes the console, but both parent and child process keep on running
as background processes. Their entries are moved from the removed “Windows Command Processor” group into a
new group entry under “Background processes”.

2.10. Notes about specific Features 69

PyInstaller Documentation, Release 6.4.0

Noconsole onefile application with window, ran via double-click

Running a regular GUI noconsole application via double click results in the parent process being classified as a
“Background process” and the child process being classified as an “App”. Each of them get their own top-level entry
in the process list (under “Background processes” and under “Apps”, respectively), and both have their process name
listed next to them.

Shutting down the parent process results in its immediate and unconditional termination. The child process (the actual
application) keeps running. Since the parent process was terminated before it could perform clean-up, the temporary
directory is left behind.

Shutting down the child process results in a window close request (and the CTRL_CLOSE_EVENT signal) being sent to
the child process for a graceful shutdown. After the child performs its cleanup (if any) and exits, the parent performs
temporary directory cleanup and exits as well. This is the ideal situation; in this case, the parent process performs
temporary directory cleanup even if the child process exceeds the signal handling timeout and is forcefully terminated
by the operating system.

Noconsole onefile application with window, ran in existing console

Running a regular GUI noconsole application from an existing console is similar to running it via double-click, except
that the parent process (classified as a “Background process”) is listed under the “Windows Command Processor” group
under “Apps” instead of a stand-alone entry under “Background processes”.

Shutting down the whole “Windows Command Processor” closes the console and results in immediate and uncon-
ditional termination of the parent process. The child process (the application itself) keeps running. The temporary
directory is left behind.

Shutting down the parent process results in its immediate and unconditional termination. This affects neither console
nor the child process, both of which keep running. Since the parent process was terminated before it could perform
clean-up, the temporary directory is left behind.

Shutting down the child process results in it receiving the CTRL_CLOSE_EVENT for graceful shutdown. After the child
performs its cleanup (if any) and exits, the parent performs temporary directory cleanup and exits as well. This is the
ideal situation; in this case, the parent process performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the operating system.

Shutting down the “Command Prompt” process results in console being closed and the parent process being immedi-
ately and unconditionally terminated. The child process keeps running. Since the parent process was terminated before
it could perform clean-up, the temporary directory is left behind.

2.10.8 Automatic hiding and minimization of console window under Windows

For console-enabled Windows applications, PyInstaller offers an option to automatically hide or minimize the console
window when the console window is owned by the program’s process (i.e., the program was not launched from an
existing console window).

Automatic minimization of console window allows a GUI application to put the console out of the user’s way, while
allowing it to be brought back if required. Automatic hiding of console window might be used to create an illusion of a
hybrid application that has no console when launched by double-clicking on the executable, but shows console output
when launched from existing console window.

Note that the programmatic hiding/minimization of console can be easily implemented by application itself using win32
API via ctypes. The advantage of having it in PyInstaller’s bootloader is that:

• it can be performed very early in the program’s life cycle (especially in case of onefile builds).

70 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• in onefile builds, the bootloader can easily determine the ownership of console, regardless of parent and child
process being used (as the check is executed in the parent process).

Also note that console hiding is different from windowed/noconsole builds, which have no console at all. This option
works only with console-enabled builds, and involves PyInstaller’s bootloader programmatically hiding or minimizing
the console.

To enable this functionality, use the --hide-console command-line option, or corresponding hide_console argu-
ment to EXE in the .spec file. Currently, four modes are supported: hide-early, minimize-early, hide-late, and
minimize-late.

Depending on the setting, the console is hidden/mininized either early in the bootloader execution or late in the boot-
loader execution. The early option takes place as soon as the PKG archive is found. In onefile builds, the late option
takes place after application has unpacked itself and before it launches the child process. In onedir builds, the late
option takes place before starting the embedded python interpreter.

Note: Even with hiding/minimizing console early in the bootloader’s execution, the user might see console being
opened for an instant before it is hidden or minimized.

In fact, hiding console before the application’s UI is brought up might give the user an impression that the applica-
tion has crashed. Therefore, it might be preferable to have the application code to implement its own programmatic
hiding/minimization of the console window, and have it performed only after the UI becomes visible.

2.11 When Things Go Wrong

The information above covers most normal uses of PyInstaller. However, the variations of Python and third-party
libraries are endless and unpredictable. It may happen that when you attempt to bundle your app either PyInstaller
itself, or your bundled app, terminates with a Python traceback. Then please consider the following actions in sequence,
before asking for technical help.

2.11.1 Recipes and Examples for Specific Problems

The PyInstaller FAQ page has work-arounds for some common problems. Code examples for some advanced uses and
some common problems are available on our PyInstaller Recipes page. Some of the recipes there include:

• A more sophisticated way of collecting data files than the one shown above (Adding Files to the Bundle).

• Bundling a typical Django app.

• A use of a run-time hook to set the PyQt5 API level.

• A workaround for a multiprocessing constraint under Windows.

and others. Many of these Recipes were contributed by users. Please feel free to contribute more recipes!

2.11. When Things Go Wrong 71

https://github.com/pyinstaller/pyinstaller/wiki/FAQ
https://github.com/pyinstaller/pyinstaller/wiki/Recipes

PyInstaller Documentation, Release 6.4.0

2.11.2 Finding out What Went Wrong

Build-time Messages

When the Analysis step runs, it produces error and warning messages. These display after the command line if the
--log-level option allows it. Analysis also puts messages in a warnings file named build/name/warn-name.txt
in the work-path= directory.

Analysis creates a message when it detects an import and the module it names cannot be found. A message may also
be produced when a class or function is declared in a package (an __init__.py module), and the import specifies
package.name. In this case, the analysis can’t tell if name is supposed to refer to a submodule or package.

The “module not found” messages are not classed as errors because typically there are many of them. For example,
many standard modules conditionally import modules for different platforms that may or may not be present.

All “module not found” messages are written to the build/name/warn-name.txt file. They are not displayed to
standard output because there are many of them. Examine the warning file; often there will be dozens of modules not
found, but their absence has no effect.

When you run the bundled app and it terminates with an ImportError, that is the time to examine the warning file. Then
see Helping PyInstaller Find Modules below for how to proceed.

Build-Time Dependency Graph

On each run PyInstaller writes a cross-referencing file about dependencies into the build folder: build/name/
xref-name.html in the work-path= directory is an HTML file that lists the full contents of the import graph, showing
which modules are imported by which ones. You can open it in any web browser. Find a module name, then keep click-
ing the “imported by” links until you find the top-level import that causes that module to be included.

If you specify --log-level=DEBUG to the pyinstaller command, PyInstaller additionally generates a GraphViz
input file representing the dependency graph. The file is build/name/graph-name.dot in the work-path= directory.
You can process it with any GraphViz command, e.g. dot, to produce a graphical display of the import dependencies.

These files are very large because even the simplest “hello world” Python program ends up including a large number
of standard modules. For this reason the graph file is not very useful in this release.

Build-Time Python Errors

PyInstaller sometimes terminates by raising a Python exception. In most cases the reason is clear from the exception
message, for example “Your system is not supported”, or “Pyinstaller requires at least Python 3.8”. Others clearly
indicate a bug that should be reported.

One of these errors can be puzzling, however: IOError("Python library not found!") PyInstaller needs to
bundle the Python library, which is the main part of the Python interpreter, linked as a dynamic load library. The
name and location of this file varies depending on the platform in use. Some Python installations do not include a
dynamic Python library by default (a static-linked one may be present but cannot be used). You may need to install a
development package of some kind. Or, the library may exist but is not in a folder where PyInstaller is searching.

The places where PyInstaller looks for the python library are different in different operating systems, but /lib and
/usr/lib are checked in most systems. If you cannot put the python library there, try setting the correct path in the
environment variable LD_LIBRARY_PATH in GNU/Linux or DYLD_LIBRARY_PATH in macOS.

72 Chapter 2. Contents:

https://graphviz.org/
https://graphviz.org/

PyInstaller Documentation, Release 6.4.0

Getting Debug Messages

The --debug=all option (and its choices) provides a significant amount of diagnostic information. This can be useful
during development of a complex package, or when your app doesn’t seem to be starting, or just to learn how the
runtime works.

Normally the debug progress messages go to standard output. If the --windowed option is used when bundling a Win-
dows app, they are sent to any attached debugger. If you are not using a debugger (or don’t have one), the DebugView
the free (beer) tool can be used to display such messages. It has to be started before running the bundled application.

For a --windowed macOS app they are not displayed.

Consider bundling without --debug for your production version. Debugging messages require system calls and have
an impact on performance.

Getting Python’s Verbose Imports

You can build the app with the --debug=imports option (see Getting Debug Messages above), which will pass the
-v (verbose imports) flag to the embedded Python interpreter. This can be extremely useful. It can be informative even
with apps that are apparently working, to make sure that they are getting all imports from the bundle, and not leaking
out to the local installed Python.

Python verbose and warning messages always go to standard output and are not visible when the --windowed option
is used. Remember to not use this for your production version.

Figuring Out Why Your GUI Application Won’t Start

If you are using the --windowed option, your bundled application may fail to start with an error message like Failed
to execute script my_gui. In this case, you will want to get more verbose output to find out what is going on.

• For macOS, you can run your application on the command line, i.e. ./dist/my_gui in Terminal instead of
clicking on my_gui.app.

• For Windows, you will need to re-bundle your application without the --windowed option. Then you can run
the resulting executable from the command line, i.e. my_gui.exe.

• For Unix and GNU/Linux there in no --windowed option. Anyway, if a your GUI application fails, you can run
your application on the command line, i.e. ./dist/my_gui.

This should give you the relevant error that is preventing your application from initializing, and you can then move on
to other debugging steps.

Operation not permitted error

If you use the –onefile and it fails to run you program with error like:

./hello: error while loading shared libraries: libz.so.1:
failed to map segment from shared object: Operation not permitted

This can be caused by wrong permissions for the /tmp directory (e.g. the filesystem is mounted with noexec flags).

A simple way to solve this issue is to set, in the environment variable TMPDIR, a path to a directory in a filesystem
mounted without noexec flags, e.g.:

export TMPDIR=/var/tmp/

2.11. When Things Go Wrong 73

https://docs.microsoft.com/en-us/sysinternals/downloads/debugview

PyInstaller Documentation, Release 6.4.0

2.11.3 Helping PyInstaller Find Modules

Extending the Path

If Analysis recognizes that a module is needed, but cannot find that module, it is often because the script is manipulating
sys.path. The easiest thing to do in this case is to use the --paths option to list all the other places that the script
might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
--paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file in the pathex argument. They will be added to the current sys.path during
analysis.

Listing Hidden Imports

If Analysis thinks it has found all the imports, but the app fails with an import error, the problem is a hidden import;
that is, an import that is not visible to the analysis phase.

Hidden imports can occur when the code is using __import__(), importlib.import_module() or perhaps exec()
or eval(). Hidden imports can also occur when an extension module uses the Python/C API to do an import. When
this occurs, Analysis can detect nothing. There will be no warnings, only an ImportError at run-time.

To find these hidden imports, build the app with the --debug=imports flag (see Getting Python’s Verbose Imports
above) and run it.

Once you know what modules are needed, you add the needed modules to the bundle using the --hidden-import
command option, or by editing the spec file, or with a hook file (see Understanding PyInstaller Hooks below).

Extending a Package’s __path__

Python allows a script to extend the search path used for imports through the __path__ mechanism. Normally, the
__path__ of an imported module has only one entry, the directory in which the __init__.py was found. But
__init__.py is free to extend its __path__ to include other directories. For example, the win32com.shell.shell
module actually resolves to win32com/win32comext/shell/shell.pyd. This is because win32com/__init__.py
appends ../win32comext to its __path__.

Because the __init__.py of an imported module is not actually executed during analysis, changes it makes to
__path__ are not seen by PyInstaller. We fix the problem with the same hook mechanism we use for hidden imports,
with some additional logic; see Understanding PyInstaller Hooks below.

Note that manipulations of __path__ hooked in this way apply only to the Analysis. At runtime all imports are inter-
cepted and satisfied from within the bundle. win32com.shell is resolved the same way as win32com.anythingelse,
and win32com.__path__ knows nothing of ../win32comext.

Once in a while, that’s not enough.

74 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/functions.html#import__
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/reference/import.html#path__

PyInstaller Documentation, Release 6.4.0

Changing Runtime Behavior

More bizarre situations can be accommodated with runtime hooks. These are small scripts that manipulate the envi-
ronment before your main script runs, effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks. You can name them with the option --runtime-hook=path-to-script.

Second, some runtime hooks are provided. At the end of an analysis, the names in the module list produced by the
Analysis phase are looked up in loader/rthooks.dat in the PyInstaller install folder. This text file is the string
representation of a Python dictionary. The key is the module name, and the value is a list of hook-script pathnames. If
there is a match, those scripts are included in the bundled app and will be called before your main script starts.

Hooks you name with the option are executed in the order given, and before any installed runtime hooks. If you specify
--runtime-hook=file1.py --runtime-hook=file2.py then the execution order at runtime will be:

1. Code of file1.py.

2. Code of file2.py.

3. Any hook specified for an included module that is found in rthooks/rthooks.dat.

4. Your main script.

Hooks called in this way, while they need to be careful of what they import, are free to do almost anything. One reason
to write a run-time hook is to override some functions or variables from some modules. A good example of this is the
Django runtime hook (see loader/rthooks/pyi_rth_django.py in the PyInstaller folder). Django imports some
modules dynamically and it is looking for some .py files. However .py files are not available in the one-file bundle.
We need to override the function django.core.management.find_commands in a way that will just return a list of
values. The runtime hook does this as follows:

import django.core.management
def _find_commands(_):

return """cleanup shell runfcgi runserver""".split()
django.core.management.find_commands = _find_commands

2.11.4 Getting the Latest Version

If you have some reason to think you have found a bug in PyInstaller you can try downloading the latest development
version. This version might have fixes or features that are not yet at PyPI. You can download the latest stable version
and the latest development version from the PyInstaller Downloads page.

You can also install the latest version of PyInstaller directly using pip:

pip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip

2.11.5 Asking for Help

When none of the above suggestions help, do ask for assistance on the PyInstaller Email List.

Then, if you think it likely that you see a bug in PyInstaller, refer to the How to Report Bugs page.

2.11. When Things Go Wrong 75

https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases
http://www.pip-installer.org/
https://groups.google.com/forum/#!forum/pyinstaller
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs

PyInstaller Documentation, Release 6.4.0

2.12 Advanced Topics

The following discussions cover details of PyInstaller internal methods. You should not need this level of detail for
normal use, but such details are helpful if you want to investigate the PyInstaller code and possibly contribute to it, as
described in How to Contribute.

2.12.1 The Bootstrap Process in Detail

There are many steps that must take place before the bundled script can begin execution. A summary of these steps
was given in the Overview (How the One-Folder Program Works and How the One-File Program Works). Here is more
detail to help you understand what the bootloader does and how to figure out problems.

Bootloader

The bootloader prepares everything for running Python code. It begins the setup and then returns itself in another
process. This approach of using two processes allows a lot of flexibility and is used in all bundles except one-folder
mode in Windows. So do not be surprised if you will see your bundled app as two processes in your system task
manager.

What happens during execution of bootloader:

A. First process: bootloader starts.

1. If one-file mode, extract bundled files to temppath/_MEIxxxxxx.

2. Modify various environment variables:

• GNU/Linux: If set, save the original value of LD_LIBRARY_PATH into
LD_LIBRARY_PATH_ORIG. Prepend our path to LD_LIBRARY_PATH.

• AIX: same thing, but using LIBPATH and LIBPATH_ORIG.

• OSX: unset DYLD_LIBRARY_PATH.

3. Set up to handle signals for both processes.

4. Run the child process.

5. Wait for the child process to finish.

6. If one-file mode, delete temppath/_MEIxxxxxx.

B. Second process: bootloader itself started as a child process.

1. On Windows set the activation context.

2. Load the Python dynamic library. The name of the dynamic library is embedded in the executable file.

3. Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.

4. Run python code.

Running Python code requires several steps:

1. Run the Python initialization code which prepares everything for running the user’s main script. The initialization
code can use only the Python built-in modules because the general import mechanism is not yet available. It sets
up the Python import mechanism to load modules only from archives embedded in the executable. It also adds
the attributes frozen and _MEIPASS to the sys built-in module.

2. Execute any run-time hooks: first those specified by the user, then any standard ones.

76 Chapter 2. Contents:

https://pyinstaller.readthedocs.io/en/latest/contributing.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx
https://docs.python.org/3/library/sys.html#module-sys

PyInstaller Documentation, Release 6.4.0

3. Install python “egg” files. When a module is part of a zip file (.egg), it has been bundled into the ./eggs
directory. Installing means appending .egg file names to sys.path. Python automatically detects whether an
item in sys.path is a zip file or a directory.

4. Run the main script.

Python imports in a bundled app

PyInstaller embeds compiled python code (.pyc files) within the executable. PyInstaller injects its code into the normal
Python import mechanism. Python allows this; the support is described in PEP 302 “New Import Hooks”.

PyInstaller implements the PEP 302 specification for importing built-in modules, importing “frozen” modules (com-
piled python code bundled with the app) and for C-extensions. The code can be read in ./PyInstaller/loader/
pyi_mod03_importers.py.

At runtime the PyInstaller PEP 302 hooks are appended to the variable sys.meta_path. When trying to import
modules the interpreter will first try PEP 302 hooks in sys.meta_path before searching in sys.path. As a result,
the Python interpreter loads imported python modules from the archive embedded in the bundled executable.

This is the resolution order of import statements in a bundled app:

1. Is it a built-in module? A list of built-in modules is in variable sys.builtin_module_names.

2. Is it a module embedded in the executable? Then load it from embedded archive.

3. Is it a C-extension? The app will try to find a file with name package.subpackage.module.pyd or package.
subpackage.module.so.

4. Next examine paths in the sys.path. There could be any additional location with python modules or .egg
filenames.

5. If the module was not found then raise ImportError.

Splash screen startup

Note: This feature is incompatible with macOS. In the current design, the splash screen operates in a secondary thread,
which is disallowed by the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

If a splash screen is bundled with the application the bootloaders startup procedure and threading model is a little more
complex. The following describes the order of operation if a splash screen is bundled:

1. The bootloader checks if it runs as the outermost application (Not the child process which was spawned by the
bootloader).

2. If splash screen resources are bundled, try to extract them (onefile mode). The extraction path is inside
temppath/_MEIxxxxxx/__splashx. If in onedir mode, the application assumes the resources are relative
to the executable.

3. Load the tcl and tk shared libraries into the bootloader.

• Windows: tcl86t.dll/tk86t.dll

• Linux: libtcl.so/libtk.so

4. Prepare a minimal environment for the Tcl/Tk interpreter by replacing/modifying the following functions:

1. ::tclInit: This command is called to find the standard library of tcl. We replace this command to force
tcl to load/execute only the bundled modules.

2.12. Advanced Topics 77

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302
https://docs.python.org/3/library/sys.html#sys.meta_path
https://docs.python.org/3/library/sys.html#sys.meta_path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.builtin_module_names
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/exceptions.html#ImportError
http://www.tcl.tk/

PyInstaller Documentation, Release 6.4.0

2. ::tcl_findLibrary: Tk uses this function to source all its components. The overwritten function sets
the required environment variable and evaluates the requested file.

3. ::exit: This function is modified to ensure a proper exit of the splash screen thread.

4. ::source: This command executes the contents of a passed file. Since we run in a minimal environment
we mock the execution of not bundled files and execute those who are.

5. Start the tcl interpreter and execute the splash screen script which was generated by PyInstaller’s build target
Splash at build time. This script creates the environment variable _PYIBoot_SPLASH, which is also available
to the python interpreter. It also initializes a tcp server socket to receive commands from python.

Note: The tcl interpreter is started in a separate thread. Only after the tcl interpreter has executed the splash screen
script, the bootloader thread, which is responsible for extraction/starting the python interpreter, is resumed.

2.12.2 pyi_splash Module (Detailed)

This module connects to the bootloader to send messages to the splash screen.

It is intended to act as an RPC interface for the functions provided by the bootloader, such as displaying text or closing.
This makes the users python program independent of how the communication with the bootloader is implemented,
since a consistent API is provided.

To connect to the bootloader, it connects to a local tcp server socket whose port is passed through the environment
variable _PYIBoot_SPLASH. The bootloader connects to the socket via the python module _socket. Although this
socket is bidirectional, the module is only configured to send data. Since the os-module, which is needed to request the
environment variable, is not available at boot time, the module does not establish the connection until initialization.

This module does not support reloads while the splash screen is displayed, i.e. it cannot be reloaded (such as by
importlib.reload()), because the splash screen closes automatically when the connection to this instance of the
module is lost.

Functions

Note: Note that if the _PYIBoot_SPLASH environment variable does not exist or an error occurs during the connection,
the module will not raise an error, but simply not initialize itself (i.e. pyi_splash.is_alive() will return False).
Before sending commands to the splash screen, one should check if the module was initialized correctly, otherwise a
RuntimeError will be raised.

is_alive()
Indicates whether the module can be used.

Returns False if the module is either not initialized or was disabled by closing the splash screen. Otherwise,
the module should be usable.

update_text(msg)
Updates the text on the splash screen window.

Parameters msg (str) – the text to be displayed

Raises

• ConnectionError – If the OS fails to write to the socket

• RuntimeError – If the module is not initialized

78 Chapter 2. Contents:

https://docs.python.org/3/library/importlib.html#importlib.reload
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#RuntimeError

PyInstaller Documentation, Release 6.4.0

close()
Close the connection to the ipc tcp server socket

This will close the splash screen and renders this module unusable. After this function is called, no connection
can be opened to the splash screen again and all functions if this module become unusable

2.12.3 The Table of Contents (TOC) lists and the Tree Class

PyInstaller manages lists of files that are to be collected in the so-called Table of Contents (TOC) list format. These
lists contain three-element tuples that encapsulate information about a file’s destination name, the file’s full source path,
and its type.

As part of utilities for managing the TOC lists, PyInstaller provides a Tree class as a convenient way to build a TOC
list from the contents of the given directory. This utility class can be used either in the .spec files file or from custom
hooks.

Table of Contents (TOC) lists

The Analysis object produces several TOC lists that provide information about files to be collected. The files are
grouped into distinct lists based on their type or function, for example: - Analysis.scripts: program script(s)
- Analysis.pure: pure-python modules - Analysis.binaries: binary extension modules and shared libraries -
Analysis.datas: data files

The generated TOC lists are passed to various build targets within the spec file, such as PYZ, EXE, and COLLECT.

Each TOC list contains three-element tuples,

(dest_name, src_name , typecode)

where dest_name is the destination file name (i.e., file name within the frozen application; as such, it must always be
a relative name), src_name is the source file name (the path from where the file is collected), and typecode is a string
that denotes the type of the file (or entry).

Internally, PyInstaller uses a number of typecode values, but for the normal case you need to know only these:

type-
code

description dest_name src_name

‘DATA’ Arbitrary (data) files. Name in the frozen application. Full path to the file on the
build system.

‘BI-
NARY’

A shared library. Name in the frozen application. Full path to the file on the
build system.

‘EXTEN-
SION’

A Python binary exten-
sion.

Name in the frozen application. Full path to the file on the
build system.

‘OP-
TION’

A PyInstaller/Python run-
time option.

Option name (and optional value, sepa-
rated by a whitespace).

Ignored.

The destination name corresponds to the name of the final in the frozen application, relative to the top-level application
directory. It may include path elements, for example extras/mydata.txt.

Entries of type BINARY and EXTENSION are assumed to represent a file containing loadable executable code, such as
a dynamic library. Generally, EXTENSION is used to denote Python extensions modules, such as modules compiled by
Cython. The two file types are treated in the same way; PyInstaller scans them for additional link-time dependencies and
collects any dependencies that are discovered. On some operating systems, binaries and extensions undergo additional
processing (such as path rewriting for link-time dependencies and code-signing on macOS).

2.12. Advanced Topics 79

http://www.cython.org/

PyInstaller Documentation, Release 6.4.0

The TOC lists produced by Analysis can be modified in the spec file file before they are passed on to the build targets
to either include additional entries (although it is preferable to pass extra files to be included via binaries or datas
arguments of Analysis) or remove unwanted entries.

Changed in version 5.11: In PyInstaller versions prior to 5.11, the TOC lists were in fact instances of the TOC class,
which internally performed implicit entry de-duplication; i.e., trying to insert an entry with existing target name would
result in no changes to the list.

However, due to the shortcomings of the TOC class that resulted from loosely-defined and conflicting semantics, the use
of the TOC class has been deprecated. The TOC lists are now instances of plain list, and PyInstaller performs explicit
list normalization (entry de-duplication). The explicit normalization is performed at the end of Analysis instantiation,
when the lists are stored in the class’ properties (such as Analysis.datas and Analysis.binaries). Similarly,
explicit list normalization is also performed once the build targets (EXE, PYZ, PKG, COLLECT, BUNDLE) consolidate the
input TOC lists into the final list.

The Tree Class

The Tree class offers a convenient way of creating a TOC list that describes contents of the given directory:

Tree(root, prefix=run-time-folder, excludes=string_list, typecode=code | 'DATA')

• The root argument is a string denoting the path to the directory. It may be absolute or relative to the spec file
directory.

• The optional prefix argument is a name for a sub-directory in the application directory into which files are to be
collected. If not specified or set to None, the files will be collected into the top-level application directory.

• The optional excludes argument is a list of one or more strings that match files in the root that should be omitted
from the Tree. An item in the list can be either:

– a name, which causes files or folders with this basename to be excluded

– a glob pattern (e.g., *.ext), which causes matching files to be excluded

• The optional typecode argument specifies the TOC typecode string that is assigned to all entries in the TOC list.
The default value is DATA, which is appropriate for most cases.

For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=['tmp', '*.pyc'])

This creates extras_toc as a TOC list that contains entries for all files from the relative path ../src/extras, omitting
those that have the basename (or are in a folder named) tmp or have the .pyc extension. Each tuple in this TOC has:

• A dest_name in form of:file:extras/{filename}.

• A src_name that corresponds to the full absolute path to that file in the ../src/extras folder (relative to the
location of the spec file).

• A typecode of DATA (the default).

An example of creating a TOC listing some binary modules:

cython_mods = Tree('..src/cy_mods', excludes=['*.pyx', '*.py', '*.pyc'], typecode=
→˓'EXTENSION')

This creates a TOC list with entries for each file in the cy_mods directory, excluding files with the .pyx, .py, or .pyc
extension (so presumably collecting only the .pyd or .so modules created by Cython). Each tuple in this TOC has:

• A dest_name that corresponds to the file’s basename (all files are collected in top-level application directory).

• A src_name that corresponds to the full absolute path to that file in ../src/cy_mods relative to the spec file.

80 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• A typecode of EXTENSION (BINARY could be used as well).

2.12.4 Inspecting Archives

An archive is a file that contains other files, for example a .tar file, a .jar file, or a .zip file. Two kinds of archives
are used in PyInstaller. One is a ZlibArchive, which allows Python modules to be stored efficiently and, with some
import hooks, imported directly. The other, a CArchive, is similar to a .zip file, a general way of packing up (and
optionally compressing) arbitrary blobs of data. It gets its name from the fact that it can be manipulated easily from C
as well as from Python. Both of these derive from a common base class, making it fairly easy to create new kinds of
archives.

ZlibArchive

A ZlibArchive contains compressed .pyc or .pyo files. The PYZ class invocation in a spec file creates a ZlibArchive.

The table of contents in a ZlibArchive is a Python dictionary that associates a key, which is a member’s name as given
in an import statement, with a seek position and a length in the ZlibArchive. All parts of a ZlibArchive are stored in
the marshalled format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules. Even with maximum compression this works
faster than the normal import. Instead of searching sys.path, there’s a lookup in the dictionary. There are no directory
operations and no file to open (the file is already open). There’s just a seek, a read and a decompress.

A Python error trace will point to the source file from which the archive entry was created (the __file__ attribute
from the time the .pyc was compiled, captured and saved in the archive). This will not tell your user anything useful,
but if they send you a Python error trace, you can make sense of it.

Fig. 1: Structure of the ZlibArchive

2.12. Advanced Topics 81

http://docs.python.org/library/marshal
https://docs.python.org/3/library/sys.html#sys.path

PyInstaller Documentation, Release 6.4.0

CArchive

A CArchive can contain any kind of file. It’s very much like a .zip file. They are easy to create in Python and easy
to unpack from C code. A CArchive can be appended to another file, such as an ELF and COFF executable. To allow
this, the archive is made with its table of contents at the end of the file, followed only by a cookie that tells where the
table of contents starts and where the archive itself starts.

A CArchive can be embedded within another CArchive. An inner archive can be opened and used in place, without
having to extract it.

Each table of contents entry has variable length. The first field in the entry gives the length of the entry. The last field
is the name of the corresponding packed file. The name is null terminated. Compression is optional for each member.

There is also a type code associated with each member. The type codes are used by the self-extracting executables. If
you’re using a CArchive as a .zip file, you don’t need to worry about the code.

The ELF executable format (Windows, GNU/Linux and some others) allows arbitrary data to be concatenated to the
end of the executable without disturbing its functionality. For this reason, a CArchive’s Table of Contents is at the end
of the archive. The executable can open itself as a binary file, seek to the end and ‘open’ the CArchive.

Fig. 2: Structure of the CArchive

Using pyi-archive_viewer

Use the pyi-archive_viewer command to inspect any type of archive:

pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with PyInstaller (a PYZ or PKG), or any executable
(.exe file or an ELF or COFF binary). The archive can be navigated using these commands:

O name Open the embedded archive name (will prompt if omitted). For example when looking in a one-file executable,
you can open the PYZ-00.pyz archive inside it.

U Go up one level (back to viewing the containing archive).

82 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Fig. 3: Structure of the Self Extracting Executable

X name Extract name (will prompt if omitted). Prompts for an output filename. If none given, the member is extracted
to stdout.

Q Quit.

The pyi-archive_viewer command has these options:

-h, --help Show help.

-l, --log Quick contents log.

-b, --brief Print a python evaluable list of contents filenames.

-r, --recursive Used with -l or -b, applies recursive behaviour.

2.12.5 Inspecting Executables

You can inspect any executable file with pyi-bindepend:

pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name and writes to stdout all its binary depen-
dencies. This is handy to find out which DLLs are required by an executable or by another DLL.

pyi-bindepend is used by PyInstaller to follow the chain of dependencies of binary extensions during Analysis.

2.12. Advanced Topics 83

PyInstaller Documentation, Release 6.4.0

2.12.6 Creating a Reproducible Build

In certain cases it is important that when you build the same application twice, using exactly the same set of dependen-
cies, the two bundles should be exactly, bit-for-bit identical.

That is not the case normally. Python uses a random hash to make dicts and other hashed types, and this affects
compiled byte-code as well as PyInstaller internal data structures. As a result, two builds may not produce bit-for-bit
identical results even when all the components of the application bundle are the same and the two applications execute
in identical ways.

You can ensure that a build will produce the same bits by setting the PYTHONHASHSEED environment variable to a
known integer value before running PyInstaller. This forces Python to use the same random hash sequence until
PYTHONHASHSEED is unset or set to 'random'. For example, execute PyInstaller in a script such as the following
(for GNU/Linux and macOS):

set seed to a known repeatable integer value
PYTHONHASHSEED=1
export PYTHONHASHSEED
create one-file build as myscript
pyinstaller myscript.spec
make checksum
cksum dist/myscript/myscript | awk '{print $1}' > dist/myscript/checksum.txt
let Python be unpredictable again
unset PYTHONHASHSEED

Changed in version 4.8: The build timestamp in the PE headers of the generated Windows executables is set to the
current time during the assembly process. A custom timestamp value can be specified via the SOURCE_DATE_EPOCH
environment variable to achieve reproducible builds.

2.13 Understanding PyInstaller Hooks

Note: We strongly encourage package developers to provide hooks with their packages. See section Providing PyIn-
staller Hooks with your Package for how easy this is.

In summary, a “hook” file extends PyInstaller to adapt it to the special needs and methods used by a Python package.
The word “hook” is used for two kinds of files. A runtime hook helps the bootloader to launch an app. For more
on runtime hooks, see Changing Runtime Behavior. Other hooks run while an app is being analyzed. They help the
Analysis phase find needed files.

The majority of Python packages use normal methods of importing their dependencies, and PyInstaller locates all their
files without difficulty. But some packages make unusual uses of the Python import mechanism, or make clever changes
to the import system at runtime. For this or other reasons, PyInstaller cannot reliably find all the needed files, or may
include too many files. A hook can tell about additional source files or data files to import, or files not to import.

A hook file is a Python script, and can use all Python features. It can also import helper methods from PyInstaller.
utils.hooks and useful variables from PyInstaller.compat. These helpers are documented below.

The name of a hook file is hook-full.import.name.py, where full.import.name is the fully-qualified name of an
imported module. For example, hook-PyQt5.QtCore.py is a hook file corresponding to the module PyQt5.QtCore.
When your script (or one of its dependencies) contains import PyQt5.QtCore (or from PyQt5 import QtCore),
Analysis notes that hook-PyQt5.QtCore.py exists, and will call it.

You can browse through the existing hooks in the hooks folder of the PyInstaller distribution folder and see the names of
the packages for which hooks have been written. Additional hooks are provided by the pyinstaller-hooks-contrib

84 Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://reproducible-builds.org/docs/source-date-epoch

PyInstaller Documentation, Release 6.4.0

package, which is typically installed as part of PyInstaller dependencies. See here to browse PyInstaller-provided hooks
in the online repository, and here for hooks provided by the pyinstaller-hooks-contrib.

Many hooks consist of only one statement, an assignment to hiddenimports. For example, the xml.dom module
from Python standard library imports a module called xml.dom.domreg, which in turn indirectly imports xml.dom.
minidom as one of registered XML DOM implementations. Therefore, to ensure that this implementation module is
collected, PyInstaller provides a hook called hook-xml.dom.domreg.py, which contains only the following statement:

hiddenimports = ["xml.dom.minidom"]

When Analysis sees an import xml.dom statement in the user code (or one of its dependencies), and sub-
sequently sees that xml.dom module imports the xml.dom.domreg module (via the from .domreg import
getDOMImplementation, registerDOMImplementation statement), it calls hook-xml.dom.domreg.py, and
examines the value of hiddenimports hook global variable set by the hook. As a result, the xml.dom.minidom
module is collected into the frozen application, as if the xml.dom.domreg module (or your source script) contained a
direct import xml.dom.minidom statement.

A hook can also cause the collection of data files or binaries (shared libraries) from a package, collection of metadata
for a package, and it can also prevent collection of packages/modules that are imported only from the hooked module
or a package. Examples of these actions are shown below.

When the module that needs a hook is useful only to your project, you can store the hook file(s) somewhere
near your source file. Then specify their location to the pyinstaller or pyi-makespec command with the
--additional-hooks-dir option. If the hook file(s) are at the same level as the script, the command could be
simply:

pyinstaller --additional-hooks-dir=. myscript.py

If you write a hook for a module used by others, please ask the package developer to include the hook with her/his
package or send us the hook file so we can include it in the contributed hooks repository.

2.13.1 How a Hook Is Loaded

A hook is a module named hook-full.import.name.py in a folder where the Analysis object looks for hooks. Each
time Analysis detects an import, it looks for a hook file with a matching name. When one is found, Analysis imports
the hook’s code into a Python namespace. This results in the execution of all top-level statements in the hook source,
for example import statements, assignments to global names, and function definitions. The names defined by these
statements are visible to Analysis as attributes of the namespace.

Thus a hook is a normal Python script and can use all normal Python facilities. For example it could test sys.version
and adjust its assignment to hiddenimports based on that. There are many hooks in the PyInstaller installation, but
a much larger collection can be found in the community hooks package. Please browse through them for examples.

2.13.2 Providing PyInstaller Hooks with your Package

As a package developer you can provide hooks for PyInstaller within your package. This has the major benefit that you
can easily adopt the hooks when your package changes. Thus your package’s users don’t need to wait until PyInstaller
might catch up with these changes. If both PyInstaller and your package provide hooks for some module, your package’s
hooks take precedence, but can still be overridden by the command line option --additional-hooks-dir.

You can tell PyInstaller about the additional hooks by defining some simple setuptools entry-points in your package.
Therefore add entries like these to your setup.cfg:

2.13. Understanding PyInstaller Hooks 85

https://github.com/pyinstaller/pyinstaller/tree/develop/PyInstaller/hooks
https://github.com/pyinstaller/pyinstaller-hooks-contrib/tree/master/src/_pyinstaller_hooks_contrib/hooks/stdhooks
https://github.com/pyinstaller/pyinstaller-hooks-contrib
https://docs.python.org/3/library/sys.html#sys.version
https://github.com/pyinstaller/pyinstaller-hooks-contrib
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

PyInstaller Documentation, Release 6.4.0

[options.entry_points]
pyinstaller40 =
hook-dirs = pyi_hooksample.__pyinstaller:get_hook_dirs
tests = pyi_hooksample.__pyinstaller:get_PyInstaller_tests

This defines two entry-points:

pyinstaller40.hook-dirs for hook registration This entry point refers to a function that will be
invoked with no parameters. It must return a sequence of strings, each element of which
provides an additional absolute path to search for hooks. This is equivalent to passing the
--additional-hooks-dir command-line option to PyInstaller for each string in the sequence.

In this example, the function is get_hook_dirs() -> List[str].

pyinstaller40.tests for test registration This entry point refers to a function that will be invoked
with no parameters. It must return a sequence of strings, each element of which provides an additional
absolute path to a directory tree or to a Python source file. These paths are then passed to pytest for
test discovery. This allows both testing by this package and by PyInstaller.

In this project, the function is get_PyInstaller_tests() -> List[str].

A sample project providing a guide for integrating PyInstaller hooks and tests into a package is available at https:
//github.com/pyinstaller/hooksample. This project demonstrates defining a library which includes PyInstaller hooks
along with tests for those hooks and sample file for integration into CD/CI testing. Detailed documentation about this
sample project is available at https://pyinstaller-sample-hook.readthedocs.io/en/latest/.

2.13.3 Hook Global Variables

A majority of the existing hooks consist entirely of assignments of values to one or more of the following global
variables. If any of these are defined by the hook, Analysis takes their values and applies them to the bundle being
created.

hiddenimports A list of module names (relative or absolute) that should be part of the bundled app. This has the
same effect as the --hidden-import command line option, but it can contain a list of names and is applied
automatically only when the hooked module is imported. Example:

hiddenimports = ['_gdbm', 'socket', 'h5py.defs']

excludedimports A list of absolute module names that should not be part of the bundled app. If an excluded module
is imported only by the hooked module or one of its sub-modules, the excluded name and its sub-modules will
not be part of the bundle. (If an excluded name is explicitly imported in the source file or some other module, it
will be kept.) Several hooks use this to prevent automatic inclusion of the tkinter module. Example:

excludedimports = ['tkinter']

datas A list of files to bundle with the app as data. Each entry in the list is a tuple containing two strings. The first
string specifies a file (or file “glob”) in this system, and the second specifies the name(s) the file(s) are to have in
the bundle. (This is the same format as used for the datas= argument, see Adding Data Files.) Example:

datas = [('/usr/share/icons/education_*.png', 'icons')]

If you need to collect multiple directories or nested directories, you can use helper functions from the
PyInstaller.utils.hooks module (see below) to create this list, for example:

datas = collect_data_files('submodule1')
datas += collect_data_files('submodule2')

86 Chapter 2. Contents:

https://github.com/pyinstaller/hooksample
https://github.com/pyinstaller/hooksample
https://pyinstaller-sample-hook.readthedocs.io/en/latest/

PyInstaller Documentation, Release 6.4.0

In rare cases you may need to apply logic to locate particular files within the file system, for example because
the files are in different places on different platforms or under different versions. Then you can write a hook()
function as described below under The hook(hook_api) Function.

binaries A list of files or directories to bundle as binaries. The format is the same as datas (tuples with strings that
specify the source and the destination). Binaries is a special case of datas, in that PyInstaller will check each
file to see if it depends on other dynamic libraries. Example:

binaries = [('C:\\Windows\\System32*.dll', 'dlls')]

Many hooks use helpers from the PyInstaller.utils.hooks module to create this list (see below):

binaries = collect_dynamic_libs('zmq')

warn_on_missing_hiddenimports A boolean flag indicating whether missing hidden imports from the hook (set
via hiddenimports) should generate warnings or not. By default, missing hidden imports generate warnings,
but individual hooks can opt out of this behavior by setting this variable to False. Example:

warn_on_missing_hiddenimports = False

module_collection_mode A setting controlling the collection mode for module(s). The value can be either a string
or a dictionary.

When set to a string, the variable controls the collection mode for the hooked package/module. Valid values are:

• 'pyz': collect byte-compiled modules into the embedded PYZ archive. This is the default behavior when
no collection mode is specified. If the noarchive flag is used with Analysis, the PYZ archive is not used,
and pyz collection mode is automatically turned into pyc one.

• 'pyc': collect byte-compiled modules as external data files (as opposed to collecting them into the PYZ
archive).

• 'py': collect source .py files as external data files. Do not collect byte-compiled modules.

• 'pyz+py' or 'py+pyz': collect byte-compiled modules into the embedded PYZ archive and collect cor-
responding source .py files as external data files.

If noarchive flag is in effect, the byte-compiled modules are collected as external data files, which causes
python to ignore them due to the source files being placed next to them.

The setting is applied to all child modules and subpackages, unless overridden by the setting in their correspond-
ing hook.

Alternatively, the variable can be set to a dictionary comprising module/package names and corresponding col-
lection mode strings. This allows a hook to specify different settings for its main package and subpackages, but
also settings for other packages. When multiple hooks provide a setting for the same module name, the end result
depends on the hook execution order.

Example:

hook-mypackage.py

This package must be collected in source form, due to its code
searching for .py files on the filesystem...
module_collection_mode = 'py'

Example:

2.13. Understanding PyInstaller Hooks 87

PyInstaller Documentation, Release 6.4.0

hook-mypackage.py

Collect only a sub-package / module as source
(without creating a hook for the sub-package).
module_collection_mode = {
'mypackage.src_subpackage': 'py'

}

Example:

hook-mypackage.py

Collect whole package as source except for a single sub-package
(without creating a hook for the sub-package).
module_collection_mode = {
'mypackage': 'py',
'mypackage.bin_subpackage': 'pyz'

}

Example:

hook-mypackage.py

Force collection of other packages in source form.
module_collection_mode = {
'myotherpackage1': 'py',
'myotherpackage2': 'py',

}

The ability to control collection mode for other modules/packages from a given hook is intended for cases when
the hooked module provides functionality for other modules that requires those other modules to be collected in
the source form (for example, JIT compilation available in some deep learning frameworks). However, detection
of specific function imports and calls via bytecode scanning requires an access to the modulegraph, and conse-
quently the use of the the hook(hook_api) function. In such cases, the collection mode can be modified using the
set_module_collection_mode method from the hook_api object instead of setting the global hook variable.

2.13.4 Useful Items in PyInstaller.compat

Various classes and functions to provide some backwards-compatibility with previous versions of Python onward.

A hook may import the following names from PyInstaller.compat, for example:

from PyInstaller.compat import base_prefix, is_win

is_py36, is_py37, is_py38, is_py39, is_py310 is_py311
True when the current version of Python is at least 3.6, 3.7, 3.8, 3.9, or 3.10, 3.11 respectively.

is_win
True in a Windows system.

is_cygwin
True when sys.platform == 'cygwin'.

is_darwin
True in macOS.

88 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

is_linux
True in any GNU/Linux system.

is_solar
True in Solaris.

is_aix
True in AIX.

is_freebsd
True in FreeBSD.

is_openbsd
True in OpenBSD.

is_venv
True in any virtual environment (either virtualenv or venv).

base_prefix
String, the correct path to the base Python installation, whether the installation is native or a virtual environment.

EXTENSION_SUFFIXES
List of Python C-extension file suffixes. Used for finding all binary dependencies in a folder; see
hook-cryptography.py for an example.

2.13.5 Useful Items in PyInstaller.utils.hooks

A hook may import useful functions from PyInstaller.utils.hooks. Use a fully-qualified import statement, for
example:

from PyInstaller.utils.hooks import collect_data_files, eval_statement

The functions listed here are generally useful and used in a number of existing hooks.

exec_statement(statement)
Execute a single Python statement in an externally-spawned interpreter, and return the resulting standard output
as a string.

Examples:

tk_version = exec_statement("from _tkinter import TK_VERSION; print(TK_VERSION)")

mpl_data_dir = exec_statement("import matplotlib; print(matplotlib.get_data_path())
→˓")
datas = [(mpl_data_dir, "")]

Notes

As of v5.0, usage of this function is discouraged in favour of the new PyInstaller.isolated module.

eval_statement(statement)
Execute a single Python statement in an externally-spawned interpreter, and eval() its output (if any).

Example:

2.13. Understanding PyInstaller Hooks 89

https://docs.python.org/3/library/functions.html#eval

PyInstaller Documentation, Release 6.4.0

databases = eval_statement('''
import sqlalchemy.databases
print(sqlalchemy.databases.__all__)
''')

for db in databases:
hiddenimports.append("sqlalchemy.databases." + db)

Notes

As of v5.0, usage of this function is discouraged in favour of the new PyInstaller.isolated module.

check_requirement(requirement)
Check if a PEP 0508 requirement is satisfied. Usually used to check if a package distribution is installed, or if it
is installed and satisfies the specified version requirement.

Parameters requirement (str) – Requirement string in PEP 0508 format.

Returns Boolean indicating whether the requirement is satisfied or not.

Return type bool

Examples

Assume Pillow 10.0.0 is installed.
>>> from PyInstaller.utils.hooks import check_requirement
>>> check_requirement('Pillow')
True
>>> check_requirement('Pillow < 9.0')
False
>>> check_requirement('Pillow >= 9.0, < 11.0')
True

is_module_satisfies(requirements, version=None, version_attr=None)
A compatibility wrapper for check_requirement(), intended for backwards compatibility with existing hooks.

In contrast to original implementation from PyInstaller < 6, this implementation only checks the specified PEP
0508 requirement string; i.e., it tries to retrieve the distribution metadata, and compare its version against optional
version specifier(s). It does not attempt to fall back to checking the module’s version attribute, nor does it support
version and version_attr arguments.

Parameters

• requirements (str) – Requirements string passed to the check_requirement().

• version (None) – Deprecated and unsupported. Must be None.

• version_attr (None) – Deprecated and unsupported. Must be None.

Returns Boolean indicating whether the requirement is satisfied or not.

Return type bool

Raises ValueError – If either version or version_attr are specified and are not None.

collect_all(package_name, include_py_files=True, filter_submodules=<function <lambda>>,
exclude_datas=None, include_datas=None, on_error='warn once')

Collect everything for a given package name.

90 Chapter 2. Contents:

https://www.python.org/dev/peps/pep-0508
https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0508
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-0508
https://www.python.org/dev/peps/pep-0508
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

PyInstaller Documentation, Release 6.4.0

Parameters

• package_name (str) – An import-able package name.

• include_py_files (bool) – Forwarded to collect_data_files().

• filter_submodules (Callable) – Forwarded to collect_submodules().

• exclude_datas (UnionType[list, None]) – Forwarded to collect_data_files().

• include_datas (UnionType[list, None]) – Forwarded to collect_data_files().

• on_error (str) – Forwarded onto collect_submodules().

Returns

A (datas, binaries, hiddenimports) triplet containing:

• All data files, raw Python files (if include_py_files), and distribution metadata directories
(if applicable).

• All dynamic libraries as returned by collect_dynamic_libs().

• All submodules of package_name.

Return type tuple

Typical use:

datas, binaries, hiddenimports = collect_all('my_package_name')

collect_submodules(package, filter=<function <lambda>>, on_error='warn once')
List all submodules of a given package.

Parameters

• package (str) – An import-able package.

• filter (Callable[[str], bool]) – Filter the submodules found: A callable that takes a
submodule name and returns True if it should be included.

• on_error (str) – The action to take when a submodule fails to import. May be any of:

– raise: Errors are reraised and terminate the build.

– warn: Errors are downgraded to warnings.

– warn once: The first error issues a warning but all subsequent errors are ignored to min-
imise stderr pollution. This is the default.

– ignore: Skip all errors. Don’t warn about anything.

Returns All submodules to be assigned to hiddenimports in a hook.

This function is intended to be used by hook scripts, not by main PyInstaller code.

Examples:

Collect all submodules of Sphinx don't contain the word ``test``.
hiddenimports = collect_submodules(

"Sphinx", ``filter=lambda name: 'test' not in name)

Changed in version 4.5: Add the on_error parameter.

is_module_or_submodule(name, mod_or_submod)
This helper function is designed for use in the filter argument of collect_submodules(), by returning True
if the given name is a module or a submodule of mod_or_submod.

2.13. Understanding PyInstaller Hooks 91

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyInstaller Documentation, Release 6.4.0

Examples

The following excludes foo.test and foo.test.one but not foo.testifier.

collect_submodules('foo', lambda name: not is_module_or_submodule(name, 'foo.test
→˓'))``

is_package(module_name)
Check if a Python module is really a module or is a package containing other modules, without importing anything
in the main process.

Parameters module_name (str) – Module name to check.

Returns True if module is a package else otherwise.

collect_data_files(package, include_py_files=False, subdir=None, excludes=None, includes=None)
This function produces a list of (source, dest) entries for data files that reside in package. Its output can be
directly assigned to datas in a hook script; for example, see hook-sphinx.py. The data files are all files that are
not shared libraries / binary python extensions (based on extension check) and are not python source (.py) files
or byte-compiled modules (.pyc). Collection of the .py and .pyc files can be toggled via the include_py_files
flag. Parameters:

• The package parameter is a string which names the package.

• By default, python source files and byte-compiled modules (files with .py and .pyc suffix) are not col-
lected; setting the include_py_files argument to True collects these files as well. This is typically used
when a package requires source .py files to be available; for example, JIT compilation used in deep-learning
frameworks, code that requires access to .py files (for example, to check their date), or code that tries to
extend sys.path with subpackage paths in a way that is incompatible with PyInstaller’s frozen importer..
However, in contemporary PyInstaller versions, the preferred way of collecting source .py files is by using
the module collection mode setting (which enables collection of source .py files in addition to or in lieu
of collecting byte-compiled modules into PYZ archive).

• The subdir argument gives a subdirectory relative to package to search, which is helpful when submod-
ules are imported at run-time from a directory lacking __init__.py.

• The excludes argument contains a sequence of strings or Paths. These provide a list of globs to exclude
from the collected data files; if a directory matches the provided glob, all files it contains will be excluded
as well. All elements must be relative paths, which are relative to the provided package’s path (/ subdir if
provided).

Therefore, *.txt will exclude only .txt files in package‘s path, while **/*.txt will exclude all .
txt files in package‘s path and all its subdirectories. Likewise, **/__pycache__ will exclude all files
contained in any subdirectory named __pycache__.

• The includes function like excludes, but only include matching paths. excludes override includes:
a file or directory in both lists will be excluded.

This function does not work on zipped Python eggs.

This function is intended to be used by hook scripts, not by main PyInstaller code.

collect_dynamic_libs(package, destdir=None, search_patterns=['*.dll', '*.dylib', 'lib*.so'])
This function produces a list of (source, dest) of dynamic library files that reside in package. Its output can
be directly assigned to binaries in a hook script. The package parameter must be a string which names the
package.

Parameters

• destdir (UnionType[str, None]) – Relative path to ./dist/APPNAME where the libraries
should be put.

92 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyInstaller Documentation, Release 6.4.0

• search_patterns (list) – List of dynamic library filename patterns to collect.

get_module_file_attribute(package)
Get the absolute path to the specified module or package.

Modules and packages must not be directly imported in the main process during the analysis. Therefore, to avoid
leaking the imports, this function uses an isolated subprocess when it needs to import the module and obtain its
__file__ attribute.

Parameters package (str) – Fully-qualified name of module or package.

Returns Absolute path of this module.

Return type str

get_module_attribute(module_name, attr_name)
Get the string value of the passed attribute from the passed module if this attribute is defined by this module _or_
raise AttributeError otherwise.

Since modules cannot be directly imported during analysis, this function spawns a subprocess importing this
module and returning the string value of this attribute in this module.

Parameters

• module_name (str) – Fully-qualified name of this module.

• attr_name (str) – Name of the attribute in this module to be retrieved.

Returns String value of this attribute.

Return type str

Raises AttributeError – If this attribute is undefined.

get_package_paths(package)
Given a package, return the path to packages stored on this machine and also returns the path to this particular
package. For example, if pkg.subpkg lives in /abs/path/to/python/libs, then this function returns (/abs/path/
to/python/libs, /abs/path/to/python/libs/pkg/subpkg).

NOTE: due to backwards compatibility, this function returns only one package path along with its base directory.
In case of PEP 420 namespace package with multiple location, only first location is returned. To obtain all
package paths, use the get_all_package_paths function and obtain corresponding base directories using the
package_base_path helper.

copy_metadata(package_name, recursive=False)
Collect distribution metadata so that importlib.metadata.distribution() or pkg_resources.
get_distribution() can find it.

This function returns a list to be assigned to the datas global variable. This list instructs PyInstaller to copy the
metadata for the given package to the frozen application’s data directory.

Parameters

• package_name (str) – Specifies the name of the package for which metadata should be
copied.

• recursive (bool) – If true, collect metadata for the package’s dependencies too.
This enables use of importlib.metadata.requires('package') or pkg_resources.
require('package') inside the frozen application.

Returns This should be assigned to datas.

Return type list

2.13. Understanding PyInstaller Hooks 93

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PyInstaller Documentation, Release 6.4.0

Examples

>>> from PyInstaller.utils.hooks import copy_metadata
>>> copy_metadata('sphinx')
[('c:\python27\lib\site-packages\Sphinx-1.3.2.dist-info',
'Sphinx-1.3.2.dist-info')]

Some packages rely on metadata files accessed through the importlib.metadata (or the now-deprecated
pkg_resources) module. PyInstaller does not collect these metadata files by default. If a package fails without
the metadata (either its own, or of another package that it depends on), you can use this function in a hook to
collect the corresponding metadata files into the frozen application. The tuples in the returned list contain two
strings. The first is the full path to the package’s metadata directory on the system. The second is the destination
name, which typically corresponds to the basename of the metadata directory. Adding these tuples the the datas
hook global variable, the metadata is collected into top-level application directory (where it is usually searched
for).

Changed in version 4.3.1: Prevent dist-info metadata folders being renamed to egg-info which broke
pkg_resources.require with extras (see #3033).

Changed in version 4.4.0: Add the recursive option.

collect_entry_point(name)
Collect modules and metadata for all exporters of a given entry point.

Parameters name (str) – The name of the entry point. Check the documentation for the library that
uses the entry point to find its name.

Returns A (datas, hiddenimports) pair that should be assigned to the datas and
hiddenimports, respectively.

For libraries, such as pytest or keyring, that rely on plugins to extend their behaviour.

Examples

Pytest uses an entry point called 'pytest11' for its extensions. To collect all those extensions use:

datas, hiddenimports = collect_entry_point("pytest11")

These values may be used in a hook or added to the datas and hiddenimports arguments in the .spec file.
See Using Spec Files.

New in version 4.3.

get_homebrew_path(formula='')
Return the homebrew path to the requested formula, or the global prefix when called with no argument.

Returns the path as a string or None if not found.

include_or_exclude_file(filename, include_list=None, exclude_list=None)
Generic inclusion/exclusion decision function based on filename and list of include and exclude patterns.

Parameters

• filename (str) – Filename considered for inclusion.

• include_list (UnionType[list, None]) – List of inclusion file patterns.

• exclude_list (UnionType[list, None]) – List of exclusion file patterns.

Returns A boolean indicating whether the file should be included or not.

94 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/#3033
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

PyInstaller Documentation, Release 6.4.0

If include_list is provided, True is returned only if the filename matches one of include patterns (and does
not match any patterns in exclude_list, if provided). If include_list is not provided, True is returned if
filename does not match any patterns in exclude list, if provided. If neither list is provided, True is returned
for any filename.

collect_delvewheel_libs_directory(package_name, libdir_name=None, datas=None, binaries=None)
Collect data files and binaries from the .libs directory of a delvewheel-enabled python wheel. Such wheels ship
their shared libraries in a .libs directory that is located next to the package directory, and therefore falls outside
the purview of the collect_dynamic_libs() utility function.

Parameters

• package_name – Name of the package (e.g., scipy).

• libdir_name – Optional name of the .libs directory (e.g., scipy.libs). If not provided, “.libs”
is added to package_name.

• datas – Optional list of datas to which collected data file entries are added. The combined
result is retuned as part of the output tuple.

• binaries – Optional list of binaries to which collected binaries entries are added. The
combined result is retuned as part of the output tuple.

Returns A (datas, binaries) pair that should be assigned to the datas and binaries, respec-
tively.

Return type tuple

Examples

Collect the scipy.libs delvewheel directory belonging to the Windows scipy wheel:

datas, binaries = collect_delvewheel_libs_directory("scipy")

When the collected entries should be added to existing datas and binaries listst, the following form can be
used to avoid using intermediate temporary variables and merging those into existing lists:

datas, binaries = collect_delvewheel_libs_directory("scipy", datas=datas,␣
→˓binaries=binaries)

New in version 5.6.

Support for Conda

Additional helper methods for working specifically with Anaconda distributions are found at PyInstaller.utils.
hooks.conda_support which is designed to mimic (albeit loosely) the importlib.metadata package. These functions
find and parse the distribution metadata from json files located in the conda-meta directory.

New in version 4.2.0.

This module is available only if run inside a Conda environment. Usage of this module should therefore be wrapped
in a conditional clause:

from PyInstaller.compat import is_pure_conda

if is_pure_conda:
from PyInstaller.utils.hooks import conda_support

(continues on next page)

2.13. Understanding PyInstaller Hooks 95

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/importlib.metadata.html

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

Code goes here. e.g.
binaries = conda_support.collect_dynamic_libs("numpy")
...

Packages are all referenced by the distribution name you use to install it, rather than the package name you import it with.
I.e., use distribution("pillow") instead of distribution("PIL") or use package_distribution("PIL").

distribution(name)
Get distribution information for a given distribution name (i.e., something you would conda install).

Return type Distribution

package_distribution(name)
Get distribution information for a package (i.e., something you would import).

Return type Distribution

For example, the package pkg_resources belongs to the distribution setuptools, which contains three pack-
ages.

>>> package_distribution("pkg_resources")
Distribution(name="setuptools",

packages=['easy_install', 'pkg_resources', 'setuptools'])

files(name, dependencies=False, excludes=None)
List all files belonging to a distribution.

Parameters

• name (str) – The name of the distribution.

• dependencies (bool) – Recursively collect files of dependencies too.

• excludes (UnionType[list, None]) – Distributions to ignore if dependencies is true.

Return type List[PackagePath]

Returns All filenames belonging to the given distribution.

With dependencies=False, this is just a shortcut for:

conda_support.distribution(name).files

requires(name, strip_versions=False)
List requirements of a distribution.

Parameters

• name (str) – The name of the distribution.

• strip_versions (bool) – List only their names, not their version constraints.

Return type List[str]

Returns A list of distribution names.

class Distribution(json_path)
A bucket class representation of a Conda distribution.

This bucket exports the following attributes:

Variables

96 Chapter 2. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/types.html#types.UnionType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

PyInstaller Documentation, Release 6.4.0

• name – The distribution’s name.

• version – Its version.

• files – All filenames as PackagePath()s included with this distribution.

• dependencies – Names of other distributions that this distribution depends on (with version
constraints removed).

• packages – Names of importable packages included in this distribution.

This class is not intended to be constructed directly by users. Rather use distribution() or
package_distribution() to provide one for you.

class PackagePath(*args, **kwargs)
A filename relative to Conda’s root (sys.prefix).

This class inherits from pathlib.PurePosixPath even on non-Posix OSs. To convert to a pathlib.Path
pointing to the real file, use the locate() method.

locate()
Return a path-like object for this path pointing to the file’s true location.

walk_dependency_tree(initial, excludes=None)
Collect a Distribution and all direct and indirect dependencies of that distribution.

Parameters

• initial (str) – Distribution name to collect from.

• excludes (Optional[Iterable[str], None]) – Distributions to exclude.

Returns A {name: distribution} mapping where distribution is the output of
conda_support.distribution(name).

collect_dynamic_libs(name, dest='.', dependencies=True, excludes=None)
Collect DLLs for distribution name.

Parameters

• name (str) – The distribution’s project-name.

• dest (str) – Target destination, defaults to '.'.

• dependencies (bool) – Recursively collect libs for dependent distributions (recom-
mended).

• excludes (Optional[Iterable[str], None]) – Dependent distributions to skip, defaults
to None.

Returns List of DLLs in PyInstaller’s (source, dest) format.

This collects libraries only from Conda’s shared lib (Unix) or Library/bin (Windows) folders. To collect from
inside a distribution’s installation use the regular PyInstaller.utils.hooks.collect_dynamic_libs().

2.13. Understanding PyInstaller Hooks 97

https://docs.python.org/3/library/pathlib.html#pathlib.PurePosixPath
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyInstaller Documentation, Release 6.4.0

2.13.6 Subprocess isolation with PyInstaller.isolated

PyInstaller hooks typically will need to import the package which they are written for but doing so may manipulate
globals such as sys.path or os.environ in ways that affect the build. For example, on Windows, Qt’s binaries are
added to then loaded via PATH in such a way that if you import multiple Qt variants in one session then there is no
guarantee which variant’s binaries each variant will get!

To get around this, PyInstaller does any such tasks in an isolated Python subprocess and ships a PyInstaller.
isolated submodule to do so in hooks.

from PyInstaller import isolated

This submodule provides:

• isolated.call() to evaluate functions in isolation.

• @isolated.decorate to mark a function as always called in isolation.

• isolated.Python() to efficiently call many functions in a single child instance of Python.

call(function, *args, **kwargs)
Call a function with arguments in a separate child Python. Retrieve its return value.

Parameters

• function – The function to send and invoke.

• *args –

• **kwargs – Positional and keyword arguments to send to the function. These must be simple
builtin types - not custom classes.

Returns The return value of the function. Again, these must be basic types serialisable by marshal.
dumps().

Raises RuntimeError – Any exception which happens inside an isolated process is caught and
reraised in the parent process.

To use, define a function which returns the information you’re looking for. Any imports it requires must happen
in the body of the function. For example, to safely check the output of matplotlib.get_data_path() use:

Define a function to be ran in isolation.
def get_matplotlib_data_path():

import matplotlib
return matplotlib.get_data_path()

Call it with isolated.call().
get_matplotlib_data_path = isolated.call(matplotlib_data_path)

For single use functions taking no arguments like the above you can abuse the decorator syntax slightly to define
and execute a function in one go.

>>> @isolated.call
... def matplotlib_data_dir():
... import matplotlib
... return matplotlib.get_data_path()
>>> matplotlib_data_dir
'/home/brenainn/.pyenv/versions/3.9.6/lib/python3.9/site-packages/matplotlib/mpl-
→˓data'

Functions may take positional and keyword arguments and return most generic Python data types.

98 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/marshal.html#marshal.dumps
https://docs.python.org/3/library/marshal.html#marshal.dumps
https://docs.python.org/3/library/exceptions.html#RuntimeError

PyInstaller Documentation, Release 6.4.0

>>> def echo_parameters(*args, **kwargs):
... return args, kwargs
>>> isolated.call(echo_parameters, 1, 2, 3)
(1, 2, 3), {}
>>> isolated.call(echo_parameters, foo=["bar"])
(), {'foo': ['bar']}

Notes

To make a function behave differently if it’s isolated, check for the __isolated__ global.

if globals().get("__isolated__", False):
We're inside a child process.
...

else:
This is the master process.
...

decorate(function)
Decorate a function so that it is always called in an isolated subprocess.

Examples

To use, write a function then prepend @isolated.decorate.

@isolated.decorate
def add_1(x):

'''Add 1 to ``x``, displaying the current process ID.'''
import os
print(f"Process {os.getpid()}: Adding 1 to {x}.")
return x + 1

The resultant add_1() function can now be called as you would a normal function and it’ll automatically use a
subprocess.

>>> add_1(4)
Process 4920: Adding 1 to 4.
5
>>> add_1(13.2)
Process 4928: Adding 1 to 13.2.
14.2

class Python(strict_mode=None)
Start and connect to a separate Python subprocess.

This is the lowest level of public API provided by this module. The advantage of using this class directly is that it
allows multiple functions to be evaluated in a single subprocess, making it faster than multiple calls to call().

The strict_mode argument controls behavior when the child process fails to shut down; if strict mode
is enabled, an error is raised, otherwise only warning is logged. If the value of strict_mode is None,
the value of PyInstaller.compat.strict_collect_mode is used (which in turn is controlled by the
PYINSTALLER_STRICT_COLLECT_MODE environment variable.

2.13. Understanding PyInstaller Hooks 99

PyInstaller Documentation, Release 6.4.0

Examples

To call some predefined functions x = foo(), y = bar("numpy") and z = bazz(some_flag=True) all us-
ing the same isolated subprocess use:

with isolated.Python() as child:
x = child.call(foo)
y = child.call(bar, "numpy")
z = child.call(bazz, some_flag=True)

call(function, *args, **kwargs)
Call a function in the child Python. Retrieve its return value. Usage of this method is identical to that of
the call() function.

2.13.7 The hook(hook_api) Function

In addition to, or instead of, setting global values, a hook may define a function hook(hook_api). A hook() function
should only be needed if the hook needs to apply sophisticated logic or to make a complex search of the source machine.

The Analysis object calls the function and passes it a hook_api object which has the following immutable properties:

__name__: The fully-qualified name of the module that caused the hook to be called, e.g., six.moves.tkinter.

__file__: The absolute path of the module. If it is:

• A standard (rather than namespace) package, this is the absolute path of this package’s directory.

• A namespace (rather than standard) package, this is the abstract placeholder -.

• A non-package module or C extension, this is the absolute path of the corresponding file.

__path__: A list of the absolute paths of all directories comprising the module if it is a package, or None. Typically
the list contains only the absolute path of the package’s directory.

co: Code object compiled from the contents of __file__ (e.g., via the compile() builtin).

analysis: The Analysis object that loads the hook.

The hook_api object also offers the following methods:

add_imports(*names): The names argument may be a single string or a list of strings giving the fully-qualified
name(s) of modules to be imported. This has the same effect as adding the names to the hiddenimports global.

add_datas(tuple_list): The tuple_list argument has the format used with the datas global variable. This
call has the effect of adding items to that list.

add_binaries(tuple_list): The tuple_list argument has the format used with the binaries global vari-
able. This call has the effect of adding items to that list.

set_module_collection_mode (name, mode): Set the package collection mode for the specified pack-
age/module name. Valid values for mode are: 'pyz', 'pyc', 'py', 'pyz+py', 'py+pyz' and None. None
clears/resets the setting for the given package/module name - but only within the current hook’s context! The
collection mode may be set for the hooked package, its sub-module or sub-package, or for other packages. If
name is None, it is substituted with the hooked package/module name.

The hook() function can add, remove or change included files using the above methods of hook_api. Or, it can simply
set values in the four global variables, because these will be examined after hook() returns.

Hooks may access the user parameters, given in the hooksconfig argument in the spec file, by calling
get_hook_config() inside a hook() function.

100 Chapter 2. Contents:

https://docs.python.org/3/reference/import.html#path__
https://docs.python.org/3/library/functions.html#compile

PyInstaller Documentation, Release 6.4.0

get_hook_config(hook_api, module_name, key)
Get user settings for hooks.

Parameters

• module_name (str) – The module/package for which the key setting belong to.

• key (str) – A key for the config.

Returns The value for the config. None if not set.

The get_hook_config function will lookup settings in the Analysis.hooksconfig dict.

The hook settings can be added to .spec file in the form of:

a = Analysis(["my-app.py"],
...
hooksconfig = {

"gi": {
"icons": ["Adwaita"],
"themes": ["Adwaita"],
"languages": ["en_GB", "zh_CN"],

},
},
...

)

2.13.8 The pre_find_module_path(pfmp_api) Method

You may write a hook with the special function pre_find_module_path(pfmp_api). This method is called when
the hooked module name is first seen by Analysis, before it has located the path to that module or package (hence the
name “pre-find-module-path”).

Hooks of this type are only recognized if they are stored in a sub-folder named pre_find_module_path in a hooks
folder, either in the distributed hooks folder or an --additional-hooks-dir folder. You may have normal hooks as
well as hooks of this type for the same module. For example PyInstaller includes both a hooks/hook-distutils.py
and also a hooks/pre_find_module_path/hook-distutils.py.

The pfmp_api object that is passed has the following immutable attribute:

module_name: A string, the fully-qualified name of the hooked module.

The pfmp_api object has one mutable attribute, search_dirs. This is a list of strings that specify the absolute
path, or paths, that will be searched for the hooked module. The paths in the list will be searched in sequence. The
pre_find_module_path() function may replace or change the contents of pfmp_api.search_dirs.

Immediately after return from pre_find_module_path(), the contents of search_dirs will be used to find and
analyze the module.

For an example of use, see the file hooks/pre_find_module_path/hook-distutils.py. It uses this method to
redirect a search for distutils when PyInstaller is executing in a virtual environment.

2.13. Understanding PyInstaller Hooks 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyInstaller Documentation, Release 6.4.0

2.13.9 The pre_safe_import_module(psim_api) Method

You may write a hook with the special function pre_safe_import_module(psim_api). This method is called
after the hooked module has been found, but before it and everything it recursively imports is added to the “graph” of
imported modules. Use a pre-safe-import hook in the unusual case where:

• The script imports package.dynamic-name

• The package exists

• however, no module dynamic-name exists at compile time (it will be defined somehow at run time)

You use this type of hook to make dynamically-generated names known to PyInstaller. PyInstaller will not try to locate
the dynamic names, fail, and report them as missing. However, if there are normal hooks for these names, they will be
called.

Hooks of this type are only recognized if they are stored in a sub-folder named pre_safe_import_module in a hooks
folder, either in the distributed hooks folder or an --additional-hooks-dir folder. (See the distributed hooks/
pre_safe_import_module folder for examples.)

You may have normal hooks as well as hooks of this type for the same module. For example the distributed sys-
tem has both a hooks/hook-gi.repository.GLib.py and also a hooks/pre_safe_import_module/hook-gi.
repository.GLib.py.

The psim_api object offers the following attributes, all of which are immutable (an attempt to change one raises an
exception):

module_basename: String, the unqualified name of the hooked module, for example text.

module_name: String, the fully-qualified name of the hooked module, for example email.mime.text.

module_graph: The module graph representing all imports processed so far.

parent_package: If this module is a top-level module of its package, None. Otherwise, the graph node that represents
the import of the top-level module.

The last two items, module_graph and parent_package, are related to the module-graph, the internal data structure
used by PyInstaller to document all imports. Normally you do not need to know about the module-graph.

The psim_api object also offers the following methods:

add_runtime_module(fully_qualified_name): Use this method to add an imported module whose name may
not appear in the source because it is dynamically defined at run-time. This is useful to make the module known
to PyInstaller and avoid misleading warnings. A typical use applies the name from the psim_api:

psim_api.add_runtime_module(psim_api.module_name)

add_alias_module(real_module_name, alias_module_name): real_module_name is the fully-qualifed
name of an existing module, one that has been or could be imported by name (it will be added to the graph
if it has not already been imported). alias_module_name is a name that might be referenced in the source file
but should be treated as if it were real_module_name. This method ensures that if PyInstaller processes an
import of alias_module_name it will use real_module_name.

append_package_path(directory): The hook can use this method to add a package path to be searched by
PyInstaller, typically an import path that the imported module would add dynamically to the path if the module
was executed normally. directory is a string, a pathname to add to the __path__ attribute.

102 Chapter 2. Contents:

https://docs.python.org/3/reference/import.html#path__

PyInstaller Documentation, Release 6.4.0

2.14 Hook Configuration Options

As of version 4.4, PyInstaller implements a mechanism for passing configuration options to the hooks. At the time of
writing, this feature is supported only in .spec files and has no command-line interface equivalent.

The hook configuration options consist of a dictionary that is passed to the Analysis object via the hooksconfig
argument. The keys of the dictionary represent hook identifiers while the values are dictionaries of hook-specific keys
and values that correspond to hook settings:

a = Analysis(
["program.py"],
...,
hooksconfig={

"some_hook_id": {
"foo": ["entry1", "entry2"],
"bar": 42,
"enable_x": True,

},
"another_hook_id": {

"baz": "value",
},

},
...,

)

2.14.1 Supported hooks and options

This section lists hooks that implement support for configuration options. For each hook (or group of hooks), we
provide the hook identifier and the list of supported options.

GObject introspection (gi) hooks

The options passed under gi hook identifier control the collection of GLib/Gtk resources (themes, icons, translations)
in various hooks related to GObject introspection (i.e., hook-gi.*).

They are especially useful when freezing Gtk3-based applications on linux, as they allow one to limit the amount of
themes and icons collected from the system /usr/share directory.

Hook identifier: gi

Options

• languages [list of strings]: list of locales (e.g., ˙en_US˙) for which translations should be collected. By default,
gi hooks collect all available translations.

• icons [list of strings]: list of icon themes (e.g., Adwaita) that should be collected. By default, gi hooks collect
all available icon themes.

• themes [list of strings]: list of Gtk themes (e.g., Adwaita) that should be collected. By default, gi hooks collect
all available icon themes.

• module-versions [dict of version strings]: versions of gi modules to use. For example, a key of ‘GtkSource’
and value to ‘4’ will use gtksourceview4.

Example

2.14. Hook Configuration Options 103

PyInstaller Documentation, Release 6.4.0

Collect only Adwaita theme and icons, limit the collected translations to British English and Simplified Chinese, and
use version 3.0 of Gtk and version 4 of GtkSource:

a = Analysis(
["my-gtk-app.py"],
...,
hooksconfig={

"gi": {
"icons": ["Adwaita"],
"themes": ["Adwaita"],
"languages": ["en_GB", "zh_CN"],
"module-versions": {

"Gtk": "3.0",
"GtkSource": "4",

},
},

},
...,

)

Note: Currently the module-versions configuration is available only for GtkSource, Gtk, and Gdk.

GStreamer (gi.repository.Gst) hook

The collection of GStreamer is subject to both the general gi hook configuration (for example, collection of transla-
tions file as controlled by the languages option) and by special hook configuration named gstreamer1 that controls
collection of GStreamer plugins.

The GStreamer framework comes with a multitude of plugins that are typically installed as separate
packages (gstreamer-plugins-base, gstreamer-plugins-good, gstreamer-plugins-bad, and
gstreamer-plugins-ugly; the naming varies between packaging systems). By default, PyInstaller collects
all available plugins as well as their binary dependencies; therefore, having all GStreamer plugins installed in the build
environment will likely result in collection of many unnecessary plugins and increased frozen application size due to
potential complex dependency chains of individual plugins and the underlying shared libraries.

Hook identifier: gstreamer?

Options

• include_plugins [list of strings]: list of plugin names to include in the frozen application. Specifying the
include list implicitly excludes all plugins that do not appear in the list.

• exclude_plugins [list of strings]: list of plugin names to exclude from the frozen application. If include list
is also available, the exclude list is applied after it; if not, the exclude list is applied to all available plugins.

Both include and exclude list expect base plugin names (e.g., audioparsers, matroska , x264, flac). Internally,
each name is converted into a pattern (e.g., '**/*flac.*'), and matched using fnmatch against actual plugin file
names. Therefore, it is also possible to include the wildcard (*) in the plugin name2.

Basic example: excluding an unwanted plugin

Exclude the opencv GStreamer plugin to prevent pulling OpenCV shared libraries into the frozen application.
1 While the hook is called gi.repository.Gst, the identifier for Gstreamer-related options was chosen to be simply gstreamer.
2 And it is also possible to get away with accidentally specifying the plugin prefix, which is typically libgst, but can also be gst, depending on the

toolchain that was used to build GStreamer.

104 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

a = Analysis(
["my-gstreamer-app.py"],
...,
hooksconfig={

"gstreamer": {
"exclude_plugins": [

"opencv",
],

},
},
...,

)

Advanced example: including only specific plugins

When optimizing the frozen application size, it is often more efficient to explicitly include only the subset of the plugins
that are actually required for the application to function.

Consider the following simple player application:

audio_player.py
import sys
import os

import gi
gi.require_version('Gst', '1.0')
from gi.repository import GLib, Gst

if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]} <filename>")
sys.exit(-1)

filename = os.path.abspath(sys.argv[1])
if not os.path.isfile(filename):

print(f"Input file {filename} does not exist!")
sys.exit(-1)

Gst.init(sys.argv)
mainloop = GLib.MainLoop()

playbin = Gst.ElementFactory.make("playbin", "player")
playbin.set_property('uri', Gst.filename_to_uri(filename))
playbin.set_property('volume', 0.2)
playbin.set_state(Gst.State.PLAYING)

mainloop.run()

Suppose that, although the application is using the generic playbin and player elements, we intend for the frozen
application to play only audio files. In that case, we can limit the collected plugins as follows:

The not-completely-optimized list of gstreamer plugins for playing a FLAC
(and possibly some other) audio files on linux and Windows.
gst_include_plugins = [

gstreamer
(continues on next page)

2.14. Hook Configuration Options 105

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

"coreelements",
gstreamer-plugins-base
"alsa", # Linux audio output
"audioconvert",
"audiomixer",
"audiorate",
"audioresample",
"ogg",
"playback",
"rawparse",
"typefindfunctions",
"volume",
"vorbis",
gstreamer-plugins-good
"audioparsers",
"auparse",
"autodetect",
"directsound", # Windows audio output
"flac",
"id3demux",
"lame",
"mpg123",
"osxaudio", # macOS audio output
"pulseaudio", # Linux audio output
"replaygain",
"speex",
"taglib",
"twolame",
"wavparse",
gstreamer-plugins-bad
"wasapi", # Windows audio output

]

a = Analysis(
["audio_player.py"],
...,
hooksconfig={

"gstreamer": {
"include_plugins": gst_include_plugins,

},
},
...,

)

Determining which plugins need to be collected may require good knowledge of GStreamer pipelines and their plugin
system, and may result in several test iterations to see if the required multimedia functionality works as expected.
Unfortunately, there is no free lunch when it comes to optimizing the size of application that uses a plugin system like
that. Keep in mind that in addition to obviously-named plugins (such as flac for FLAC-related functionality), you
will likely need to collect at least some plugins that come from gstreamer itself (e.g., the coreelements one) and at
least some that are part of gstreamer-plugins-base.

106 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Matplotlib hooks

The hooks for the matplotlib package allow user to control the backend collection behavior via backends option
under the matplotlib identifier, as described below.

Hook identifier: matplotlib

Options

• backends [string or list of strings]: backend selection method or name(s) of backend(s) to collect. Valid string
values: 'auto', 'all', or a human-readable backend name (e.g., 'TkAgg'). To specify multiple backends to
be collected, use a list of strings (e.g., ['TkAgg', 'Qt5Agg']).

Backend selection process

If backends option is set to 'auto' (or not specified), the hook performs auto-detection of used backends, by
scanning the code for matplotlib.use() function calls with literal arguments. For example, matplotlib.
use('TkAgg') being used in the code results in the TkAgg backend being collected. If no such calls are found,
the default backend is determined as the first importable GUI-based backend, using the same priority list as internally
used by the matplotlib.get_backend() and matplotlib.pyplot.switch_backend() functions: ['MacOSX',
'Qt5Agg', 'Gtk3Agg', 'TkAgg', 'WxAgg']. If no GUI-based backend is importable, the headless 'Agg' is col-
lected instead.

Note: Due to limitations of the bytecode-scanning approach, only specific forms of matplotlib.use() invocation
can be automatically detected. The backend must be specified as string literal (as opposed to being passed via a
variable). The second optional argument, force, can also be specified, but it must also be a literal and must not
be specified as a keyword argument:

import matplotlib

matplotlib.use('TkAgg') # detected
matplotlib.use('TkAgg', False) # detected

backend = 'TkAgg'
matplotlib.use(backend) # not detected

matplotlib.use('TkAgg', force=False) # not detected

In addition to matplotlib module name, its common alias, mpl is also recognized:

import matplotlib as mpl
mpl.use('TkAgg') # detected

Importing the function from the module should also work:

from matplotlib import use
use('TkAgg') # detected

If backends option is set to 'all', all (importable) backends are selected, which corresponds to the behavior of
PyInstaller 4.x and earlier. The list of importable backends depends on the packages installed in the environment; for
example, the Qt5Agg backend becomes importable if either the PyQt5 or the PySide2 package is installed.

Otherwise, the value of the backends option is treated as a backend name (if it is a string) or a list of backend names
(if it is a list). In the case of user-provided backend names, no additional validation is performed; the backends are
collected regardless of whether they are importable or not.

Example

2.14. Hook Configuration Options 107

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.get_backend
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.switch_backend.html#matplotlib.pyplot.switch_backend
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use

PyInstaller Documentation, Release 6.4.0

a = Analysis(
["my-matplotlib-app.py"],
...,
hooksconfig={

"matplotlib": {
"backends": "auto", # auto-detect; the default behavior
"backends": "all", # collect all backends
"backends": "TkAgg", # collect a specific backend
"backends": ["TkAgg", "Qt5Agg"], # collect multiple backends

},
},
...,

)

Note: The Qt5Agg backend conditionally imports both the PyQt5 and the PySide2 package. Therefore, if both
are installed in your environment, PyInstaller will end up collecting both. In addition to increasing the frozen ap-
plication’s size, this might also cause conflicts between the collected versions of the shared libraries. To prevent
that, use the --exclude-module option to exclude one of the two packages (i.e., --exclude-module PyQt5 or
--exclude-module PySide2).

2.14.2 Adding an option to the hook

Implementing support for hook options requires access to hook_api object, which is available only when hook imple-
ments the hook(hook_api) function (as described here).

The value of a hook’s configuration option can be obtained using the get_hook_config() function:

hook-mypackage.py
from PyInstaller.utils.hooks import get_hook_config

Processing unrelated to hook options, using global hook values
binaries, datas, hiddenimports = ...

Collect extra data
def hook(hook_api):

Boolean option 'collect_extra_data'
if get_hook_config(hook_api, 'mypackage', 'collect_extra_data'):

extra_datas = ... # Collect extra data
hook_api.add_datas(extra_datas)

After implementing option handling in the hook, please add a section documenting it under Supported hooks and
options, to inform the users of the option’s availability and the meaning of its value(s).

The above hook example allows the user to toggle the collection of extra data from mypackage by setting the corre-
sponding option in their .spec file:

a = Analysis(
["program-using-mypackage.py"],
...,
hooksconfig={

"mypackage": {
(continues on next page)

108 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

(continued from previous page)

"collect_extra_data": True,
},

},
...,

)

2.15 Building the Bootloader

PyInstaller comes with pre-compiled bootloaders for some platforms in the bootloader folder of the distribution
folder. When there is no pre-compiled bootloader for the current platform (operating-system and word-size), the pip
setup will attempt to build one.

If there is no precompiled bootloader for your platform, or if you want to modify the bootloader source, you need to
build the bootloader. To do this,

• Download and install Python, which is required for running waf,

• git clone or download the source from our GitHub repository,

• cd into the folder where you cloned or unpacked the source to,

• cd bootloader, and

• make the bootloader with: python ./waf all,

• test the build by ref:running (parts of) the test-suite <running-the-test-suite>.

This will produce the bootloader executables for your current platform (of course, for Windows these files will have
the .exe extension):

• ../PyInstaller/bootloader/OS_ARCH/run,

• ../PyInstaller/bootloader/OS_ARCH/run_d,

• ../PyInstaller/bootloader/OS_ARCH/runw (macOS and Windows only), and

• ../PyInstaller/bootloader/OS_ARCH/runw_d (macOS and Windows only).

The bootloaders architecture defaults to the machine’s one, but can be changed using the --target-arch option
– given the appropriate compiler and development files are installed. E.g. to build a 32-bit bootloader on a 64-bit
machine, run:

python ./waf all --target-arch=32bit

If this reports an error, read the detailed notes that follow, then ask for technical help.

By setting the environment variable PYINSTALLER_COMPILE_BOOTLOADER the pip setup will attempt to build the
bootloader for your platform, even if it is already present. Doing so would execute the command python ./waf
configure all upon installation. You can also pass additional arguments to the build process by setting the
PYINSTALLER_BOOTLOADER_WAF_ARGS environment variable.

Supported platforms are

• GNU/Linux (using gcc)

• Windows (using Visual C++ (VS2015 or later) or MinGW’s gcc)

• Mac OX X (using clang)

Contributed platforms are

2.15. Building the Bootloader 109

http://www.pip-installer.org/
https://github.com/pyinstaller/pyinstaller/
http://www.pip-installer.org/

PyInstaller Documentation, Release 6.4.0

• AIX (using gcc or xlc)

• HP-UX (using gcc or xlc)

• Solaris

For more information about cross-building please read on and mind the section about the virtual machines provided in
the Vagrantfile.

2.15.1 Building for GNU/Linux

Development Tools

For building the bootloader you’ll need a development environment. You can run the following to install everything
required:

• On Debian- or Ubuntu-like systems:

sudo apt-get install build-essential zlib1g-dev

• On Fedora, RedHat and derivates:

sudo yum groupinstall "Development Tools"
sudo yum install zlib-devel

• For other Distributions please consult the distributions documentation.

Now you can build the bootloader as shown above.

Alternatively you may want to use the linux64 build-guest provided by the Vagrantfile (see below).

Cross Building for Different Architectures

Bootloaders can be built for other architectures such as ARM or MIPS using Docker. The Dockerfile contains the
instructions on how to do this. Open it in some flavour of text previewer to see them:

less bootloader/Dockerfile

2.15.2 Building for macOS

On macOS please install Xcode, Apple’s suite of tools for developing software for macOS. Instead of installing the full
Xcode package, you can also install and use Command Line Tools for Xcode. Installing either will provide the clang
compiler.

If the toolchain supports universal2 binaries, the 64-bit bootloaders are by default built as universal2 fat binaries
that support both x86_64 and arm64 architectures. This requires a recent version of Xcode (12.2 or later). On older
toolchains that lack support for universal2 binaries, a single-arch x86_64 thin bootloader is built. This behavior can
be controlled by passing --universal2 or --no-universal2 flags to the waf build command. Attempting to use
--universal2 flag and a toolchain that lacks support for universal2 binaries will result in configuration error.

The --no-universal2 flag leaves the target architecture unspecified letting the resultant executable’s architecture be
the C compiler’s default (which is almost certainly the architecture of the build machine). Should you want to build a
thin executable of either architecture, use the --no-universal2 flag and then optionally override the compiler, adding
the -arch flag, via the CC environment variable.

Build a thin, native executable:

110 Chapter 2. Contents:

https://www.docker.com/
https://github.com/pyinstaller/pyinstaller/tree/develop/bootloader/Dockerfile
http://developer.apple.com/xcode
https://developer.apple.com/download/more/

PyInstaller Documentation, Release 6.4.0

python waf --no-universal2 all

Build a thin, x86_64 executable (regardless of the build machine’s architecture):

CC='clang -arch x86_64' python waf --no-universal2 all

Build a thin, arm64 executable (regardless of the build machine’s architecture):

CC='clang -arch arm64' python waf --no-universal2 all

By default, the build script targets macOS 10.13, which can be overridden by exporting the MA-
COSX_DEPLOYMENT_TARGET environment variable.

Cross-Building for macOS

For cross-compiling for macOS you need the Clang/LLVM compiler, the cctools (ld, lipo, . . .), and the OSX SDK.
Clang/LLVM is a cross compiler by default and is available on nearly every GNU/Linux distribution, so you just need
a proper port of the cctools and the macOS SDK.

This is easy to get and needs to be done only once and the result can be transferred to you build-system. The build-
system can then be a normal (somewhat current) GNU/Linux system.1

Preparation: Get SDK and Build-tools

For preparing the SDK and building the cctools, we use the very helpful scripts from the OS X Cross toolchain. If you
are interested in the details, and what other features OS X Cross offers, please refer to its homepage.

To save you reading the OSXCross’ documentation, we prepared a virtual box definition that performs all re-
quired steps. If you are interested in the precise commands, please refer to packages_osxcross_debianoid,
prepare_osxcross_debianiod, and build_osxcross in the Vagrantfile.

Please proceed as follows:

1. Download Command Line Tools for Xcode 12.2 or later. You will need an Apple ID to search and download the
files; if you do not have one already, you can register it for free.

Please make sure that you are complying to the license of the respective package.

2. Save the downloaded .dmg file to bootloader/_sdks/osx/Xcode_tools.dmg.

3. Use the Vagrantfile to automatically build the SDK and tools:

vagrant up build-osxcross && vagrant halt build-osxcross

This should create the file bootloader/_sdks/osx/osxcross.tar.xz, which will then be installed on the
build-system.

If for some reason this fails, try running vagrant provision build-osxcross.

4. This virtual machine is no longer used, you may now want to discard it using vagrant destroy
build-osxcross.

1 Please keep in mind that to avoid problems, the system you are using for the preparation steps should have the same architecture (and possible
the same GNU/Linux distribution version) as the build-system.

2.15. Building the Bootloader 111

https://github.com/tpoechtrager/osxcross
https://developer.apple.com/download/more/

PyInstaller Documentation, Release 6.4.0

Building the Bootloader

Again, simply use the Vagrantfile to automatically build the macOS bootloaders:

export TARGET=OSX # make the Vagrantfile build for macOS
vagrant up linux64 && vagrant halt linux

This should create the bootloaders in * ../PyInstaller/bootloader/Darwin-*/.

If for some reason this fails, try running vagrant provision linux64.

3. This virtual machine is no longer used, you may now want to discard it using:

vagrant destroy build-osxcross

4. If you are finished with the macOS bootloaders, unset TARGET again:

unset TARGET

If you don’t want to use the build-guest provided by the Vagrant file, perform the following steps (see
build_bootloader_target_osx in the Vagrantfile):

mkdir -p ~/osxcross
tar -C ~/osxcross --xz -xf /vagrant/sdks/osx/osxcross.tar.xz
PATH=~/osxcross/bin/:$PATH
python ./waf all CC=x86_64-apple-darwin15-clang
python ./waf all CC=i386-apple-darwin15-clang

2.15.3 Building for Windows

The pre-compiled bootloader coming with PyInstaller are self-contained static executable that imposes no restrictions
on the version of Python being used.

When building the bootloader yourself, you have to carefully choose between three options:

1. Using the Visual Studio C++ compiler.

This allows creating self-contained static executables, which can be used for all versions of Python. This is why
the bootloaders delivered with PyInstaller are build using Visual Studio C++ compiler.

Visual Studio 2015 or later is required.

2. Using the MinGW-w64 suite.

This allows to create smaller, dynamically linked executables, but requires to use the same level of Visual Studio2

as was used to compile Python. So this bootloader will be tied to a specific version of Python.

The reason for this is, that unlike Unix-like systems, Windows doesn’t supply a system standard C library, leaving
this to the compiler. But Mingw-w64 doesn’t have a standard C library. Instead it links against msvcrt.dll, which
happens to exist on many Windows installations – but is not guaranteed to exist.

3. Using cygwin and MinGW.

This will create executables for cygwin, not for ‘plain’ Windows.

In all cases you may want

• to set the path to include python, e.g. set PATH=%PATH%;c:\python35,
2 This description seems to be technically incorrect. I ought to depend on the C++ run-time library. If you know details, please open an issue.

112 Chapter 2. Contents:

http://mingw-w64.sourceforge.net/
https://github.com/pyinstaller/pyinstaller/issues/

PyInstaller Documentation, Release 6.4.0

• to peek into the Vagrantfile or ../appveyor.yml to learn how we are building.

You can also build the bootloaders for cygwin.

Build using Visual Studio C++

• With our wscript file, you don’t need to run vcvarsall.bat to ’switch’ the environment between VC++ instal-
lations and target architecture. The actual version of C++ does not matter and the target architecture is selected
by using the --target-arch= option.

• If you are not using Visual Studio for other work, installing only the standalone C++ build-tools might be the
best option as it avoids bloating your system with stuff you don’t need (and saves a lot if installation time).

Hint: We recommend installing the build-tools software using the chocolatey package manager. While at a first
glance it looks like overdose, this is the easiest way to install the C++ build-tools. It comes down to two lines in
an administrative powershell:

... one-line-install as written on the chocolatey homepage
choco install -y python3 visualstudio2019-workload-vctools

• Useful Links:

– Microsoft Visual C++ Build-Tools 2015

– Microsoft Build-Tools for Visual Studio 2017.

After installing the C++ build-tool you can build the bootloader as shown above.

Build using MinGW-w64

Please be aware of the restrictions mentioned above.

If Visual Studio is not convenient, you can download and install the MinGW distribution from one of the following
locations:

• MinGW-w64 required, uses gcc 4.4 and up.

• TDM-GCC - MinGW (not used) and MinGW-w64 installers

Note: Please mind that using cygwin’s python or MinGW when running ./waf will create executables for cygwin, not
for Windows.

On Windows, when using MinGW-w64, add PATH_TO_MINGWbin to your system PATH. variable. Before building the
bootloader run for example:

set PATH=C:\MinGW\bin;%PATH%

Now you can build the bootloader as shown above. If you have installed both Visual C++ and MinGW, you might need
to add run python ./waf --gcc all.

2.15. Building the Bootloader 113

https://chocolatey.org/
http://landinghub.visualstudio.com/visual-cpp-build-tools
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/

PyInstaller Documentation, Release 6.4.0

Build using cygwin and MinGW

Please be aware that this will create executables for cygwin, not for ‘plain’ Windows.

Use cygwin’s setup.exe to install python and mingw.

Now you can build the bootloader as shown above.

2.15.4 Building for AIX

• By default AIX builds 32-bit executables.

• For 64-bit executables set the environment variable OBJECT_MODE.

If Python was built as a 64-bit executable then the AIX utilities that work with binary files (e.g., .o, and .a) may need
the flag -X64. Rather than provide this flag with every command, the preferred way to provide this setting is to use the
environment variable OBJECT_MODE. Depending on whether Python was build as a 32-bit or a 64-bit executable you
may need to set or unset the environment variable OBJECT_MODE.

To determine the size the following command can be used:

$ python -c "import sys; print(sys.maxsize <= 2**32)"
True

When the answer is True (as above) Python was build as a 32-bit executable.

When working with a 32-bit Python executable proceed as follows:

unset OBJECT_MODE
./waf configure all

When working with a 64-bit Python executable proceed as follows:

export OBJECT_MODE=64
./waf configure all

Note: The correct setting of OBJECT_MODE is also needed when you use PyInstaller to package your application.

To build the bootloader you will need a compiler compatible (identical) with the one used to build python.

Note: Python compiled with a different version of gcc that you are using might not be compatible enough. GNU tools
are not always binary compatible.

If you do not know which compiler that was, this command can help you determine if the compiler was gcc or an IBM
compiler:

python -c "import sysconfig; print(sysconfig.get_config_var('CC'))"

If the compiler is gcc you may need additional RPMs installed to support the GNU run-time dependencies.

When the IBM compiler is used no additional prerequisites are expected. The recommended value for CC with the IBM
compilers is :command:xlc_r.

114 Chapter 2. Contents:

https://docs.python.org/3/using/configure.html#envvar-CC

PyInstaller Documentation, Release 6.4.0

2.15.5 Building for FreeBSD

A FreeBSD bootloader may be built with clang using the usual steps on a FreeBSD machine. Beware, however that any
executable compiled natively on FreeBSD will only run on equal or newer versions of FreeBSD. In order to support
older versions of FreeBSD, you must compile the oldest OS version you wish to support.

Alternatively, the FreeBSD bootloaders may be cross compiled from Linux using Docker and a FreeBSD cross compiler
image. This image is kept in sync with the oldest non end of life FreeBSD release so that anything compiled on it will
work on all active FreeBSD versions.

In a random directory:

• Start the docker daemon (usually with systemctl start docker - possibly requiring sudo if you haven’t setup
rootless docker).

• Download the latest cross compiler .tar.xz image from here.

• Import the image: docker image load -i freebsd-cross-build.tar.xz. The cross compiler image is
now saved under the name freebsd-cross-build. You may discard the .tar.xz file if you wish.

Then from the root of this repository:

• Run:

docker run -v $(pwd):/io -it freebsd-cross-build bash -c "cd /io/bootloader; ./waf␣
→˓all"

2.15.6 Vagrantfile Virtual Machines

PyInstaller maintains a set of virtual machine description for testing and (cross-) building. For managing these boxes,
we use vagrant.

All guests3 will automatically build the bootloader when running vagrant up GUEST or vagrant provision GUEST.
They will build both 32- and 64-bit bootloaders.

When building the bootloaders, the guests are sharing the PyInstaller distribution folder and will put the built executa-
bles onto the build-host (into ../PyInstaller/bootloader/).

Most boxes requires two Vagrant plugins to be installed:

vagrant plugin install vagrant-reload vagrant-scp

Example usage:

vagrant up linux64 # will also build the bootloader
vagrant halt linux64 # or `destroy`

verify the bootloader has been rebuild
git status ../PyInstaller/bootloader/

You can pass some parameters for configuring the Vagrantfile by setting environment variables, like this:

GUI=1 TARGET=OSX vagrant up linux64

or like this:
3 Except of guest osxcross, which will build the OS X SDK and cctools as described in section Cross-Building for macOS.

2.15. Building the Bootloader 115

https://github.com/bwoodsend/freebsd-cross-build
https://github.com/bwoodsend/freebsd-cross-build
https://github.com/bwoodsend/freebsd-cross-build/releases
https://www.vagrantup.com/

PyInstaller Documentation, Release 6.4.0

export TARGET=OSX
vagrant provision linux64

We currently provide this guests:

linux64 GNU/Linux (some recent version) used to build the GNU/Linux bootloaders.

• If TARGET=OSX is set, cross-builds the bootloaders for macOS (see Cross-Building for macOS).

• If TARGET=WINDOWS is set, cross-builds the bootloaders for Windows using mingw. Please have
in mind that this imposes the restrictions mentioned above.

• Otherwise (which is the default) bootloaders for GNU/Linux are build.

windows10 Windows 10, used for building the Windows bootloaders using Visual C++.

• If MINGW=1 is set, the bootloaders will be build using MinGW. Please be aware of the restrictions
mentioned above.

Note: The Windows box uses password authentication, so in some cases you need to enter the
password (which is Passw0rd!).

build-osxcross GNU/Linux guest used to build the OS X SDK and cctools as described in section Cross-
Building for macOS.

2.16 Changelog for PyInstaller

2.16.1 6.4.0 (2024-02-10)

Features

• (Linux) Collect .hmac files accompanying shared libraries, if such files are available. This allows frozen appli-
cation to run on FIPS-enabled Red Hat Enterprise systems, where HMAC is required by self-check implemented
by the OpenSSL crypto library. Furthermore, ensure that shared libraries with accompanying .hmac files are ex-
empted from any additional processing (for example, when building with --strip option) to avoid invalidating
the HMAC. (#8273)

• (Windows) Make bootloader codepaths involved in creation of temporary directories for onefile builds
AppContainer-aware. If the process runs inside an AppContainer, the temporary directory’s DACL needs to
explicitly include the AppContainerSID, otherwise the directory becomes inaccessible to the process. (#8291)

• (Windows) Make Windows implementation of PyInstaller’s _pyi_rth_utils.tempdir.secure_mkdir (used
by matplotlib and win32com run-time hooks to create temporary directories) AppContainer-aware. If the
process runs inside an AppContainer, the temporary directory’s DACL needs to explicitly include the AppCon-
tainerSID, otherwise the directory becomes inaccessible to the process. (#8290)

• Implement strict Qt dependency validation for collection of Qt plugins and QML components/plugins. We now
perform preliminary binary dependency analysis of the plugins, and automatically exclude plugins that have at
least one missing Qt dependency. This prevents collection of plugins that cannot be used anyway because of
a missing Qt shared library (that is, for example, omitted from a PyPI wheel). Furthermore, we disallow Qt
dependencies of a plugin to be resolved outside of the primary location of Qt shared libraries, in order to prevent
missing dependencies from pulling in Qt libraries from alternative locations that happen to be in the search path
(for example, when using PyQt5 PyPI wheels while also having a system-installed Qt5 on Linux, a Homebrew-
installed Qt5 on macOS, or a custom Windows Qt5 build that happens to be in PATH). (#8226)

116 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/8273
https://github.com/pyinstaller/pyinstaller/issues/8291
https://github.com/pyinstaller/pyinstaller/issues/8290
https://github.com/pyinstaller/pyinstaller/issues/8226

PyInstaller Documentation, Release 6.4.0

Bugfix

• (Linux) Prevent collection of libcuda.so.1, which is part of NVIDIA driver and must match the rest of the
driver’s components. Collecting a copy might lead to issues when build and target system use different versions
of NVIDIA driver. (#8278)

• (macOS) When validating the macOS SDK version of collected binaries, handle errors raised by osxutils.
get_macos_sdk_version; log a warning about failed version query, and add the offending binary to the list of
potentially problematic binaries to warn the user about. (#8220)

• Fix pkgutil.iter_modules override to gracefully handle cases when the given path corresponds to a module
instead of a package. (#8191)

• Prevent Qt and QML plugins with missing Qt dependencies in the PySide2, PyQt5, PySide6, and PyQt6 PyPI
wheels from pulling in Qt shared libraries from alternative locations (for example, system-installed Qt on Linux,
Homebrew-installed Qt on macOS, or a custom Windows Qt build that happens to be in PATH), and resulting in
a frozen application that contains an incompatible mix of Qt libraries. (#8087)

• Switch the hashing function in PyInstaller’s binary cache from MD5 to SHA1, as the former cannot be used on
FIPS-enabled Red Hat Enterprise Linux systems. (#8288)

• When trying to run pyinstaller (or equivalent python -m PyInstaller) against non-existing script file(s),
exit immediately - without trying to write the .spec file and building it. This prevents us from overwriting an
existing (and customized) .spec file if user makes a typo in the .spec file’s suffix when trying to build it, for
example, pyinstaller program.cpes. (#8279)

Hooks

• (macOS) Have PySide6 and PyQt6 run-time hooks prepend sys._MEIPASS to DYLD_LIBRARY_PATH in POSIX
builds, in order to ensure that QtNetwork discovers the bundled copy of the OpenSSL shared library. (#8226)

• Extend the OpenSSL shared library collection in the QtNetwork hook helper for PySide2, PyQt5, PySide6,
and PyQt6 to cover all applicable versions of OpenSSL (1.0.2, 1.1.x, 3.x). In addition to Windows, the OpenSSL
shared library is now also collected on Linux and macOS. (#8226)

Bootloader

• (Windows) Update the bundled zlib sources to v1.3.1. (#8292)

Documentation

• Add a new documentation chapter, called Common Issues and Pitfalls, to cover topics such as launching external
programs from frozen applications, multi-processing via multiprocessing (specifically, the requirement to
call multiprocessing.freeze_support()), use of symbolic links in POSIX builds in PyInstaller >= 6.0 and
its implications for distribution (e.g., when copying frozen application, or creating zip archives), sys.stdout
and sys.stderr being None in Windows no-console builds. (#8214)

• Cleanup docstrings to remove mention of exec_command_stdout. (#8173)

• Update the Building macOS App Bundles section to reflect the layout of macOS app bundles as produced by
PyInstaller 6.0 and later. Add a note to discourage use of onefile .app bundles. (#8214)

• Update the introduction part of the Understanding PyInstaller Hooks section. (#8214)

2.16. Changelog for PyInstaller 117

https://github.com/pyinstaller/pyinstaller/issues/8278
https://github.com/pyinstaller/pyinstaller/issues/8220
https://github.com/pyinstaller/pyinstaller/issues/8191
https://github.com/pyinstaller/pyinstaller/issues/8087
https://github.com/pyinstaller/pyinstaller/issues/8288
https://github.com/pyinstaller/pyinstaller/issues/8279
https://github.com/pyinstaller/pyinstaller/issues/8226
https://github.com/pyinstaller/pyinstaller/issues/8226
https://github.com/pyinstaller/pyinstaller/issues/8292
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/constants.html#None
https://github.com/pyinstaller/pyinstaller/issues/8214
https://github.com/pyinstaller/pyinstaller/issues/8173
https://github.com/pyinstaller/pyinstaller/issues/8214
https://github.com/pyinstaller/pyinstaller/issues/8214

PyInstaller Documentation, Release 6.4.0

2.16.2 6.3.0 (2023-12-10)

Bugfix

• (Linux) Optimize the automatic binary-vs-data classification by avoiding objdump based check on files that do
not have ELF signature. This mitigates noticeably longer analysis times for projects with large number of (data)
files. (#8148)

• (Windows) Add Windows error code 110 (ERROR_OPEN_FAILED) to the list of error codes eligible for the retry
mechanism that attempts to mitigate build failures due to anti-virus program interference. (#8138)

• (Windows) Fix issue with non-functional time.sleep()when building program with Python <= 3.8.6 or Python
3.9.0. (#8104)

• (Windows) Fix issue with splash screen in onefilemode failing to extract VCRUNTIME140.dll from the archive
due to character-case mismatch. We now perform case-insensitive comparison between the name listed in splash
dependency list and the names in archive TOC. (#8103)

• Fix PEP 597 EncodingWarnings when PYTHONWARNDEFAULTENCODING is set to true. (#8117)

• Fix pre-safe-import hooks for six.moves, urllib3.packages.six.moves, and setuptools.extern.six.
moves to gracefully handle cases when the corresponding six package is unavailable, as the hook may end up
being executed even in that case. (#8145)

• Fix symbolic link tracking in MERGE processing, so that distinct symbolic links with same relative target (e.g.
Current -> A symbolic links in Qt .framework bundles collected on macOS) are properly processed, and kept
in the original TOC upon their first occurrence. (#8124)

Hooks

• Add hook for gi.repository.DBus. (#8149)

• Add hooks for gi.repository.AppIndicator3 and gi.repository.AyatanaAppIndicator3. (#8149)

Bootloader

• When setting up embedded Python interpreter configuration, set PyConfig.install_signal_handlers=1 to
install signal handlers. This matches the behavior of PyInstaller 5.x bootloaders, where interpreter was initialized
via Py_Initialize(), which in turn calls Py_InitializeEx(1), i.e., with install_sigs=1. (#8105)

2.16.3 6.2.0 (2023-11-11)

Features

• (macOS) At the end of analysis, verify the macOS SDK version reported by binaries to be collected, and warn
when the version is either invalid (0.0.0) or too low (< 10.9.0). Such binaries will likely cause issues with code-
signing and hardened runtime. (#8043)

• If the argcomplete Python module is installed, PyInstaller will use it enable tab completion for its CLI tools.
PyInstaller CLIs can still be used without this optional dependency. To install argcompletewith PyInstaller, you
can put pyinstaller[completion] in your dependencies. See also the argcomplete documentation. (#8008)

118 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/8148
https://github.com/pyinstaller/pyinstaller/issues/8138
https://docs.python.org/3/library/time.html#time.sleep
https://github.com/pyinstaller/pyinstaller/issues/8104
https://github.com/pyinstaller/pyinstaller/issues/8103
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNDEFAULTENCODING
https://github.com/pyinstaller/pyinstaller/issues/8117
https://github.com/pyinstaller/pyinstaller/issues/8145
https://github.com/pyinstaller/pyinstaller/issues/8124
https://github.com/pyinstaller/pyinstaller/issues/8149
https://github.com/pyinstaller/pyinstaller/issues/8149
https://github.com/pyinstaller/pyinstaller/issues/8105
https://github.com/pyinstaller/pyinstaller/issues/8043
https://kislyuk.github.io/argcomplete/
https://github.com/pyinstaller/pyinstaller/issues/8008

PyInstaller Documentation, Release 6.4.0

Bugfix

• (macOS) Fix the bug in binary processing and caching that would update the binary cache index before perform-
ing macOS-specific processing (architecture validation, path rewriting). If, for example, architecture validation
failed during a build, subsequent build attempts with enabled binary cache (i.e., without the --clean option)
would pick up the partially-processed binary file from the cache, bypassing the architecture validation. NOTE:
the existing binary caches need to be purged manually (using --clean option once) for the fix to take effect!
(#8068)

• (macOS) Prevent collection of .DS_Store files, which might be present in build environment’s package direc-
tories after user navigated them using the Finder app. (#8042)

• (Windows) Fix marshal error at the start of binary dependency analysis, caused by inferred DLL search path
ending up an instance of pathlib.Path instead of str. (#8081)

• Bump the required packaging version to 22.0, which is required for proper handling of metadata that contains
markers with extras. (#8061)

• Fix erroneous DLL parent path preservation when sys.base_prefix itself is a symbolic link. In such case,
we need to exclude both resolved and unresolved path variant for sys.base_prefix, in order to prevent either
from ending up in the list of directories for which DLL parent paths are preserved. Failing to do so, for example,
caused _ctypes failing to load in an application build on Windows with Python installed via scoop, due to
libffi-8.dll having spuriously preserved the parent directory path instead of being collected to top-level
application directory. (#8023)

• Fix matching of pre-release versions in PyInstaller.utils.hooks.check_requirement() and
PyInstaller.utils.hooks.is_module_satisfies(). Both functions now match pre-release ver-
sions, which restores the behavior of the old pkg_resources-based implementation from PyInstaller < 6.0 that
is implicitly expected by existing hooks. (#8093)

• If the entry-point script has no suffix, append the .py suffix to the filename passed to the compile function when
byte-compiling the script for collection. This ensures that the entry-point script filename never coincides with
executable filename, especially in POSIX builds, where executables have no suffix either (and their name is based
on the entry-point script basename by default). Entry-point script having the same filename as the executable
causes issues when traceback (and linecache) try to access source code for it, an in the process end up reading
the executable file if it happens to be in the current working directory. (#8046)

• Improve speed of pkgutil.iter_modules() override, especially in cases when the function is called multiple
times. (#8058)

• Load PyInstaller hooks using PEP 451 importlib.abc.Loader.exec_module instead of deprecated PEP
302 importlib.abc.Loader.load_module. (#8031)

• Prevent an attempt at relative import of a missing (optional) sub-module within a package (e.g., from .module
import something) from tricking the modulegraph/analysis into collecting an unrelated but eponymous top-
level module. (#8010)

Hooks

• Add hook for PySide6.QtGraphs that was introduced in PySide6 6.6.0. (#8021)

• Add hooks for distutils.command.check and setuptools._distutils.command.check that prevent un-
necessary collection of docutils (which in turn triggers collection of pygments, PIL, etc.). (#8053)

• Deduplicate and sort the list of discovered/selected matplotlib backends before displaying it in log messages,
to avoid giving impression that they are collected multiple times. (#8009)

• Update PySide6 hooks for compatibility with PySide6 6.6.0 and python 3.12. (#8021)

2.16. Changelog for PyInstaller 119

https://github.com/pyinstaller/pyinstaller/issues/8068
https://github.com/pyinstaller/pyinstaller/issues/8042
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/pyinstaller/pyinstaller/issues/8081
https://github.com/pyinstaller/pyinstaller/issues/8061
https://docs.python.org/3/library/sys.html#sys.base_prefix
https://github.com/pyinstaller/pyinstaller/issues/8023
https://github.com/pyinstaller/pyinstaller/issues/8093
https://github.com/pyinstaller/pyinstaller/issues/8046
https://docs.python.org/3/library/pkgutil.html#pkgutil.iter_modules
https://github.com/pyinstaller/pyinstaller/issues/8058
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302
https://github.com/pyinstaller/pyinstaller/issues/8031
https://github.com/pyinstaller/pyinstaller/issues/8010
https://github.com/pyinstaller/pyinstaller/issues/8021
https://github.com/pyinstaller/pyinstaller/issues/8053
https://github.com/pyinstaller/pyinstaller/issues/8009
https://github.com/pyinstaller/pyinstaller/issues/8021

PyInstaller Documentation, Release 6.4.0

2.16.4 6.1.0 (2023-10-13)

Features

• Allow users to re-enable the old onedir layout (without contents directory) by settings the
--contents-directory option (or the equivalent contents_directory argument to EXE in the .spec
file) to '.'. (#7968)

Bugfix

• (macOS) Prevent bootloader from clearing DYLD_* environment variables when running in onefile mode, in
order to make behavior consistent with onedir mode. (#7973)

• (Windows) Fix unintentional randomization of library search path order in the binary dependency analysis step.
The incorrect order of search paths would result in defunct builds when using both pywin32 and PyQt5, PyQt6,
PySide2, or PySide6, as it would prevent the python’s copy of VCRUNTIME140_1.dll from being collected
into the top-level application directory due to it being shadowed by the Qt-provided copy. Consequently, the
application would fail with ImportError: DLL load failed while importing pywintypes: The
specified module could not be found. (#7978)

• Ensure that __main__ is always in the list of modules to exclude, to prevent a program or a library that attempts
to import __main__ from pulling PyInstaller itself into frozen application bundle. (#7956)

• Fix PyInstaller.utils.hooks.collect_entry_point() so that it returns module names (without class
names). This matches the behavior of previous PyInstaller versions that regressed in PyInstaller v6.0.0 during
transition from pkg_resources to importlib.metadata. (#7958)

• Fix TypeError: process_collected_binary() got an unexpected keyword argument 'strip'
error when UPX compression is enabled. (#7998)

• Validate binaries returned by analysis of ctypes calls in collected modules; the analysis might return files that
are in PATH but are not binaries, which then cause errors during binary dependency analysis. An example of
such problematic case is the gmsh package on Windows, where ctypes.util.find_library('gmsh') ends
up resolving the python script called gmsh in the environment’s Scripts directory. (#7984)

Hooks

• Update PySide6.QtHttpServer hook for compatibility with PySide6 6.5.3 on Windows. (#7994)

PyInstaller Core

• (macOS) Lower the severity of a missing Info.plist file in a collected macOS .framework bundle from an error
to a warning (unless strict collection mode is enabled). While missing Info.plist in a collected .framework
bundle will cause codesign to refuse to sign the generated .app bundle, the user might be interested in building
just the POSIX application or may not plan to sign their .app bundle. Fixes building with old PyQt5 PyPI wheels
(< 5.14.1). (#7959)

120 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7968
https://github.com/pyinstaller/pyinstaller/issues/7973
https://github.com/pyinstaller/pyinstaller/issues/7978
https://github.com/pyinstaller/pyinstaller/issues/7956
https://github.com/pyinstaller/pyinstaller/issues/7958
https://github.com/pyinstaller/pyinstaller/issues/7998
https://github.com/pyinstaller/pyinstaller/issues/7984
https://github.com/pyinstaller/pyinstaller/issues/7994
https://github.com/pyinstaller/pyinstaller/issues/7959

PyInstaller Documentation, Release 6.4.0

2.16.5 6.0.0 (2023-09-22)

Features

• (macOS) PyInstaller now attempts to preserve the .framework bundles when collecting shared libraries from
them. If a shared library is to be collected from a .framework bundle, the Info.plist is also automatically
collected. The .framework bundle collection code also attempts to fix the bundles’ structure to conform to
code-signing requirements (i.e., creation of the Current symbolic link in the Versions directory, and top-level
contents being symbolic links that point to counterparts in the Versions/Current directory). Note that other
resources (for example from Resources or Helpers directories) still need to be explicitly collected by hooks.
(#7619)

• (macOS) The file relocation mechanism in BUNDLE that generates macOS .app bundles has been completely re-
designed. All data files are now placed into directory structure rooted in Contents/Resources, all shared
libraries (as well as nested .framework bundles) are placed into directory structure rooted in Contents/
Frameworks, and only the the program executable is placed into the Contents/MacOS directory. The contents
of Contents/Resources and Contents/Frameworks directories are cross-linked via symlinks between the
two directory trees in order to maintain illusion of mixed-content directories (in both directory trees). The cross-
linking is done at either file level or (sub)directory level, depending on the content type of a (sub)directory. For
directories in Contents/Frameworks that contain a dot in the name, a work-around is automatically applied:
the directory is created with a modified name that does not include the dot, and next to it, a symbolic link is
created under the original name and pointing to the directory with modified name. (#7619)

• (non-Windows) PyInstaller now attempts to preserve the parent directory structure for shared libraries discov-
ered and collected by the binary dependency analysis, instead of automatically collecting them into the top-level
application directory. Due to library search path assumptions made in various places, symbolic links to col-
lected libraries are created in the top-level application directory. This complements earlier work (#7028) that
implemented DLL parent directory structure preservation on Windows. (#7619)

• (Windows) Add an option to hide or minimize the console window in console-enabled applications, but only if
the program’s process owns the console window (i.e., the program was not launched from an existing console
window). (#7729)

• (Windows) The --add-data and --add-binary options accept the POSIX syntax of
--add-data=source:dest rather than --add-data=source;dest. The latter will continue to work
on Windows to avoid breaking backwards compatibility but is discouraged in favour of the now cross platform
format. (#6724)

• Add automatic binary vs. data file (re)classification step to the analysis process. PyInstaller now inspects all files
passed to Analysis via datas and binaries arguments, as well as all files returned by hooks via datas and
binaries hook global variables. The inspection mechanism is platform-specific, and currently implemented
for Windows, Linux, and macOS. Proper file classification ensures that all collected binary files undergo binary
dependency analysis and any other platform-specific binary processing. On macOS, it also helps ensuring that
the collected files are placed in the proper directory in the generated .app bundles. (#7619)

• Add support for specifying hash randomization seed via hash_seed=<value> run-time option when building
the application. This allows the application to use a fixed seed value or disable hash randomization altogether by
using seed value of 0. (#7847)

• Allow spec files to take custom command line parameters. See adding parameters to spec files. (#4482)

• Extend the operation retry mechanism that was initially introduced by #7840 to cover all processing steps that are
performed during assembly of a Windows executable. This attempts to mitigate the interference from anti-virus
programs and other security tools, which may temporarily block write access to the executable for a scan between
individual processing steps. (#7871)

• Implement pass-through for Python’s X-options via PyInstaller’s run-time options mechanism. (#7847)

2.16. Changelog for PyInstaller 121

https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7028
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7729
https://github.com/pyinstaller/pyinstaller/issues/6724
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7847
https://github.com/pyinstaller/pyinstaller/issues/4482
https://github.com/pyinstaller/pyinstaller/issues/7840
https://github.com/pyinstaller/pyinstaller/issues/7871
https://docs.python.org/3/using/cmdline.html#cmdoption-X
https://github.com/pyinstaller/pyinstaller/issues/7847

PyInstaller Documentation, Release 6.4.0

• Implement support for creating symbolic links from special 'SYMLINK' TOC entries, either at build-time
(onedir mode) or at run-time (onefile mode). Implement symbolic link preservation support in the analy-
sis process; if a file and a symbolic link pointing to it are both to be collected, and if their relative relationship is
preserved in the frozen application, the symbolic link is collected as a 'SYMLINK' entry. (#7619)

• Implement PyInstaller.utils.hooks.check_requirement() hook utility function as an importlib.
metadata-based replacement for PyInstaller.utils.hooks.is_module_satisfies(); the latter is now
just an alias for the former, kept for compatibility with existing hooks. (#7943)

• Restructure onedir mode builds so that everything except the executable (and .pkg if you’re using external PYZ
archive mode) are hidden inside a sub-directory. This sub-directory’s name defaults to _internal but may be
configured with a new --contents-directory option. Onefile applications and macOS .app bundles are
unaffected. (#7713)

• The PyInstaller.utils.hooks.collect_all() hook utility function now attempts to translate the given
importable package name into distribution name before attempting to collect metadata. This allows the function
to handle cases when the distribution name does not match the importable package name. (#7943)

Bugfix

• (macOS) QtWebEngine now works in onefile builds (previously available only in onedir builds). (#4361)

• (macOS) Fix the shared library duplication problem where a shared library that is also referred to via its sym-
bolic links (e.g., a shared library libwx_baseu-3.1.5.0.0.dylib with symbolic links libwx_baseu-3.1.
5.dylib and libwx_baseu-3.0.dylib) ends up collected as duplicates and consequently crashes the program.
The symbolic links should now be preserved, thus avoiding the problem. (#5710)

• (macOS) In generated .app bundles, the data files from PySide2, PySide6, PyQt5, or PyQt6 directory are now
relocated to the directory structure rooted in Contents/Resources to ensure compliance with code-signing
requirements. The content cross-linking between Contents/Resources and Contents/Frameworks should
ensure that QML components in the qml sub-directory continue to work in spite of plugins (shared libraries) being
technically separated from their corresponding metadata files. The automatic work-around for directories with
dots in names should prevent code-signing issues due to some QML components in Qt5 having dot in their names
(e.g. QtQuick.2 and QtQuick/Controls.2. (#7619)

• (macOS) In generated .app bundles, the source .py files are now again relocated to Contents/Resources di-
rectory (and cross-linked into Contents/Frameworks), which ensures that code-signing does not store signa-
tures into the files’ extended attributes. This reverts the exemption made in #7180 to accommodate the cv2
loader script; the problem is now solved by cross-linking binaries from Contents/Frameworks to Contents/
Resources, which allows the loader to find the extension binary (or rather, a symbolic link to it) next to the .py
file. (#7619)

• (macOS) Sandboxing for QtWebEngine in PySide6 and PyQt6 is not disabled anymore by the corresponding
run-time hooks (see #6903), as it should work out-of-the-box thanks to PyInstaller now preserving the structure
of the QtWebEngineCore.framework bundle. (#7619)

• (macOS) The main process in a program that uses QtWebEngine is not mis-identified as QtWebEngineCore
anymore in the application’s menu bar. This applies to onedir POSIX program builds (i.e. the .app bundles
were not affected by this). (#5409)

• (Windows) Avoid aborting the build process if machine type (architecture) cannot be determined for a DLL in a
candidate search path; instead, skip over such files, and search in other candidate paths. Fixes build errors when
a search path contains an invalid DLL file (for example, a stub file). (#7874)

• (Windows) Prevent PyInstaller’s binary dependency analysis from looking for shared libraries in all sys.path
locations. Instead, search only sys.base_prefix and pywin32 directories, of available. This, for example,
prevents PyInstaller from picking up incompatible DLLs from system-installed programs that happen to put
their installation directory into system-wide PYTHONPATH. (#5560)

122 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7619
https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://github.com/pyinstaller/pyinstaller/issues/7943
https://github.com/pyinstaller/pyinstaller/issues/7713
https://github.com/pyinstaller/pyinstaller/issues/7943
https://github.com/pyinstaller/pyinstaller/issues/4361
https://github.com/pyinstaller/pyinstaller/issues/5710
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7180
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/6903
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/5409
https://github.com/pyinstaller/pyinstaller/issues/7874
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.base_prefix
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://github.com/pyinstaller/pyinstaller/issues/5560

PyInstaller Documentation, Release 6.4.0

• (Windows) Remove the use of deprecated distutils.sysconfig module. The import of this module seems to
cause the python process to crash when tensorflow is subsequently imported during import analysis. (#7347)

• Fix file duplication when collecting a file and symbolic links pointing at it; with new symbolic link support, the
symbolic links are now properly preserved. This should help reducing the size of builds made on Linux and
macOS with Anaconda, which provides versioned symbolic links for packaged shared libraries, and PyInstaller
tends to collect them all due to hook helper based on the packages’ metadata. (#7619)

• Fix incompatibility between PyInstaller’s frozen importer (PyiFrozenImporter) and importlib.resources
when trying to look up the resources of a collected namespace package via importlib.resources.files().
(#7921)

• When copying files into onedir application bundles, use shutil.copyfile() instead of shutil.copy2() to
avoid issues with original permissions/metadata being too restrictive. (#7938)

Incompatible Changes

• (Linux) Removed support for building LSB-compliant bootloader, due to lack of support for LSB (Linux Standard
Base) in contemporary linux distributions. (#7807)

• (macOS) Due to relocation of all dynamic libraries into directory structure rooted in the Contents/Frameworks
directory, the sys._MEIPASS variable as well as the os.path.dirname(__file__) in the entry-point
script now point to Contents/Frameworks instead of Contents/MacOS, while os.path.dirname(sys.
executable) continues to point to the Contents/MacOS directory. The behavior change applies only to onedir
.app bundles (in onefile ones, sys._MEIPASS and __file__ of the entry-point script have always pointed to
the temporary extraction directory and continue to do so). (#7619)

• (macOS) The changes made to the macOS .app bundle generation code and the resulting .app bundle structure
(strict relocation of binaries to Contents/Frameworks and data files to Contents/Resources, bi-directional
cross-linking between Contents/Frameworks and Contents/Resources, preservation of nested .framework
bundles, automatic work-around for dots in directory names) are likely incompatible with existing (external)
post-processing scripts. (#7619)

• (Windows) Removed command-line options related to processing of the WinSxS assemblies:
--win-private-assemblies and --win-no-prefer-redirects. The corresponding arguments to
Analysis are deprecated and raise and error if set to True. (#7784)

• (Windows) Removed support for analyzing and collection of dependencies referenced via WinSxS (side-by-side)
assemblies. This affects binaries compiled with Visual Studio 2008 and earlier, as VC9 run-time was the last
version to make use of WinSxS. If you require support for such binaries and you need referenced WinSxS binaries
collected with your application, use older version of PyInstaller. (#7784)

• (Windows) Removed support for external application manifest in onedir builds. Removed the
--no-embed-manifest command-line option and deprecated the corresponding embed_manifest argument
to EXE to raise an error if set to False. (#7784)

• All of onedir build’s contents except for the executable are now moved into a sub-directory (called _internal
by default). sys._MEIPASS is adjusted to point to this _internal directory. The breaking implications for this
are:

– Assumptions that os.path.dirname(sys.executable) == sys._MEIPASS will break. Code locating
application resources using os.path.dirname(sys.executable) should be adjusted to use __file__
or sys._MEIPASS and any code locating the original executable using sys._MEIPASS should use sys.
executable directly.

– Any custom post processing steps (either in the .spec file or externally) which modify the bundle will
likely need adjusting to accommodate the new directory. (#7713)

2.16. Changelog for PyInstaller 123

https://github.com/pyinstaller/pyinstaller/issues/7347
https://github.com/pyinstaller/pyinstaller/issues/7619
https://docs.python.org/3/library/importlib.resources.html#module-importlib.resources
https://docs.python.org/3/library/importlib.resources.html#importlib.resources.files
https://github.com/pyinstaller/pyinstaller/issues/7921
https://docs.python.org/3/library/shutil.html#shutil.copyfile
https://docs.python.org/3/library/shutil.html#shutil.copy2
https://github.com/pyinstaller/pyinstaller/issues/7938
https://github.com/pyinstaller/pyinstaller/issues/7807
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7619
https://github.com/pyinstaller/pyinstaller/issues/7784
https://github.com/pyinstaller/pyinstaller/issues/7784
https://github.com/pyinstaller/pyinstaller/issues/7784
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.executable
https://github.com/pyinstaller/pyinstaller/issues/7713

PyInstaller Documentation, Release 6.4.0

• PyInstaller-frozen applications are not affected by the PYTHONUTF8 environment variable anymore. To perma-
nently enable or disable the UTF8 mode, use the X utf8_mode=1 or X utf_mode=0 run-time option when
building the application. (#7847)

• Remove bytecode encryption (--key and cipher options). (#6999)

• Remove the --ascii command-line option, which is an effective no-op under python 3; the codecs module is
always collected due to being listed among the base modules. (#7801)

• Remove the built-in attempt at collection of data files from packages that are installed as python eggs. Collection
of all non-python resources from packages should be handled in the standardized way via hooks, regardless of
how a package is installed. (#7784)

• Remove support for zipped eggs. PyInstaller will not collect python code nor resources from zipped eggs, nor
will it collect zipped eggs as a whole. (#7784)

• Remove the requirements_for_package hook utility function, which was primarily used by
collect_all(); the latter does not include the top-level modules of metadata-declared requirements
among the returned hidden imports anymore. (#7943)

• The PyInstaller.utils.hooks.collect_data_files() hook utility helper does not collect .pyc files
from __pycache__ directories anymore, even with include_py_files=True argument. (#7943)

• The PyInstaller.utils.hooks.is_module_satisfies() helper does not support the version and
version_attribute arguments anymore; the function will raise an error if they are specified. If the distri-
bution specified in the requirements string is not found, the function will not attempt to import the eponymous
module and read its version attribute anymore. (#7943)

• The collection of “py files”, enabled by the include_py_files=True argument to the PyInstaller.utils.
hooks.collect_data_files() hook utility function, is now restricted to only .py and .pyc files. Previously,
all suffices from importlib.machinery.all_suffixes()were enabled, which resulted in spurious collection
of dynamic libraries and extensions (due to .so, .abi3.so, .pyd, etc. being among those suffices). (#7943)

Bootloader

• (Linux, macOS) When extracting files from onefile archive, the executable bit is now set only on binaries
(files whose TOC type code was either BINARY, EXECUTABLE, or EXTENSION) or data files that originally had
the executable bit set. Therefore, binaries are now extracted with permissions bits set to 0700, while all other
files have permissions bits set to 0600. (#7950)

• Use PEP 587 Python Initialization Configuration API to configure the embedded Python interpreter. (#7847)

PyInstaller Core

• (Windows) The temporary/intermediate executable files are not generated with .notanexecutable suffix any-
more, as the retry mechanism from #7840 and #7871 is now the preferred way of dealing with anti-virus program
interference during the build. (#7871)

• Avoid collecting pathlib and tokenize (and their dependencies, such as urllib) into base_library.zip.
By collecting them into PYZ archive, only submodules that the application really requires can be collected, which
helps reducing the size of applications that, for example, do not require the full urllib package. (#7836)

• Drop support for end of life Python 3.7. (#7733)

124 Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONUTF8
https://github.com/pyinstaller/pyinstaller/issues/7847
https://github.com/pyinstaller/pyinstaller/issues/6999
https://docs.python.org/3/library/codecs.html#module-codecs
https://github.com/pyinstaller/pyinstaller/issues/7801
https://github.com/pyinstaller/pyinstaller/issues/7784
https://github.com/pyinstaller/pyinstaller/issues/7784
https://github.com/pyinstaller/pyinstaller/issues/7943
https://github.com/pyinstaller/pyinstaller/issues/7943
https://github.com/pyinstaller/pyinstaller/issues/7943
https://docs.python.org/3/library/importlib.html#importlib.machinery.all_suffixes
https://github.com/pyinstaller/pyinstaller/issues/7943
https://github.com/pyinstaller/pyinstaller/issues/7950
https://peps.python.org/pep-0587
https://github.com/pyinstaller/pyinstaller/issues/7847
https://github.com/pyinstaller/pyinstaller/issues/7840
https://github.com/pyinstaller/pyinstaller/issues/7871
https://github.com/pyinstaller/pyinstaller/issues/7871
https://github.com/pyinstaller/pyinstaller/issues/7836
https://github.com/pyinstaller/pyinstaller/issues/7733

PyInstaller Documentation, Release 6.4.0

Bootloader build

• To enable the passing of extra arguments to the bootloader compiler during installation via pip, you can utilize
the environment variable PYINSTALLER_BOOTLOADER_WAF_ARGS. However, it is essential to ensure that the
environment variable PYINSTALLER_COMPILE_BOOTLOADER is present for this functionality to work correctly.
(#7796)

2.16.6 5.13.2 (2023-08-29)

Bugfix

• (Windows) Fix OSError: exception: access violation reading 0x00000010 raised by
matplotlib and win32com run-time hooks when ran in 32-bit frozen application (regression introduced
in v5.13.1). (#7893)

Hooks

• Fix the license of the new _pyi_rth_utils run-time package; it is now licensed under permissive Apache
license, which matches the license of the run-time hooks that use this run-time package. (#7894)

PyInstaller Core

• Fix the license of the pyi_splash run-time module; it is now licensed under permissive Apache license to avoid
unintentionally imposing additional license restrictions on the frozen applications that make use of this module.
(#7896)

2.16.7 5.13.1 (2023-08-26)

Security

• (Windows) Ensure that the access to temporary directories created by the matplotlib and win32com run-time
hooks is restricted to the user running the frozen application, even if the directory in the TMP or TEMP variables
points to a system-wide world writable location that can be accessed by all users. (#7827)

Bugfix

• (macOS) Fix pkgutil.iter_modules() failing to find submodules of a package that contains data files when
running as a macOS .app bundle. (#7884)

• (Windows) Fix win32com run-time hook to fully isolate the gen_py cache. This prevents access to the global
cache, which results in errors when the global cache contains some, but not all, required modules. (#6257)

• (Windows) Fix splash screen not being able to locate collected Tk resources in onefile applications created in
MSYS2 python environment. (#7828)

• (Windows) Fixed bug where GdkPixbuf loaders.cache dll paths are absolute paths (e.g. C:/tools/msys64/
mingw64/lib/gdk-pixbuf-2.0/2.10.0/loaders/*.dll) and not relative paths (e.g. lib\\gdk-pixbuf\
\loaders\\libpixbufloader-png.dll) when the file is generated in the MSYS2/mingw64 environment.
This results in the program crashing when run on another Windows machine because it cannot find the GdkPixbuf
loader DLLs. (#7842)

• Exclude NVIDIA graphics driver libraries from vendoring. (#7746)

2.16. Changelog for PyInstaller 125

https://github.com/pyinstaller/pyinstaller/issues/7796
https://github.com/pyinstaller/pyinstaller/issues/7893
https://github.com/pyinstaller/pyinstaller/issues/7894
https://github.com/pyinstaller/pyinstaller/issues/7896
https://github.com/pyinstaller/pyinstaller/issues/7827
https://docs.python.org/3/library/pkgutil.html#pkgutil.iter_modules
https://github.com/pyinstaller/pyinstaller/issues/7884
https://github.com/pyinstaller/pyinstaller/issues/6257
https://github.com/pyinstaller/pyinstaller/issues/7828
https://github.com/pyinstaller/pyinstaller/issues/7842
https://github.com/pyinstaller/pyinstaller/issues/7746

PyInstaller Documentation, Release 6.4.0

• Fix error handling in Glib schema compilation helper function. Ignore character encoding errors when reading
stdout/stderr from glib-schema-compile process; this fixes errors in MSYS2/mingw64 environment, caused
by U+201C and U+201D quotation marks in the output. (#7833)

• Implement a work-around for un-initialized sys._stdlib_dir and ensure that python-frozen stdlib modules in
Python >= 3.11 have __file__ attribute set. (#7847)

Hooks

• Add support for commercial PyQt5 and PyQt6 wheels. (#7770)

Bootloader

• Have bootloader call Py_GetPath() before Py_SetPath() on all platforms (instead of just on Windows) to
work around memory-initialization issues in python 3.8 and 3.9, which come to light with PYTHONMALLOC=debug
or PYTHONDEVMODE=1 being set in the environment. (#7790)

2.16.8 5.13.0 (2023-06-24)

Features

• Add support for Python 3.12. (#7670)

• (Windows) Add support for collecting .pyc files from the python3X.zip archive where Windows embeddable
package Python stores its stdlib modules. (#4989)

Bugfix

• Limit the import of collected packages prior to performing binary dependency analysis to only Windows, where
it is actually useful. On non-Windows platforms, there is no benefit to it, and it might cause issues with particular
orders of package imports. (#7698)

• When building PKG for onedir build, ensure that DATA entries are put into dependencies list instead of including
them in the PKG. This complements existing behavior for BINARY and EXTENSION entries, and prevents a onedir
build from becoming a broken onefile one if user accidentally passes binaries and data files TOCs to EXE instead
of COLLECT when manually editing the spec file. (#7708)

2.16.9 5.12.0 (2023-06-08)

Features

• (macOS) PyInstaller now removes all rpaths from collected binaries and replaces them with a single rpath point-
ing to the top-level application directory, relative to @loader_path. (#7664)

• Attempt to preserve the parent directory layout for pywin32 extensions that originate from win32 and
pythonwin directories, instead of collecting those extensions to top-level application directory. (#7627)

126 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7833
https://github.com/pyinstaller/pyinstaller/issues/7847
https://github.com/pyinstaller/pyinstaller/issues/7770
https://docs.python.org/3/c-api/init.html#c.Py_GetPath
https://docs.python.org/3/c-api/init.html#c.Py_SetPath
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONMALLOC
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONDEVMODE
https://github.com/pyinstaller/pyinstaller/issues/7790
https://github.com/pyinstaller/pyinstaller/issues/7670
https://github.com/pyinstaller/pyinstaller/issues/4989
https://github.com/pyinstaller/pyinstaller/issues/7698
https://github.com/pyinstaller/pyinstaller/issues/7708
https://github.com/pyinstaller/pyinstaller/issues/7664
https://github.com/pyinstaller/pyinstaller/issues/7627

PyInstaller Documentation, Release 6.4.0

Bugfix

• (Linux/macOS) Fix the Qt directory path override in PySide2 and PySide6 run-time hooks. These paths, set
via QT_PLUGIN_PATH and QML2_IMPORT_PATH environment variables, are used with PySide2 and PySide6
builds that that use system-wide Qt installation and are not portable by default (e.g. Homebrew). (#7649)

• (macOS) When rewriting the dylib identifier and paths to linked libraries in a collected binary, instead of directly
using @loader_path-based path, use @rpath-based path and replace rpaths in the binary with a single rpath that
points to the top-level application directory, relative to @loader_path. This ensures that the library identifiers
of collected shared libraries and their references in referring binaries always match, which allows packages to
pre-load a library from an arbitrary location via for example ctypes. (#7664)

• (Windows) Fix string serialization of VSVersionInfo to account for the possibility of StringStruct values
containing quote characters. (#7630)

• Attempt to fix compatibility of PyInstaller’s PyiFrozenImporter with importlib.util.LazyLoader.
(#7657)

• Attempt to mitigate issues with Anaconda pywin32 package that result from the package installing three copies
of pywintypes3X.dll and pythoncom3X.dll in different locations. (#7627)

• Changes made to datas and binaries lists that are passed to Analysis constructor will now invalidate the
cached Analysis and trigger a re-build. This applies both to changes made by editing the .spec file manually
and to automatic changes due to addition or removal of corresponding command-line options (--add-data,
--add-binary, --collect-data, --collect-binaries, --copy-metadata). Previously, changes might
not have taken effect as the old cached build was returned if available and unless user explicitly requested a clean
build using the --clean command-line option. (#7653)

• Ensure that qt_{lang} translation files are collected with the QtCore module, in addition to already-collected
qtbase_{lang} files. Applies to all four Qt-bindings: PySide2, PySide6, PyQt5, and PyQt6. (#7682)

• Fix ModuleNotFoundError: No module named 'ipaddress' for any application built with Python
>=3.11.4. (#7692)

• Fix splash-enabled program crashing due to NULL-pointer dereference in the bootloader when the Tcl/Tk shared
libraries cannot be loaded. The program should now run the user’s python code, where it will raise an exception
if the pyi_splash module is used. (#7679)

• Implement proper binary dependency scanning in the SPLASH target, so that binary dependencies of the Tcl and
Tk shared libraries are always collected and added to the list of splash requirements (for pre-extraction in onefile
builds). This fixes the splash screen when building with Windows build of python.org Python 3.12b1, which
ships Tcl shared library with new dependency on zlib1.dll. (#7679)

PyInstaller Core

• (macOS) Use macOS-provided install_name_tool utility to modify headers on collected binaries: change
the dylib identifier to @rpath/<name>.dylib, rewrite paths to linked non-system shared libraries to @rpath/
<dependency>, remove any additional rpaths and add an rpath pointing to the application’s top-level directory,
relative to the @loader_path. Previously, the header modification was performed using macholib and was
limited only to modification of dylib identifier and paths to linked non-system shared libraries. (#7664)

2.16. Changelog for PyInstaller 127

https://github.com/pyinstaller/pyinstaller/issues/7649
https://github.com/pyinstaller/pyinstaller/issues/7664
https://github.com/pyinstaller/pyinstaller/issues/7630
https://github.com/pyinstaller/pyinstaller/issues/7657
https://github.com/pyinstaller/pyinstaller/issues/7627
https://github.com/pyinstaller/pyinstaller/issues/7653
https://github.com/pyinstaller/pyinstaller/issues/7682
https://github.com/pyinstaller/pyinstaller/issues/7692
https://github.com/pyinstaller/pyinstaller/issues/7679
https://github.com/pyinstaller/pyinstaller/issues/7679
https://github.com/pyinstaller/pyinstaller/issues/7664

PyInstaller Documentation, Release 6.4.0

2.16.10 5.11.0 (2023-05-13)

Features

• Add a work-around for pure-python modules that do not specify encoding via PEP 263 encoding header but
contain non-ASCII characters in local (non-UTF8) encoding. When such characters are present only in code
comments, python still loads and runs the module, but attempting to retrieve its source code via the loader’s
get_source() method results in a UnicodeDecodeError, which interrupts the analysis process. The error is
now caught and a fall-back codepath attempts to retrieve the source code as raw data to avoid encoding issues.
(#7622)

Bugfix

• (Windows) Avoid writing collected binaries to binary cache unless they need to be processed (i.e., only if binary
stripping or upx processing is enabled). (#7595)

• Fix a regression in bootloader that caused crash in onefile executables when encountering a duplicated entry in
the PKG/CArchive and the PYINSTALLER_STRICT_UNPACK_MODE environment variable not being set. (#7613)

Deprecations

• The TOC class is now deprecated; use a plain list with the same three-element tuples instead. PyInstaller now
performs explicit normalization (i.e., entry de-duplication) of the TOC lists passed to the build targets (e.g., PYZ,
EXE, COLLECT) during their instantiation. (#7615)

Bootloader

• Fix bootloader building with old versions of gcc that do not support the
-Wno-error=unused-but-set-variable compiler flag (e.g., gcc v4.4.3). (#7592)

Documentation

• Update the documentation on TOC lists and Tree class to reflect the deprecation of the TOC class. (#7615)

PyInstaller Core

• Remove the use of the TOC class in the analysis / build process, and use plain list instances instead. The
implicit normalization (de-duplication) of TOC entries performed by the TOC class has been replaced with ex-
plicit normalization. The TOC lists produced by Analysis are explicitly normalized at the end of Analysis
instantiation, before they are stored in the Analysis properties (e.g., Analysis.pure, Analysis.binaries,
Analysis.datas). Similarly, the TOC lists passed to the build targets (e.g., PYZ, EXE, COLLECT) are explicitly
normalized as part of the targets’ instantiation process. (#7615)

128 Chapter 2. Contents:

https://www.python.org/dev/peps/pep-0263
https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError
https://github.com/pyinstaller/pyinstaller/issues/7622
https://github.com/pyinstaller/pyinstaller/issues/7595
https://github.com/pyinstaller/pyinstaller/issues/7613
https://github.com/pyinstaller/pyinstaller/issues/7615
https://github.com/pyinstaller/pyinstaller/issues/7592
https://github.com/pyinstaller/pyinstaller/issues/7615
https://github.com/pyinstaller/pyinstaller/issues/7615

PyInstaller Documentation, Release 6.4.0

2.16.11 5.10.1 (2023-04-14)

Bugfix

• Fix regression on platforms with strict data alignment requirements (such as linux on armhf/armv7), caused by
bug in PKG/CArchive generation that was introduced during the archive writer code cleanup. The regression
caused executable to terminate with Bus error on the affected platforms, such as 32-bit Debian Buster on
Raspberry Pi 4. (#7566)

2.16.12 5.10.0 (2023-04-11)

Bugfix

• (Linux) Ignore the executable name resolution based on /proc/self/exe when the PyInstaller-frozen exe-
cutable is launched via the ld.so dynamic loader executable. In such cases, the resolved name points to the
ld.so executable, causing the PyInstaller-frozen executable to fail with Cannot open PyInstaller archive from
executable. . . error. (#7551)

• Ensure that binaries that are manually specified in the .spec file (or via corresponding --add-binary or
--collect-binaries command-line switches) undergo the binary dependency analysis, so their dependen-
cies are automatically collected. (#7522)

• Extend the excludedimports mechanism rework from #7066 to properly handle relative imports within the
package. For example, ensure that excludedimports = ['a.b'] within the hook for package a takes effect
when package a does from . import b (in addition to from a import b). (#7495)

• Extend the excludedimports mechanism rework from #7066 to properly handle the case of multiple sub-
modules being imported in a single from ... import ... statement (using absolute or relative import). For
example, when package c does from d import e, f, we need to consider potential excludedimports rules
matching package d and, if d itself is not excluded, potential rules individually matching d.e and d.f. (#7495)

• Fix marshal error in binary dependency search stage, caused by the list of collected packages containing a
modulegraph.Alias instance instead of only plain str instances. (#7515)

• Reorganize the multiprocessing run-time hook to override Popen implementations only for spawn and
forkserver start methods, but not for the fork start method. This avoids a dead-lock when attempting to
perform nested multiprocessing using the fork start method, which occurred due to override-provided lock (in-
troduced in #7411) being copied in its locked state into the forked sub-process. (#7494)

Incompatible Changes

• The archive_viewer utility has been rewritten with modified command-line interface (--log has been re-
named to --list) and with changed output formatting. (#7518)

2.16. Changelog for PyInstaller 129

https://github.com/pyinstaller/pyinstaller/issues/7566
https://github.com/pyinstaller/pyinstaller/issues/7551
https://github.com/pyinstaller/pyinstaller/issues/7522
https://github.com/pyinstaller/pyinstaller/issues/7066
https://github.com/pyinstaller/pyinstaller/issues/7495
https://github.com/pyinstaller/pyinstaller/issues/7066
https://github.com/pyinstaller/pyinstaller/issues/7495
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/pyinstaller/pyinstaller/issues/7515
https://github.com/pyinstaller/pyinstaller/issues/7411
https://github.com/pyinstaller/pyinstaller/issues/7494
https://github.com/pyinstaller/pyinstaller/issues/7518

PyInstaller Documentation, Release 6.4.0

Hooks

• (Windows) Improve support for matplotlib >= 3.7.0 by collecting all delvewheel-generated files from the
matplotlib.libs directory, including the load-order file. This is required when PyPI matplotlib wheels are
used in combination with Anaconda python 3.8 and 3.9. (#7503)

• Add hook for PyQt6.QtSpatialAudio module, which was added in PyQt6 6.5.0. (#7549)

• Add hook for PyQt6.QtTextToSpeech module, which was added in PyQt6 6.4 series. (#7549)

• Extend PySide6 hooks for PySide6 6.5.0 compatibility: add hooks for QtLocation, QtTextToSpeech, and
QtSerialBus modules that were introduced in PySide 6.5.0. (#7549)

Documentation

• Clarify the supported color specification formats and apply consistent formatting of default parameter values in
the splash screen documentation. (#7529)

2.16.13 5.9.0 (2023-03-13)

Features

• Choose hooks provided by packages over hooks from pyinstaller-hooks-contrib if both provide the same hook.
(#7456)

Bugfix

• Fix changes to sys.path made in the spec file being ignored by hook utility functions (e.g.
collect_submodules()). (#7456)

2.16.14 5.8.0 (2023-02-11)

Features

• Compile the collected GLib schema files using glib-schema-compiler instead of collecting the pre-compiled
gschemas.compiled file, in order to properly support collection of schema files from multiple locations. Do
not collect the source schema files anymore, as only gschemas.compiled file should be required at run time.
(#7394)

Bugfix

• (Cygwin) Avoid using Windows-specific codepaths that require pywin32-ctypes functionality that is not avail-
able in Cygwin environment. (#7382)

• (non-Windows) Fix race condition in environment modification done by multiprocessing runtime hook when
multiple threads concurrently spawn processes using the spawn method. (#7410)

• (Windows) Changes in the version info file now trigger rebuild of the executable file. (#7338)

• Disallow empty source path in the binaries and datas tuples that are returned from the hooks and sanitized
in the PyInstaller.building.utils.format_binaries_and_datas. The empty source path is usually
result of an error in the hook’s path retrieval code, and causes implicit collection of the whole current working
directory. This is never the intended behavior, so raise a SystemExit. (#7384)

130 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7503
https://github.com/pyinstaller/pyinstaller/issues/7549
https://github.com/pyinstaller/pyinstaller/issues/7549
https://github.com/pyinstaller/pyinstaller/issues/7549
https://github.com/pyinstaller/pyinstaller/issues/7529
https://github.com/pyinstaller/pyinstaller-hooks-contrib/
https://github.com/pyinstaller/pyinstaller/issues/7456
https://docs.python.org/3/library/sys.html#sys.path
https://github.com/pyinstaller/pyinstaller/issues/7456
https://github.com/pyinstaller/pyinstaller/issues/7394
https://github.com/pyinstaller/pyinstaller/issues/7382
https://github.com/pyinstaller/pyinstaller/issues/7410
https://github.com/pyinstaller/pyinstaller/issues/7338
https://github.com/pyinstaller/pyinstaller/issues/7384

PyInstaller Documentation, Release 6.4.0

• Fix unknown log level error raised with --log-level=DEPRECATION. (#7413)

Incompatible Changes

• The deprecated PEP-302 find_module() and load_module() methods have been removed from PyInstaller’s
FrozenImporter. These methods have not been used by python’s import machinery since python 3.4 and
PEP-451, and were effectively left untested and unmaintained. The removal affects 3rd party code that still
relies on PEP-302 finder/loader methods instead of the PEP-451 ones. (#7344)

Hooks

• Collect multimedia plugins that are required by QtMultimedia module starting with Qt6 v6.4.0. (#7352)

• Do not collect designer plugins as part of QtUiTools module in PySide2 and PySide6 bindings. Instead, tie
the collection of plugins only to the QtDesigner module. (#7322)

Module Loader

• Remove deprecated PEP-302 functionality from FrozenImporter. The find_module() and load_module()
methods are deprecated since python 3.4 in favor of PEP-451 loader. (#7344)

2.16.15 5.7.0 (2022-12-04)

Features

• Add the package’s location and exact interpreter path to the error message for the check for obsolete and
PyInstaller-incompatible standard library back-port packages (enum34 and typing). (#7221)

• Allow controlling the build log level (--log-level) via a PYI_LOG_LEVEL environment variable. (#7235)

• Support building native ARM applications for Windows. If PyInstaller is ran on an ARM machine with an ARM
build of Python, it will prodice an ARM application. (#7257)

Bugfix

• (Anaconda) Fix the PyInstaller.utils.hooks.conda.collect_dynamic_libs hook utility function to
collect only dynamic libraries, by introducing an additional type check (to exclude directories and symbolic
links to directories) and additional suffix check (to include only files whose name matches the following patterns:
*.dll, *.dylib, *.so, and *.so.*). (#7248)

• (Anaconda) Fix the problem with Anaconda python 3.10 on linux and macOS, where all content of the environ-
ment’s lib directory would end up collected as data due to additional symbolic link pointing from python3.1
to python3.10. (#7248)

• (GNU/Linux) Fixes an issue with gi shared libraries not being packaged if they don’t have version suffix and are
in a special location set by LD_LIBRARY_PATH instead of a typical library path. (#7278)

• (Windows) Fix the problem with windowed frozen application being unable to spawn interactive command
prompt console via subprocess module due to interference of the subprocess runtime hook with stream
handles. (#7118)

2.16. Changelog for PyInstaller 131

https://github.com/pyinstaller/pyinstaller/issues/7413
https://github.com/pyinstaller/pyinstaller/issues/7344
https://github.com/pyinstaller/pyinstaller/issues/7352
https://github.com/pyinstaller/pyinstaller/issues/7322
https://github.com/pyinstaller/pyinstaller/issues/7344
https://github.com/pyinstaller/pyinstaller/issues/7221
https://github.com/pyinstaller/pyinstaller/issues/7235
https://github.com/pyinstaller/pyinstaller/issues/7257
https://github.com/pyinstaller/pyinstaller/issues/7248
https://github.com/pyinstaller/pyinstaller/issues/7248
https://github.com/pyinstaller/pyinstaller/issues/7278
https://github.com/pyinstaller/pyinstaller/issues/7118

PyInstaller Documentation, Release 6.4.0

• (Windows) In windowed/noconsole mode, stop setting sys.stdout and sys.stderr to custom NullWriter
object, and instead leave them at None. This matches the behavior of windowed python interpreter (pythonw.
exe) and prevents interoperability issues with code that (rightfully) expects the streams to be either None or
objects that are fully compatible with io.IOBase. (#3503)

• Ensure that PySide6.support.deprecated module is collected for PySide6 6.4.0 and later in order to enable
continued support for | and & operators between Qt key and key modifier enum values (e.g., QtCore.Qt.Key_D
and QtCore.Qt.AltModifier). (#7249)

• Fix potential duplication of python extension modules in onefile builds, which happened when an extension
was collected both as an EXTENSION and as a DATA (or a BINARY) TOC type. This resulted in run-time warnings
about files already existing; the most notorious example being WARNING: file already exists but
should not: C:\Users\user\AppData\Local\Temp\MEI1234567\torch_C.cp39-win_amd64.pyd
when building onefile applications that use torch. (#7273)

• Fix spurious attempt at reading the top_level.txt metadata from packages installed in egg form. (#7086)

• Fix the log level (provided via --log-level) being ignored by some build steps. (#7235)

• Fix the problem with MERGE not properly cleaning up passed Analysis.binaries and Analysis.datasTOCs
due to changes made to TOC class in PyInstaller 5.0. This effectively broke the supposed de-duplication func-
tionality of MERGE and multi-package bundles, which should be restored now. (#7273)

• Prevent $pythonprefix/bin from being added to sys.path when PyInstaller is invoked using pyinstaller
your-code.py but not using python -m PyInstaller your-code.py. This prevents collection mismatch
when a library has the same name as console script. (#7120)

• Prevent isolated-subprocess calls from indefinitely blocking in their clean-up codepath when the subprocess fails
to exit. After the grace period of 5 seconds, we now attempt to terminate such subprocess in order to prevent
hanging of the build process. (#7290)

Incompatible Changes

• (Windows) In windowed/noconsole mode, PyInstaller does not set sys.stdout and sys.stderr to custom
NullWriter object anymore, but leaves them at None. The new behavior matches that of the windowed python
interpreter (pythonw.exe), but may break the code that uses sys.stdout or sys.stderrwithout first checking
that they are available. The code intended to be run frozen in windowed/noconsole mode should be therefore
be validated using the windowed python interpreter to catch errors related to console being unavailable. (#7216)

Deprecations

• Deprecate bytecode encryption (the --key option), to be removed in PyInstaller v6.0. (#6999)

Hooks

• (Windows) Remove the subprocess runtime hook. The problem with invalid standard stream handles, which
caused the subprocess module raise an OSError: [WinError 6] The handle is invalid error in a
windowed onefile frozen application when trying to spawn a subprocess without redirecting all standard
streams, has been fixed in the bootloader. (#7182)

• Ensure that each Qt* submodule of the PySide2, PyQt5, PySide6, and PyQt6 bindings has a corresponding
hook, and can therefore been imported in a frozen application on its own. Applicable to the latest versions of
packages at the time of writing: PySide2 == 5.15.2.1, PyQt5 == 5.15.7, PySide6 == 6.4.0, and PyQt6
== 6.4.0. (#7284)

132 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3503
https://github.com/pyinstaller/pyinstaller/issues/7249
https://github.com/pyinstaller/pyinstaller/issues/7273
https://github.com/pyinstaller/pyinstaller/issues/7086
https://github.com/pyinstaller/pyinstaller/issues/7235
https://github.com/pyinstaller/pyinstaller/issues/7273
https://docs.python.org/3/library/sys.html#sys.path
https://github.com/pyinstaller/pyinstaller/issues/7120
https://github.com/pyinstaller/pyinstaller/issues/7290
https://github.com/pyinstaller/pyinstaller/issues/7216
https://github.com/pyinstaller/pyinstaller/issues/6999
https://github.com/pyinstaller/pyinstaller/issues/7182
https://github.com/pyinstaller/pyinstaller/issues/7284

PyInstaller Documentation, Release 6.4.0

• Improve compatibility with contemporary Django 4.x version by removing the override of django.core.
management.get_commands from the Django run-time hook. The static command list override is both out-
dated (based on Django 1.8) and unnecessary due to dynamic command list being properly populated under
contemporary versions of PyInstaller and Django. (#7259)

• Introduce additional log messages to matplotlib.backend hook to provide better insight into what backends
are selected and why when the detection of matplotlib.use calls comes into effect. (#7300)

Bootloader

• (Windows) In a onefile application, avoid passing invalid stream handles (the INVALID_HANDLE_VALUE con-
stant with value -1) to the launched application child process when the standard streams are unavailable (for
example, in a windowed/no-console application). (#7182)

Bootloader build

• Support building ARM native binaries using MSVC using the command python waf
--target-arch=64bit-arm all. If built on an ARM machine, --target-arch=64bit-arm is the
default. (#7257)

• Windows ARM64 bootloaders may now be built using an ARM build of clang with python waf
--target-arch=64bit-arm --clang all. (#7257)

2.16.16 5.6.2 (2022-10-31)

Bugfix

• (Linux, macOS) Fix the regression in shared library collection, where the shared library would end up collected
under its fully-versioned .so name (e.g., libsomething.so.1.2.3) instead of its originally referenced name
(e.g., libsomething.so.1) due to accidental symbolic link resolution. (#7189)

2.16.17 5.6.1 (2022-10-25)

Bugfix

• (macOS) Fix regression in macOS app bundle signing caused by a typo made in #7180. (#7184)

2.16.18 5.6 (2022-10-23)

Features

• Add official support for Python 3.11. (Note that PyInstaller v5.5 is also expected to work but has only been tested
with a pre-release of Python 3.11.) (#6783)

• Implement a new hook utility function, collect_delvewheel_libs_directory(), intended for dealing with
external shared library in delvewheel-enabled PyPI wheels for Windows. (#7170)

2.16. Changelog for PyInstaller 133

https://github.com/pyinstaller/pyinstaller/issues/7259
https://github.com/pyinstaller/pyinstaller/issues/7300
https://github.com/pyinstaller/pyinstaller/issues/7182
https://github.com/pyinstaller/pyinstaller/issues/7257
https://github.com/pyinstaller/pyinstaller/issues/7257
https://github.com/pyinstaller/pyinstaller/issues/7189
https://github.com/pyinstaller/pyinstaller/issues/7180
https://github.com/pyinstaller/pyinstaller/issues/7184
https://github.com/pyinstaller/pyinstaller/issues/6783
https://github.com/pyinstaller/pyinstaller/issues/7170

PyInstaller Documentation, Release 6.4.0

Bugfix

• (macOS) Fix OpenCV (cv2) loader error in generated macOS .app bundles, caused by the relocation of package’s
source .py files. (#7180)

• (Windows) Improve compatibility with scipy 1.9.2, whose Windows wheels switched to delvewheel, and
therefore have shared libraries located in external .libs directory. (#7168)

• (Windows) Limit the DLL parent path preservation behavior from #7028 to files collected from site-packages
directories (as returned by site.getsitepackages() and site.getusersitepackages()) instead of all
paths in sys.path, to avoid unintended behavior in corner cases, such as sys.path containing the drive root or
user’s home directory. (#7155)

• Fix compatibility with PySide6 6.4.0, where the deprecated Qml2ImportsPath location key is not available
anymore; use the new QmlImportsPath key when it is available. (#7164)

• Prevent PyInstaller runtime hook for setuptools from attempting to override distutils with setuptools-
provided version when setuptools is collected and its version is lower than 60.0. This both mimics the unfrozen
behavior and prevents errors on versions between 50.0 and 60.0, where we do not explicitly collect setuptools.
_distutils. (#7172)

Incompatible Changes

• (macOS) In generated macOS .app bundles, the collected source .py files are not relocated from Contents/
MacOS to Contents/Resources anymore, to avoid issues when the path to a .py file is supposed to resolve to
the same directory as adjacent binary extensions. On the other hand, this change might result in regressions w.r.t.
bundle signing and/or notarization. (#7180)

Bootloader

• (Windows) Update the bundled zlib sources to v1.2.13. (#7166)

2.16.19 5.5 (2022-10-08)

Features

• (Windows) Support embedding multiple icons in the executable. (#7103)

Bugfix

• (Windows) Fix a regression introduced in PyInstaller 5.4 (#6925), where incorrect copy of python3.dll (and
consequently an additional, incorrect copy of python3X.dll from the same directory) is collected when addi-
tional python installations are present in PATH. (#7102)

• (Windows) Provide run-time override for ctypes.util.find_library that searches sys._MEIPASS in addi-
tion to directories specified in PATH. (#7097)

• Fix the problem with pywin32 DLLs not being found when importing pywin32 top-level extension modules,
caused by the DLL directory structure preservation behavior introduced in #7028. Introduce a new boot-
strap/loader module that adds the pywin32_system32 directory, if available, to both sys.path and the DLL
search paths, in lieu of having to provide a runtime hook script for every single top-level extension module from
pywin32. (#7110)

134 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7180
https://github.com/pyinstaller/pyinstaller/issues/7168
https://github.com/pyinstaller/pyinstaller/issues/7028
https://docs.python.org/3/library/site.html#site.getsitepackages
https://docs.python.org/3/library/site.html#site.getusersitepackages
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://github.com/pyinstaller/pyinstaller/issues/7155
https://github.com/pyinstaller/pyinstaller/issues/7164
https://github.com/pyinstaller/pyinstaller/issues/7172
https://github.com/pyinstaller/pyinstaller/issues/7180
https://github.com/pyinstaller/pyinstaller/issues/7166
https://github.com/pyinstaller/pyinstaller/issues/7103
https://github.com/pyinstaller/pyinstaller/issues/#6925
https://github.com/pyinstaller/pyinstaller/issues/7102
https://github.com/pyinstaller/pyinstaller/issues/7097
https://github.com/pyinstaller/pyinstaller/issues/7028
https://github.com/pyinstaller/pyinstaller/issues/7110

PyInstaller Documentation, Release 6.4.0

Hooks

• Fix an error raised by the matplotlib.backends hook when trying to specify the list of backends to collect
via the hooks configuration. (#7091)

2.16.20 5.4.1 (2022-09-11)

Bugfix

• (Windows) Fix run-time error raised by pyi_rth_win32comgenpy, the run-time hook for win32com. (#7079)

2.16.21 5.4 (2022-09-10)

Features

• (Windows) When collecting a DLL that was discovered via link-time dependency analysis of a collected bi-
nary/extension, attempt to preserve its parent directory structure instead of collecting it into application’s top-
level directory. This aims to preserve the parent directory structure of DLLs bundled with python packages in
PyPI wheels, while the DLLs collected from system directories (as well as from Library\bin directory of the
Anaconda’s environment) are still collected into top-level application directory. (#7028)

• Add support for setuptools-provided distutils, available since setuptools >= 60.0. (#7075)

• Implement a generic file filtering decision function for use in hooks, based on the source filename and optional
inclusion and exclusion pattern list (PyInstaller.utils.hooks.include_or_exclude_file()). (#7040)

• Rework the module exclusion mechanism. The excluded module entries, specified via excludedimports list in
the hooks, are now used to suppress module imports from corresponding nodes during modulegraph construc-
tion, rather than to remove the nodes from the graph as a post-processing step. This should make the module
exclusion more robust, but the main benefit is that we avoid running (potentially many and potentially costly)
hooks for modules that would end up excluded anyway. (#7066)

Bugfix

• (Windows) Attempt to extend DLL search paths with directories found in the PATH environment variable and
by tracking calls to the os.add_dll_directory function during import of the packages in the isolated sub-process
that performs the binary dependency scanning. (#6924)

• (Windows) Ensure that ANGLE DLLs (libEGL.dll and libGLESv2.dll) are collected when using Anaconda-
installed PyQt5 and Qt5. (#7029)

• Fix AssertionError during build when analysing a .pyc file containing more that 255 variable names followed
by an import statement all in the same namespace. (#7055)

2.16. Changelog for PyInstaller 135

https://github.com/pyinstaller/pyinstaller/issues/7091
https://github.com/pyinstaller/pyinstaller/issues/7079
https://github.com/pyinstaller/pyinstaller/issues/7028
https://github.com/pyinstaller/pyinstaller/issues/7075
https://github.com/pyinstaller/pyinstaller/issues/7040
https://github.com/pyinstaller/pyinstaller/issues/7066
https://github.com/pyinstaller/pyinstaller/issues/6924
https://github.com/pyinstaller/pyinstaller/issues/7029
https://docs.python.org/3/library/exceptions.html#AssertionError
https://github.com/pyinstaller/pyinstaller/issues/7055

PyInstaller Documentation, Release 6.4.0

Incompatible Changes

• (Windows) PyInstaller now attempts to preserve parent directory structure of DLLs that are collected from python
packages (e.g., bundled with packages in PyPI wheels) instead of collecting them to the top-level application
directory. This behavior might be incompatible with 3rd party hooks that assume the old behavior, and may
result in duplication of DLL files or missing DLLs in hook-provided runtime search paths. (#7028)

Hooks

• Implement new gstreamer hook configuration group with include_plugins and exclude_plugins options
that enable control over GStreamer plugins collected by the gi.repository.Gst hook. (#7040)

• Provide hooks for additional gstreamer modules provided via GObject introspection (gi) bind-
ings: gi.repository.GstAllocators, gi.repository.GstApp, gi.repository.GstBadAudio,
gi.repository.GstCheck, gi.repository.GstCodecs, gi.repository.GstController, gi.
repository.GstGL, gi.repository.GstGLEGL, gi.repository.GstGLWayland, gi.repository.
GstGLX11, gi.repository.GstInsertBin, gi.repository.GstMpegts, gi.repository.GstNet,
gi.repository.GstPlay, gi.repository.GstPlayer, gi.repository.GstRtp, gi.repository.
GstRtsp, gi.repository.GstRtspServer, gi.repository.GstSdp, gi.repository.GstTranscoder,
gi.repository.GstVulkan, gi.repository.GstVulkanWayland, gi.repository.GstVulkanXCB, and
gi.repository.GstWebRTC. (#7074)

2.16.22 5.3 (2022-07-30)

Features

• (Windows) Implement handling of console control signals in the onefile bootloader parent process. The im-
plemented handler suppresses the CTRL_C_EVENT and CTRL_BREAK_EVENT to let the child process deal with
them as they see it fit. In the case of CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT,
the handler attempts to delay the termination of the parent process in order to buy time for the child process to
exit and for the main thread of the parent process to clean up the temporary directory before exiting itself. This
should prevent the temporary directory of a onefile frozen application being left behind when the user closes
the console window. (#6591)

• Implement a mechanism for controlling the collection mode of modules and packages, with granularity ranging
from top-level packages to individual sub-modules. Therefore, the hooks can now specify whether the hooked
package should be collected as byte-compiled .pyc modules into embedded PYZ archive (the default behavior),
or as source .py files collected as external data files (without corresponding modules in the PYZ archive). (#6945)

Bugfix

• (non-Windows) Avoid generating debug messages in POSIX signal handlers, as the functions involved are gen-
erally not signal-safe. Should also fix the endless spam of SIGPIPE that ocurrs under certain conditions when
shutting down the frozen application on linux. (#5270)

• (non-Windows) If the child process of a onefile frozen application is terminated by a signal, delay re-raising
of the signal in the parent process until after the clean up has been performed. This prevents onefile frozen
applications from leaving behind their unpacked temporary directories when either the parent or the child process
is sent the SIGTERM signal. (#2379)

• When building with noarchive=True (e.g., --debug noarchive or --debug all), PyInstaller no longer
pollutes user-writable source locations with its .pyc or .pyo files written next to the corresponding source files.
(#6591)

136 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/7028
https://github.com/pyinstaller/pyinstaller/issues/7040
https://github.com/pyinstaller/pyinstaller/issues/7074
https://github.com/pyinstaller/pyinstaller/issues/6591
https://github.com/pyinstaller/pyinstaller/issues/6945
https://github.com/pyinstaller/pyinstaller/issues/5270
https://github.com/pyinstaller/pyinstaller/issues/2379
https://github.com/pyinstaller/pyinstaller/issues/6591

PyInstaller Documentation, Release 6.4.0

• When building with noarchive=True (e.g., --debug noarchive or --debug all), the source paths are now
stripped from the collected .pyc modules, same as if PYZ archive was used. (#6591)

Hooks

• Add PyGObject hook for gi.repository.freetype2. Remove warning for hidden import not found for
gi._gobject with PyGObject 3.25.1+. (#6951)

• Remove pkg_resources hidden imports that aren’t available including py2_warn, markers, and _vendor.
pyparsing.diagram. (#6952)

Documentation

• Document the signal handling behavior Windows and various quirks related to the frozen application shutdown
via the Task Manager. (#6935)

2.16.23 5.2 (2022-07-08)

Features

• Detect if an icon file (.ico or .icns) is of another image type but has been mislabelled as a native icon type
via its file suffix then either normalise to a genuinely native image type if pillow is installed or raise an error.
(#6870)

• Exit gracefully with an explanatory SystemExit if the user moves or deletes the application whilst it’s still
running. Note that this is only detected on trying to load a module which has not already been loaded. (#6856)

• Implement new standard hook variable, called warn_on_missing_hiddenimports. This optional boolean flag
allows a hook to opt out from warnings generated by missing hidden imports originating from that hook. (#6914)

Bugfix

• (Linux) Fix potential mismatch between the collected Python shared library name and the name expected by
the bootloader when using Anaconda environment. The mismatch would occur on some attempts to freeze a
program that uses an extension that is also linked against the python shared library. (#6831)

• (Linux) Fix the missing gi.repository error in an application frozen on RHEL/Fedora linux with GObject
introspection installed from the distribution’s RPM package. (#6780)

• (macOS) The QtWebEngine hook now makes QtOpenGL and QtDBus available to the renderer process with
framework installs of Qt 6. (#6892)

• (Windows) Optimize EXE PE headers fix-up process in an attempt to reduce the processing time and the memory
footprint with large onefile builds. (#6874)

• Add a try/except guard around ctypes.util.find_library() to protect against CPython bug #93094 which
leads to a FileNotFoundError. (#6864)

• Fix regression in PyInstaller v5 where an import of a non-existent GObject introspection (gi) module (for exam-
ple, an optional dependency) in the program causes a build-time error and aborts the build process. (#6897)

• If passed a name of an importable module instead of a package, the PyInstaller.utils.hooks.
collect_submodules() function now returns a list containing the module’s name, same as it would for a
package without submodules. (#6850)

2.16. Changelog for PyInstaller 137

https://github.com/pyinstaller/pyinstaller/issues/6591
https://github.com/pyinstaller/pyinstaller/issues/6951
https://github.com/pyinstaller/pyinstaller/issues/6952
https://github.com/pyinstaller/pyinstaller/issues/6935
https://github.com/pyinstaller/pyinstaller/issues/6870
https://docs.python.org/3/library/exceptions.html#SystemExit
https://github.com/pyinstaller/pyinstaller/issues/6856
https://github.com/pyinstaller/pyinstaller/issues/6914
https://github.com/pyinstaller/pyinstaller/issues/6831
https://github.com/pyinstaller/pyinstaller/issues/6780
https://github.com/pyinstaller/pyinstaller/issues/6892
https://github.com/pyinstaller/pyinstaller/issues/6874
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library
https://github.com/python/cpython/issues/93094
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://github.com/pyinstaller/pyinstaller/issues/6864
https://github.com/pyinstaller/pyinstaller/issues/6897
https://github.com/pyinstaller/pyinstaller/issues/6850

PyInstaller Documentation, Release 6.4.0

• Prevent PyInstaller.utils.hooks.collect_submodules() from recursing into sub-packages that are ex-
cluded by the function passed via the filter argument. (#6846)

• The PyInstaller.utils.hooks.collect_submodules() function now excludes un-importable subpack-
ages from the returned modules list. (#6850)

Hooks

• (macOS) Disable QtWebEngine sandboxing for Qt6 in the corresponding PySide6 and PyQt6 run-time hooks as
a work-around for the QtWebEngineProcess helper process crashing. This is required as of Qt 6.3.1 due to the
way PyInstaller collects Qt libraries, but is applied regardless of the used Qt6 version. If you are using an older
version of Qt6 and would like to keep the sandboxing, reset the QTWEBENGINE_DISABLE_SANDBOX environment
variable at the start of your program, before importing Qt packages. (#6903)

• Add support for GTK4 by adding dependencies and updating gi.repository.Gtk and gi.repository.Gdk
to work with module-versions in hooksconfig for gi. (#6834)

• Refactor the GObject introspection (gi) hooks so that the processing is performed only in hook loading stage or
in the hook() function, but not in the mixture of two. (#6901)

• Update the GObject introspection (gi) hooks to use newly-introduced GiModuleInfo object to:

– Check for module availability.

– Perform typelib data collection; equivalent of old get_gi_typelibs function call.

– Obtain associated shared library path, equivalent of old get_gi_libdir function call.

The get_gi_typelibs and get_gi_libdir functions now internally use GiModuleInfo to provide
backwards-compatibility for external users. (#6901)

2.16.24 5.1 (2022-05-17)

Bugfix

• (Windows) Fix the regression causing the (relative) spec path ending up prepended to relative icon path twice,
resulting in icon not being found. (#6788)

• Prevent collection of an entire Python site when using collect_data_files() or collect_dynamic_libs()
for single-file modules (#6789)

• Prevent the hook utility functions, such as collect_submodules(), collect_data_files(), and
collect_dynamic_libs(), from failing to identify a package when its PEP451-compliant loader does not
implement the optional is_package method. (#6790)

• The get_package_paths() function now supports PEP420 namespace packages - although for backwards-
compatibility reasons, it returns only the first path when multiple paths are present. (#6790)

• The hook utility functions collect_submodules(), collect_data_files(), and
collect_dynamic_libs()) now support collection from PEP420 namespace packages. (#6790)

• The user-provided spec file path and paths provided via --workpath and --distpath are now resolved to
absolute full paths before being passed to PyInstaller’s internals. (#6788)

138 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/6846
https://github.com/pyinstaller/pyinstaller/issues/6850
https://github.com/pyinstaller/pyinstaller/issues/6903
https://github.com/pyinstaller/pyinstaller/issues/6834
https://github.com/pyinstaller/pyinstaller/issues/6901
https://github.com/pyinstaller/pyinstaller/issues/6901
https://github.com/pyinstaller/pyinstaller/issues/6788
https://github.com/pyinstaller/pyinstaller/issues/6789
https://github.com/pyinstaller/pyinstaller/issues/6790
https://github.com/pyinstaller/pyinstaller/issues/6790
https://github.com/pyinstaller/pyinstaller/issues/6790
https://github.com/pyinstaller/pyinstaller/issues/6788

PyInstaller Documentation, Release 6.4.0

Hooks

• Exclude doctest in the pickle hook. Update PySide2, PySide6, PyQt5, and PyQt6 hooks with hidden
imports that were previously pulled in by doctest (that was in turn pulled in by pickle). (#6797)

Bootloader

• (Windows) Update the bundled zlib sources to v1.2.12. (#6804)

Bootloader build

• Building on Windows with MSVC no longer falls to bits if the PyInstaller repo is stored in a directory with a
long path. (#6806)

2.16.25 5.0.1 (2022-04-25)

Bugfix

• (Linux) Have glib runtime hook prepend the frozen application’s data dir to the XDG_DATA_DIRS environment
variable instead of completely overwriting it. This should fix the case when xdg-open is used to launch a
system-installed application (for example, opening an URL in a web browser via the webbrowser module) and
no registered applications being found. (#3668)

• Prevent unactionable errors raised by UPX from terminating the build. (#6757)

• Restore the pre PyInstaller 5.0 behavior of resolving relative paths to icons as relative to the spec file rather than
the current working directory. (#6759)

• (Windows) Update system DLL inclusion list to allow collection of DLLs from Visual Studio 2012 (VC11) run-
time and Visual Studio 2013 (VC12) runtime, as well as the latest version of Visual Studio 2015/2017/2019/2022
(VC14) runtime (14.3). (#6778)

Hooks

• Refactor QtWebEngine hooks to support both pure Widget-based and pure QML/Quick-based applications.
(#6753)

• Update PySide6 and PyQt6 hooks for compatibility with Qt 6.3. QtWebEngine on Windows and Linux does not
provide the qt.conf file for the helper executable anymore, so we generate our own version of the file in order
for QtWebengine -based frozen applications to work. (#6769)

2.16.26 5.0 (2022-04-15)

Features

• (macOS) App bundles built in onedir mode can now opt-in for argv emulation so that file paths passed from
the UI (Open with. . .) are reflected in sys.argv. (#5908)

• (macOS) App bundles built in onedir mode can now opt-in for argv emulation so that file paths received in
initial drag & drop event are reflected in sys.argv. (#5436)

• (macOS) The argv emulation functionality is now available as an optional feature for app bundles built in either
onefile or onedir mode. (#6089)

2.16. Changelog for PyInstaller 139

https://github.com/pyinstaller/pyinstaller/issues/6797
https://github.com/pyinstaller/pyinstaller/issues/6804
https://github.com/pyinstaller/pyinstaller/issues/6806
https://github.com/pyinstaller/pyinstaller/issues/3668
https://github.com/pyinstaller/pyinstaller/issues/6757
https://github.com/pyinstaller/pyinstaller/issues/6759
https://github.com/pyinstaller/pyinstaller/issues/6778
https://github.com/pyinstaller/pyinstaller/issues/6753
https://github.com/pyinstaller/pyinstaller/issues/6769
https://docs.python.org/3/library/sys.html#sys.argv
https://github.com/pyinstaller/pyinstaller/issues/5908
https://docs.python.org/3/library/sys.html#sys.argv
https://github.com/pyinstaller/pyinstaller/issues/5436
https://github.com/pyinstaller/pyinstaller/issues/6089

PyInstaller Documentation, Release 6.4.0

• (Windows) Embed the manifest into generated onedir executables by default, in order to avoid potential issues
when user renames the executable (e.g., the manifest not being found anymore due to activation context caching
when user renames the executable and attempts to run it before also renaming the manifest file). The old behavior
of generating the external manifest file in onedir mode can be re-enabled using the --no-embed-manifest
command-line switch, or via the embed_manifest=False argument to EXE() in the .spec file. (#6223)

• (Wine) Prevent collection of Wine built-in DLLs (in either PE-converted or fake/placeholder form) when building
a Windows frozen application under Wine. Display a warning for each excluded Wine built-in DLL. (#6149)

• Add a PyInstaller.isolated submodule as a safer replacement to PyInstaller.utils.hooks.
exec_statement(). (#6052)

• Improve matching of UPX exclude patterns to include OS-default case sensitivity, the wildcard operator (*), and
support for parent directories in the pattern. Enables use of patterns like "Qt*.dll" and "PySide2*.pyd".
(#6161)

• Make the error handing of collect_submodules() configurable. (#6052)

Bugfix

• (macOS) Fix potential loss of Apple Events during onefile app bundle start-up, when the child process is not
yet ready to receive events forwarded by the parent process. (#6089)

• (Windows) Remove the attempt to load the manifest of a onefile frozen executable via the activation context,
which fails with An attempt to set the process default activation context failed because the process default acti-
vation context was already set. message that can be observed in debug builds. This approach has been invalid
ever since #3746 implemented direct manifest embedding into the onefile executable. (#6203)

• Fix an import leak when PyInstaller.utils.hooks.get_module_file_attribute() is called with a sub-
module or a sub-package name. (#6169)

• Fix an import leak when PyInstaller.utils.hooks.is_package() is called with a sub-module or a sub-
package name. (#6169)

• Fix import errors when calling get_gi_libdir() during packaging of GTK apps. Enable CI tests of GTK by
adding PyGObject dependencies for the Ubuntu builds. (#6300)

• Issue an error report if a .spec file will not be generated, but command-line options specific to that functionality
are given. (#6660)

• Prevent onefile cleanup from recursing into symlinked directories and just remove the link instead. (#6074)

Incompatible Changes

• (macOS) App bundles built in onefile mode do not perform argv emulation by default anymore. The function-
ality of converting initial open document/URL events into sys.argv entries must now be explicitly opted-in,
via argv_emulation=True argument to EXE() in the .spec file or via --argv-emulation command-line flag.
(#6089)

• (Windows) By default, manifest is now embedded into the executable in onedir mode. The old behavior of
generating the external manifest file can be re-enabled using the --no-embed-manifest command-line switch,
or via the embed_manifest=False argument to EXE() in the .spec file. (#6223)

• Issue an error report if a .spec file will not be generated, but command-line options specific to that functionality
are given. (#6660)

• The PyInstaller.utils.hooks.get_module_attribute() function now returns the actual attribute value
instead of its string representation. The external users (e.g., 3rd party hooks) of this function must adjust their
handling of the return value accordingly. (#6169)

140 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/6223
https://github.com/pyinstaller/pyinstaller/issues/6149
https://github.com/pyinstaller/pyinstaller/issues/6052
https://github.com/pyinstaller/pyinstaller/issues/6161
https://github.com/pyinstaller/pyinstaller/issues/6052
https://github.com/pyinstaller/pyinstaller/issues/6089
https://github.com/pyinstaller/pyinstaller/issues/3746
https://github.com/pyinstaller/pyinstaller/issues/6203
https://github.com/pyinstaller/pyinstaller/issues/6169
https://github.com/pyinstaller/pyinstaller/issues/6169
https://github.com/pyinstaller/pyinstaller/issues/6300
https://github.com/pyinstaller/pyinstaller/issues/6660
https://github.com/pyinstaller/pyinstaller/issues/6074
https://github.com/pyinstaller/pyinstaller/issues/6089
https://github.com/pyinstaller/pyinstaller/issues/6223
https://github.com/pyinstaller/pyinstaller/issues/6660
https://github.com/pyinstaller/pyinstaller/issues/6169

PyInstaller Documentation, Release 6.4.0

• The matplotlib.backends hook no longer collects all available matplotlib backends, but rather tries to
auto-detect the used backend(s) by default. The old behavior can be re-enabled via the hook configuration option.
(#6024)

Hooks

• Rework the matplotlib.backends hook to attempt performing auto-detection of the used backend(s) instead
of collecting all available backends. Implement hook configuration option that allows users to switch between
this new behavior and the old behavior of collecting all backends, or to manually specify the backend(s) to be
collected. (#6024)

Bootloader

• Change the behaviour of the --no-universal2 flag so that it now assumes the target architecture of the compiler
(which may be overridden via the CC environment variable to facilitate cross compiling). (#6096)

• Refactor Apple Events handling code and move it into a separate source file. (#6089)

Documentation

• Add a new section describing Apple Event forwarding behavior on macOS and the optional argv emulation for
macOS app bundles, along with its caveats. (#6089)

• Update documentation on using UPX. (#6161)

PyInstaller Core

• Drop support for Python 3.6. (#6475)

Bootloader build

• (Windows) Enable Control Flow Guard for the Windows bootloader. (#6136)

2.16.27 4.10 (2022-03-05)

Features

• (Wine) Prevent collection of Wine built-in DLLs (in either PE-converted or fake/placeholder form) when building
a Windows frozen application under Wine. Display a warning for each excluded Wine built-in DLL. (#6622)

Bugfix

• (Linux) Remove the timeout on objcopy operations to prevent wrongful abortions when processing large exe-
cutables on slow disks. (#6647)

• (macOS) Limit the strict architecture validation for collected binaries to extension modules only. Fixes archi-
tecture validation errors when a universal2 package has its multi-arch extension modules’ arch slices linked
against distinct single-arch thin shared libraries, as is the case with scipy 1.8.0 macOS universal2 wheel.
(#6587)

2.16. Changelog for PyInstaller 141

https://github.com/pyinstaller/pyinstaller/issues/6024
https://github.com/pyinstaller/pyinstaller/issues/6024
https://github.com/pyinstaller/pyinstaller/issues/6096
https://github.com/pyinstaller/pyinstaller/issues/6089
https://github.com/pyinstaller/pyinstaller/issues/6089
https://github.com/pyinstaller/pyinstaller/issues/6161
https://github.com/pyinstaller/pyinstaller/issues/6475
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://github.com/pyinstaller/pyinstaller/issues/6136
https://github.com/pyinstaller/pyinstaller/issues/6622
https://github.com/pyinstaller/pyinstaller/issues/6647
https://github.com/pyinstaller/pyinstaller/issues/6587

PyInstaller Documentation, Release 6.4.0

• (macOS) Remove the 60 seconds timeout for each codesign and lipo operation which caused build abortion
when processing huge binaries. (#6644)

• (Windows) Use a made up (not .exe) suffix for intermediate executable files during the build process to prevent
antiviruses from attempting to scan the file whilst PyInstaller is still working on it leading to a PermissionError
at build time. (#6467)

• Fix an attempt to collect a non-existent .pyc file when the corresponding source .py file has st_mtime set to
zero. (#6625)

Hooks

• Add IPython to the list of excluded packages in the PIL hook in order to prevent automatic collection of IPython
when it is not imported anywhere else. This in turn prevents whole matplotlib being automatically pulled in
when using PIL.Image. (#6605)

Bootloader

• Fix detection of 32-bit arm platform when Thumb instruction set is enabled in the compiler. In this case, the
ctx.env.DEST_CPU in waf build script is set to thumb instead of arm. (#6532)

2.16.28 4.9 (2022-02-03)

Bugfix

• Add support for external paths when running pkgutil.iter_modules. Add support for multiple search paths
to pkgutil.iter_modules. Correctly handle pkgutil.iter_modules with an empty list. (#6529)

• Fix finding libpython3x.sowhen Python is installed with pyenv and the python executable is not linked against
libpython3x.so. (#6542)

• Fix handling of symbolic links in the path matching part of the PyInstaller’s pkgutil.iter_modules replace-
ment/override. (#6537)

Hooks

• Add hooks for PySide6.QtMultimedia and PyQt6.QtMultimedia. (#6489)

• Add hooks for QtMultimediaWidgets of all four supported Qt bindings (PySide2, PySide6, PyQt5, and
PySide6). (#6489)

• Add support for setuptools 60.7.1 and its vendoring of jaraco.text in pkg_resources. Exit with an
error message if setuptools 60.7.0 is encountered due to incompatibility with PyInstaller’s loader logic.
(#6564)

• Collect the QtWaylandClient-related plugins to enable Wayland support in the frozen applications using any
of the four supported Qt bindings (PySide2, PyQt5, PySide6, and PyQt6). (#6483)

• Fix the issue with missing QtMultimediaWidgetsmodule when using PySide2.QtMultimedia or PySide6.
QtMultimedia in combination with PySide’s true_property feature. (#6489)

142 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/6644
https://docs.python.org/3/library/exceptions.html#PermissionError
https://github.com/pyinstaller/pyinstaller/issues/6467
https://github.com/pyinstaller/pyinstaller/issues/6625
https://github.com/pyinstaller/pyinstaller/issues/6605
https://github.com/pyinstaller/pyinstaller/issues/6532
https://github.com/pyinstaller/pyinstaller/issues/6529
https://github.com/pyinstaller/pyinstaller/issues/6542
https://github.com/pyinstaller/pyinstaller/issues/6537
https://github.com/pyinstaller/pyinstaller/issues/6489
https://github.com/pyinstaller/pyinstaller/issues/6489
https://github.com/pyinstaller/pyinstaller/issues/6564
https://github.com/pyinstaller/pyinstaller/issues/6483
https://doc.qt.io/qtforpython/feature-why.html#the-true-property-feature
https://github.com/pyinstaller/pyinstaller/issues/6489

PyInstaller Documentation, Release 6.4.0

2.16.29 4.8 (2022-01-06)

Features

• (Windows) Set the executable’s build time in PE header to the current time. A custom timestamp can be specified
via the SOURCE_DATE_EPOCH environment variable to allow reproducible builds. (#6469)

• Add strictly unofficial support for the Termux platform. (#6484)

• Replace the dual-process onedirmode on Linux and other Unix-like OSes with a single-process implementation.
This makes onedir mode on these OSes comparable to Windows and macOS, where single-process onedir
mode has already been used for a while. (#6407)

Bugfix

• (macOS) Fix regression in generation of universal2 executables that caused the generated executable to fail
codesign strict validation. (#6381)

• (Windows) Fix onefile extraction behavior when the run-time temporary directory is set to a drive letter. The
application’s temporary directory is now created directly on the specified drive as opposed to the current directory
on the specified drive. (#6051)

• (Windows) Fix compatibility issues with python 3.9.8 from python.org, arising from the lack of embedded man-
ifest in the python.exe executable. (#6367)

• (Windows) Fix stack overflow in pyarmor-protected frozen applications, caused by the executable’s stack being
smaller than that of the python interpreter. (#6459)

• (Windows) Fix the python3.dll shared library not being found and collected when using Python from MS App
Store. (#6390)

• Fix a bug that prevented traceback from uncaught exception to be retrieved and displayed in the windowed boot-
loader’s error reporting facility (uncaught exception dialog on Windows, syslog on macOS). (#6426)

• Fix a crash when a onefile build attempts to overwrite an existing onedir build on macOS or Linux (#6418)

• Fix build errors when a linux shared library (.so) file is collected as a binary on macOS. (#6327)

• Fix build errors when a Windows DLL/PYD file is collected as a binary on a non-Windows OS. (#6327)

• Fix handling of encodings when reading the collected .py source files via FrozenImporter.get_source().
(#6143)

• Fix hook loader function not finding hooks if path has whitespaces. (Re-apply the fix that has been inadvertedly
undone during the codebase reformatting.) (#6080)

• Windows: Prevent invalid handle errors when an application compiled in --windowed mode uses subprocess
without explicitly setting stdin, stdout and stderr to either PIPE or DEVNULL. (#6364)

2.16. Changelog for PyInstaller 143

https://github.com/pyinstaller/pyinstaller/issues/6469
https://f-droid.org/en/packages/com.termux/
https://github.com/pyinstaller/pyinstaller/issues/6484
https://github.com/pyinstaller/pyinstaller/issues/6407
https://github.com/pyinstaller/pyinstaller/issues/6381
https://github.com/pyinstaller/pyinstaller/issues/6051
https://github.com/pyinstaller/pyinstaller/issues/6367
https://github.com/pyinstaller/pyinstaller/issues/6459
https://github.com/pyinstaller/pyinstaller/issues/6390
https://github.com/pyinstaller/pyinstaller/issues/6426
https://github.com/pyinstaller/pyinstaller/issues/6418
https://github.com/pyinstaller/pyinstaller/issues/6327
https://github.com/pyinstaller/pyinstaller/issues/6327
https://github.com/pyinstaller/pyinstaller/issues/6143
https://github.com/pyinstaller/pyinstaller/issues/6080
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/subprocess.html#subprocess.PIPE
https://docs.python.org/3/library/subprocess.html#subprocess.DEVNULL
https://github.com/pyinstaller/pyinstaller/issues/6364

PyInstaller Documentation, Release 6.4.0

Hooks

• (macOS) Add support for Anaconda-installed PyQtWebEngine. (#6373)

• Add hooks for PySide6.QtWebEngineWidgets and PyQt6.QtWebEngineWidgets. The QtWebEngine sup-
port in PyInstaller requires Qt6 v6.2.2 or later, so if an earlier version is encountered, we exit with an error instead
of producing a defunct build. (#6387)

• Avoid collecting the whole QtQml module and its dependencies in cases when it is not necessary (i.e., the ap-
plication does not use QtQml or QtQuick modules). The unnecessary collection was triggered due to extension
modules being linked against the libQt5Qml or libQt6Qml shared library, and affected pure widget-based ap-
plications (PySide2 and PySide6 on Linux) and widget-based applications that use QtWebEngineWidgets
(PySide2, PySide6, PyQt5, and PyQt6 on all OSes). (#6447)

• Update numpy hook for compatibility with version 1.22; the hook cannot exclude distutils and numpy.
distutils anymore, as they are required by numpy.testing, which is used by some external packages, such
as scipy. (#6474)

Bootloader

• (Windows) Set the bootloader executable’s stack size to 2 MB to match the stack size of the python interpreter
executable. (#6459)

• Implement single-process onedirmode for Linux and Unix-like OSes as a replacement for previously-used two-
process implementation. The new mode uses exec() without fork() to restart the bootloader executable image
within the same process after setting up the environment (i.e., the LD_LIBRARY_PATH and other environment
variables). (#6407)

• Lock the PKG sideload mode in the bootloader unless the executable has a special signature embedded. (#6470)

• When user script terminates with an uncaught exception, ensure that the exception data obtained via
PyErr_Fetch is normalized by also calling PyErr_NormalizeException. Otherwise, trying to format the
traceback via traceback.format_exception fails in some circumstances, and no traceback can be displayed
in the windowed bootloader’s error report. (#6426)

Bootloader build

• The bootloader can be force compiled during pip install by setting the environment variable
PYINSTALLER_COMPILE_BOOTLOADER. (#6384)

2.16.30 4.7 (2021-11-10)

Bugfix

• Fix a bug since v4.6 where certain Unix system directories were incorrectly assumed to exist and resulted in a
FileNotFoundError. (#6331)

144 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/6373
https://github.com/pyinstaller/pyinstaller/issues/6387
https://github.com/pyinstaller/pyinstaller/issues/6447
https://github.com/pyinstaller/pyinstaller/issues/6474
https://github.com/pyinstaller/pyinstaller/issues/6459
https://github.com/pyinstaller/pyinstaller/issues/6407
https://github.com/pyinstaller/pyinstaller/issues/6470
https://github.com/pyinstaller/pyinstaller/issues/6426
https://github.com/pyinstaller/pyinstaller/issues/6384
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://github.com/pyinstaller/pyinstaller/issues/6331

PyInstaller Documentation, Release 6.4.0

Hooks

• Update sphinx hook for compatibility with latest version (4.2.0). (#6330)

Bootloader

• (Windows) Explicitly set NTDDI_VERSION=0x06010000 and _WIN32_WINNT=0x0601 when compiling Win-
dows bootloaders to request Windows 7 feature level for Windows headers. The windowed bootloader requires
at least Windows Vista feature level, and some toolchains (e.g., mingw cross-compiler on linux) set too low level
by default. (#6338)

• (Windows) Remove the check for the unused windres utility when compiling with MinGW toolchain. (#6339)

• Replace use of PyRun_SimpleString with PyRun_SimpleStringFlags. (#6332)

2.16.31 4.6 (2021-10-29)

Features

• Add support for Python 3.10. (#5693)

• (Windows) Embed the manifest into generated onedir executables by default, in order to avoid potential issues
when user renames the executable (e.g., the manifest not being found anymore due to activation context caching
when user renames the executable and attempts to run it before also renaming the manifest file). The old behavior
of generating the external manifest file in onedir mode can be re-enabled using the --no-embed-manifest
command-line switch, or via the embed_manifest=False argument to EXE() in the .spec file. (#6248)

• (Windows) Respect PEP 239 encoding specifiers in Window’s VSVersionInfo files. (#6259)

• Implement basic resource reader for accessing on-filesystem resources (data files) via importlib.resources
(python >= 3.9) or importlib_resources (python <= 3.8). (#5616)

• Ship precompiled wheels for musl-based Linux distributions (such as Alpine or OpenWRT) on x86_64 and
aarch64. (#6245)

Bugfix

• (macOS) Ensure that executable pre-processing and post-processing steps (target arch selection, SDK version
adjustment, (re)signing) are applied in the stand-alone PKG mode. (#6251)

• (macOS) Robustify the macOS assembly pipeline to work around the issues with the codesign utility on macOS
10.13 High Sierra. (#6167)

• (Windows) Fix collection of sysconfig platform-specific data module when using MSYS2/MINGW python.
(#6118)

• (Windows) Fix displayed script name and exception message in the unhandled exception dialog (windowed mode)
when bootloader is compiled using the MinGW-w64 toolchain. (#6199)

• (Windows) Fix issues in onedir frozen applications when the bootloader is compiled using a toolchain that
forcibly embeds a default manifest (e.g., the MinGW-w64 toolchain from msys2). The issues range from manifest-
related options (e.g., uac-admin) not working to windowed frozen application not starting at all (with the The
procedure entry point LoadIconMetric could not be located... error message). (#6196)

• (Windows) Fix the declared length of strings in the optional embedded product version information resource
structure. The declared lengths were twice too long, and resulted in trailing garbage characters when the version
information was read using ctypes and winver API. (#6219)

2.16. Changelog for PyInstaller 145

https://github.com/pyinstaller/pyinstaller/issues/6330
https://github.com/pyinstaller/pyinstaller/issues/6338
https://github.com/pyinstaller/pyinstaller/issues/6339
https://github.com/pyinstaller/pyinstaller/issues/6332
https://github.com/pyinstaller/pyinstaller/issues/5693
https://github.com/pyinstaller/pyinstaller/issues/6248
https://www.python.org/dev/peps/pep-0239
https://github.com/pyinstaller/pyinstaller/issues/6259
https://github.com/pyinstaller/pyinstaller/issues/5616
https://github.com/pyinstaller/pyinstaller/issues/6245
https://github.com/pyinstaller/pyinstaller/issues/6251
https://github.com/pyinstaller/pyinstaller/issues/6167
https://github.com/pyinstaller/pyinstaller/issues/6118
https://github.com/pyinstaller/pyinstaller/issues/6199
https://github.com/pyinstaller/pyinstaller/issues/6196
https://github.com/pyinstaller/pyinstaller/issues/6219

PyInstaller Documentation, Release 6.4.0

• (Windows) Remove the attempt to load the manifest of a onefile frozen executable via the activation context,
which fails with An attempt to set the process default activation context failed because
the process default activation context was already set. message that can be observed in de-
bug builds. This approach has been invalid ever since #3746 implemented direct manifest embedding into the
onefile executable. (#6248)

• (Windows) Suppress missing library warnings for api-ms-win-core-* DLLs. (#6201)

• (Windows) Tolerate reading Windows VSVersionInfo files with unicode byte order marks. (#6259)

• Fix sys.executable pointing to the external package file instead of the executable when in package side-load
mode (pkg_append=False). (#6202)

• Fix a runaway glob which caused ctypes.util.find_library("libfoo") to non-deterministically pick any
library matching libfoo* to bundle instead of libfoo.so. (#6245)

• Fix compatibility with with MIPS and loongarch64 architectures. (#6306)

• Fix the FrozenImporter.get_source() to correctly handle the packages’ __init__.py source files. This in
turn fixes missing-source-file errors for packages that use pytorch JIT when the source .py files are collected
and available (for example, kornia). (#6237)

• Fix the location of the generated stand-alone pkg file when using the side-load mode (pkg_append=False) in
combination with onefile mode. The package file is now placed next to the executable instead of next to the
.spec file. (#6202)

• When generating spec files, avoid hard-coding the spec file’s location as the pathex argument to the Analysis.
(#6254)

Incompatible Changes

• (Windows) By default, manifest is now embedded into the executable in onedir mode. The old behavior of
generating the external manifest file can be re-enabled using the --no-embed-manifest command-line switch,
or via the embed_manifest=False argument to EXE() in the .spec file. (#6248)

Hooks

• (macOS) Fix compatibility with Anaconda PyQt5 package. (#6181)

• Add a hook for pandas.plotting to restore compatibility with pandas 1.3.0 and later. (#5994)

• Add a hook for QtOpenGLWidgets for PyQt6 and PySide6 to collect the new QtOpenGLWidgets module
introduced in Qt6 (#6310)

• Add hooks for QtPositioning and QtLocation modules of the Qt5-based packages (PySide2 and PyQt5) to
ensure that corresponding plugins are collected. (#6250)

• Fix compatibility with PyQt5 5.9.2 from conda’s main channel. (#6114)

• Prevent potential error in hooks for Qt-based packages that could be triggered by a partial PyQt6 installation.
(#6141)

• Update QtNetwork hook for PyQt6 and PySide6 to collect the new tls plugins that were introduced in Qt 6.2.
(#6276)

• Update the gi.repository.GtkSource hook to accept a module-versions hooksconfig dict in order to allow
the hook to be used with GtkSource versions greater than 3.0. (#6267)

146 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3746
https://github.com/pyinstaller/pyinstaller/issues/6248
https://github.com/pyinstaller/pyinstaller/issues/6201
https://github.com/pyinstaller/pyinstaller/issues/6259
https://github.com/pyinstaller/pyinstaller/issues/6202
https://github.com/pyinstaller/pyinstaller/issues/6245
https://github.com/pyinstaller/pyinstaller/issues/6306
https://github.com/pyinstaller/pyinstaller/issues/6237
https://github.com/pyinstaller/pyinstaller/issues/6202
https://github.com/pyinstaller/pyinstaller/issues/6254
https://github.com/pyinstaller/pyinstaller/issues/6248
https://github.com/pyinstaller/pyinstaller/issues/6181
https://github.com/pyinstaller/pyinstaller/issues/5994
https://github.com/pyinstaller/pyinstaller/issues/6310
https://github.com/pyinstaller/pyinstaller/issues/6250
https://github.com/pyinstaller/pyinstaller/issues/6114
https://github.com/pyinstaller/pyinstaller/issues/6141
https://github.com/pyinstaller/pyinstaller/issues/6276
https://github.com/pyinstaller/pyinstaller/issues/6267

PyInstaller Documentation, Release 6.4.0

Bootloader

• (Windows) Suppress two snprintf truncation warnings that prevented bootloader from building with winlibs
MinGW-w64 toolchain. (#6196)

• Update the Linux bootloader cross compiler Dockerfile to allow using the official PyPA base images in place of
the dockcross ones. (#6245)

2.16.32 4.5.1 (2021-08-06)

Bugfix

• Fix hook loader function not finding hooks if path has whitespaces. (#6080)

2.16.33 4.5 (2021-08-01)

Features

• (POSIX) Add exclude_system_libraries function to the Analysis class for .spec files, to exclude most or all
non-Python system libraries from the bundle. Documented in new POSIX Specific Options section. (#6022)

Bugfix

• (Cygwin) Add _MEIPASS to DLL search path to fix loading of python shared library in onefile builds made in
cygwin environment and executed outside of it. (#6000)

• (Linux) Display missing library warnings for “not found” lines in ldd output (i.e., libsomething.so => not
found) instead of quietly ignoring them. (#6015)

• (Linux) Fix spurious missing library warning when libc.so points to ldd. (#6015)

• (macOS) Fix python shared library detection for non-framework python builds when the library path cannot be
inferred from imports of the python executable. (#6021)

• (macOS) Fix the crashes in onedir bundles of tkinter-based applications created using Homebrew python
3.9 and Tcl/Tk 8.6.11. (#6043)

• (macOS) When fixing executable for codesigning, update the value of vmsize field in the __LINKEDIT segment.
(#6039)

• Downgrade messages about missing dynamic link libraries from ERROR to WARNING. (#6015)

• Fix a bytecode parsing bug which caused tuple index errors whilst scanning modules which use ctypes. (#6007)

• Fix an error when rhtooks for pkgutil and pkg_resources are used together. (#6018)

• Fix architecture detection on Apple M1 (#6029)

• Fix crash in windowed bootloader when the traceback for unhandled exception cannot be retrieved. (#6070)

• Improve handling of errors when loading hook entry-points. (#6028)

• Suppress missing library warning for shiboken2 (PySide2) and shiboken6 (PySide6) shared library. (#6015)

2.16. Changelog for PyInstaller 147

https://github.com/pyinstaller/pyinstaller/issues/6196
https://quay.io/organization/pypa/
https://github.com/pyinstaller/pyinstaller/issues/6245
https://github.com/pyinstaller/pyinstaller/issues/6080
https://github.com/pyinstaller/pyinstaller/issues/6022
https://github.com/pyinstaller/pyinstaller/issues/6000
https://github.com/pyinstaller/pyinstaller/issues/6015
https://github.com/pyinstaller/pyinstaller/issues/6015
https://github.com/pyinstaller/pyinstaller/issues/6021
https://github.com/pyinstaller/pyinstaller/issues/6043
https://github.com/pyinstaller/pyinstaller/issues/6039
https://github.com/pyinstaller/pyinstaller/issues/6015
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://github.com/pyinstaller/pyinstaller/issues/6007
https://github.com/pyinstaller/pyinstaller/issues/6018
https://github.com/pyinstaller/pyinstaller/issues/6029
https://github.com/pyinstaller/pyinstaller/issues/6070
https://github.com/pyinstaller/pyinstaller/issues/6028
https://github.com/pyinstaller/pyinstaller/issues/6015

PyInstaller Documentation, Release 6.4.0

Incompatible Changes

• (macOS) Disable processing of Apple events for the purpose of argv emulation in onedir application bun-
dles. This functionality was introduced in PyInstaller 4.4 by (#5920) in response to feature requests (#5436)
and (#5908), but was discovered to be breaking tkinter-based onedir bundles made with Homebrew python
3.9 and Tcl/Tk 8.6.11 (#6043). As such, until the cause is investigated and the issue addressed, this feature is
reverted/disabled. (#6048)

Hooks

• Add a hook for pandas.io.formats.style to deal with indirect import of jinja2 and the missing template
file. (#6010)

• Simplify the PySide2.QWebEngineWidgets and PyQt5.QWebEngineWidgets by merging most of their code
into a common helper function. (#6020)

Documentation

• Add a page describing hook configuration mechanism and the currently implemented options. (#6025)

PyInstaller Core

• Isolate discovery of 3rd-party hook directories into a separate subprocess to avoid importing packages in the
main process. (#6032)

Bootloader build

• Allow statically linking zlib on non-Windows specified via either a --static-zlib flag or a
PYI_STATIC_ZLIB=1 environment variable. (#6010)

2.16.34 4.4 (2021-07-13)

Features

• (macOS) Implement signing of .app bundle (ad-hoc or with actual signing identity, if provided). (#5581)

• (macOS) Implement support for Apple Silicon M1 (arm64) platform and different targets for frozen applications
(thin-binary x86_64, thin-binary arm64, and fat-binary universal2), with build-time arch validation and ad-
hoc resigning of all collected binaries. (#5581)

• (macOS) In onedir windowed (.app bundle) mode, perform an interaction of Apple event processing to convert
odoc and GURL events to sys.argv before entering frozen python script. (#5920)

• (macOS) In windowed (.app bundle) mode, always log unhandled exception information to syslog, regardless
of debug mode. (#5890)

• (Windows) Add support for Python from Microsoft App Store. (#5816)

• (Windows) Implement a custom dialog for displaying information about unhandled exception and its traceback
when running in windowed/noconsole mode. (#5890)

• Add recursive option to PyInstaller.utils.hooks.copy_metadata(). (#5830)

148 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/5920
https://github.com/pyinstaller/pyinstaller/issues/5436
https://github.com/pyinstaller/pyinstaller/issues/5908
https://github.com/pyinstaller/pyinstaller/issues/6043
https://github.com/pyinstaller/pyinstaller/issues/6048
https://github.com/pyinstaller/pyinstaller/issues/6010
https://github.com/pyinstaller/pyinstaller/issues/6020
https://github.com/pyinstaller/pyinstaller/issues/6025
https://github.com/pyinstaller/pyinstaller/issues/6032
https://github.com/pyinstaller/pyinstaller/issues/6010
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5920
https://github.com/pyinstaller/pyinstaller/issues/5890
https://github.com/pyinstaller/pyinstaller/issues/5816
https://github.com/pyinstaller/pyinstaller/issues/5890
https://github.com/pyinstaller/pyinstaller/issues/5830

PyInstaller Documentation, Release 6.4.0

• Add --codesign-identity command-line switch to perform code-signing with actual signing identity instead
of ad-hoc signing (macOS only). (#5581)

• Add --osx-entitlements-file command-line switch that specifies optional entitlements file to be used dur-
ing code signing of collected binaries (macOS only). (#5581)

• Add --target-arch command-line switch to select target architecture for frozen application (macOS only).
(#5581)

• Add a splash screen that displays a background image and text: The splash screen can be controlled from within
Python using the pyi_splash module. A splash screen can be added using the --splash IMAGE_FILE option.
If optional text is enabled, the splash screen will show the progress of unpacking in onefile mode. This feature is
supported only on Windows and Linux. A huge thanks to @Chrisg2000 for programming this feature. (#4354,
#4887)

• Add hooks for PyQt6. (#5865)

• Add hooks for PySide6. (#5865)

• Add option to opt-out from reporting full traceback for unhandled exceptions in windowed mode (Windows
and macOS only), via --disable-windowed-traceback PyInstaller CLI switch and the corresponding
disable_windowed_traceback boolean argument to EXE() in spec file. (#5890)

• Allow specify which icon set, themes and locales to pack with Gtk applications. Pass a keyword arg
hooksconfig to Analysis.

a = Analysis(["my-gtk-app.py"],
...,
hooksconfig={

"gi": {
"icons": ["Adwaita"],
"themes": ["Adwaita"],
"languages": ["en_GB", "zh_CN"]

}
},
...)

(#5853)

• Automatically exclude Qt plugins from UPX processing. (#4178)

• Collect distribution metadata automatically. This works by scanning collected Python files for uses of:

– pkg_resources.get_distribution()

– pkg_resources.require()

– importlib.metadata.distribution()

– importlib.metadata.metadata()

– importlib.metadata.files()

– importlib.metadata.version()

In all cases, the metadata will only be collected if the distribution name is given as a plain string literal. Anything
more complex will still require a hook containing PyInstaller.utils.hooks.copy_metadata(). (#5830)

• Implement support for pkgutil.iter_modules(). (#1905)

• Windows: Provide a meaningful error message if given an icon in an unsupported Image format. (#5755)

2.16. Changelog for PyInstaller 149

https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/Chrisg2000
https://github.com/pyinstaller/pyinstaller/issues/4354
https://github.com/pyinstaller/pyinstaller/issues/4887
https://github.com/pyinstaller/pyinstaller/issues/5865
https://github.com/pyinstaller/pyinstaller/issues/5865
https://github.com/pyinstaller/pyinstaller/issues/5890
https://github.com/pyinstaller/pyinstaller/issues/5853
https://github.com/pyinstaller/pyinstaller/issues/4178
https://github.com/pyinstaller/pyinstaller/issues/5830
https://docs.python.org/3/library/pkgutil.html#pkgutil.iter_modules
https://github.com/pyinstaller/pyinstaller/issues/1905
https://github.com/pyinstaller/pyinstaller/issues/5755

PyInstaller Documentation, Release 6.4.0

Bugfix

• (macOS) App bundles built in onedir mode now filter out -psnxxx command-line argument from sys.argv,
to keep behavior consistent with bundles built in onefile mode. (#5920)

• (macOS) Ensure that the macOS SDK version reported by the frozen application corresponds to the minimum
of the SDK version used to build the bootloader and the SDK version used to build the Python library. Having
the application report more recent version than Python library and other bundled libraries may result in macOS
attempting to enable additional features that are not available in the Python library, which may in turn cause
inconsistent behavior and UI issues with tkinter. (#5839)

• (macOS) Remove spurious MacOS/ prefix from CFBundleExecutable property in the generated Info.plist
when building an app bundle. (#4413, #5442)

• (macOS) The drag & drop file paths passed to app bundles built in onedir mode are now reflected in sys.argv.
(#5436)

• (macOS) The file paths passed from the UI (Open with. . .) to app bundles built in onedirmode are now reflected
in sys.argv. (#5908)

• (macOS) Work around the tkinterUI issues due to problems with dark mode activation: black Tkwindow with
macOS Intel installers from python.org, or white text on bright background with Anaconda python. (#5827)

• (Windows) Enable collection of additional VC runtime DLLs (msvcp140.dll, msvcp140_1.dll,
msvcp140_2.dll, and vcruntime140_1.dll), to allow frozen applications to run on Windows systems that
do not have Visual Studio 2015/2017/2019 Redistributable installed. (#5770)

• Enable retrieval of code object for __main__ module via its associated loader (i.e., FrozenImporter). (#5897)

• Fix inspect.getmodule() failing to resolve module from stack-frame obtained via inspect.stack().
(#5963)

• Fix __main__ module being recognized as built-in instead of module. (#5897)

• Fix a bug in ctypes dependency scanning which caused references to be missed if the preceding code contains
more than 256 names or 256 literals. (#5830)

• Fix collection of duplicated _struct and zlib extension modules with mangled filenames. (#5851)

• Fix python library lookup when building with RH SCL python 3.8 or later. (#5749)

• Prevent PyInstaller.utils.hooks.copy_metadata() from renaming [...].dist-infometadata folders
to [...].egg-info which breaks usage of pkg_resources.requires() with extras. (#5774)

• Prevent a bootloader executable without an embedded CArchive from being misidentified as having one, which
leads to undefined behavior in frozen applications with side-loaded CArchive packages. (#5762)

• Prevent the use of sys or os as variables in the global namespace in frozen script from affecting the ctypes
hooks thar are installed during bootstrap. (#5797)

• Windows: Fix EXE being rebuilt when there are no changes. (#5921)

150 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/5920
https://github.com/pyinstaller/pyinstaller/issues/5839
https://github.com/pyinstaller/pyinstaller/issues/4413
https://github.com/pyinstaller/pyinstaller/issues/5442
https://github.com/pyinstaller/pyinstaller/issues/5436
https://github.com/pyinstaller/pyinstaller/issues/5908
https://github.com/pyinstaller/pyinstaller/issues/5827
https://github.com/pyinstaller/pyinstaller/issues/5770
https://github.com/pyinstaller/pyinstaller/issues/5897
https://docs.python.org/3/library/inspect.html#inspect.getmodule
https://docs.python.org/3/library/inspect.html#inspect.stack
https://github.com/pyinstaller/pyinstaller/issues/5963
https://github.com/pyinstaller/pyinstaller/issues/5897
https://github.com/pyinstaller/pyinstaller/issues/5830
https://github.com/pyinstaller/pyinstaller/issues/5851
https://github.com/pyinstaller/pyinstaller/issues/5749
https://github.com/pyinstaller/pyinstaller/issues/5774
https://github.com/pyinstaller/pyinstaller/issues/5762
https://github.com/pyinstaller/pyinstaller/issues/5797
https://github.com/pyinstaller/pyinstaller/issues/5921

PyInstaller Documentation, Release 6.4.0

Hooks

• – Add PostGraphAPI.analysis attribute. Hooks can access the Analysis object through the hook()
function.

– Hooks may access a Analysis.hooksconfig attribute assigned on Analysis construction.

A helper function get_hook_config() was defined in utils.hooks to get the config. (#5853)

• Add support for PyQt5 5.15.4. (#5631)

• Do not exclude setuptools.py27compat and setuptools.py33compat as they are required by other
setuptools modules. (#5979)

• Switch the library search order in ctypes hooks: first check whether the given name exists as-is, before trying
to search for its basename in sys._MEIPASS (instead of the other way around). (#5907)

Bootloader

• (macOS) Build bootloader as universal2 binary by default (can be disabled by passing --no-universal2 to
waf). (#5581)

• Add Tcl/Tk based Splash screen, which is controlled from within Python. The necessary module to create the
Splash screen in PyInstaller is under Splash available. A huge thanks to @Chrisg2000 for programming this
feature. (#4887)

• Provide a Dockerfile to build Linux bootloaders for different architectures. (#5995)

Documentation

• Document the new macOS multi-arch support and code-signing behavior in corresponding sub-sections of Notes
about specific Features. (#5581)

Bootloader build

• Update clang in linux64 Vagrant VM to clang-11 from apt.llvm.org so it can build universal2 macOS
bootloader. (#5581)

• Update crossosx Vagrant VM to build the toolchain from Command Line Tools for Xcode instead of full
Xcode package. (#5581)

2.16.35 4.3 (2021-04-16)

Features

• Provide basic implementation for FrozenImporter.get_source() that allows reading source from .py files
that are collected by hooks as data files. (#5697)

• Raise the maximum allowed size of CArchive (and consequently onefile executables) from 2 GiB to 4 GiB.
(#3939)

• The unbuffered stdio mode (the u option) now sets the Py_UnbufferedStdioFlag flag to enable unbuffered
stdio mode in Python library. (#1441)

• Windows: Set EXE checksums. Reduces false-positive detection from antiviral software. (#5579)

2.16. Changelog for PyInstaller 151

https://github.com/pyinstaller/pyinstaller/issues/5853
https://github.com/pyinstaller/pyinstaller/issues/5631
https://github.com/pyinstaller/pyinstaller/issues/5979
https://github.com/pyinstaller/pyinstaller/issues/5907
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/Chrisg2000
https://github.com/pyinstaller/pyinstaller/issues/4887
https://github.com/pyinstaller/pyinstaller/issues/5995
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5581
https://github.com/pyinstaller/pyinstaller/issues/5697
https://github.com/pyinstaller/pyinstaller/issues/3939
https://github.com/pyinstaller/pyinstaller/issues/1441
https://github.com/pyinstaller/pyinstaller/issues/5579

PyInstaller Documentation, Release 6.4.0

• Add new command-line options that map to collect functions from hookutils: --collect-submodules,
--collect-data, --collect-binaries, --collect-all, and --copy-metadata. (#5391)

• Add new hook utility collect_entry_point() for collecting plugins defined through setuptools entry points.
(#5734)

Bugfix

• (macOS) Fix Bad CPU type in executable error in helper-spawned python processes when running under
arm64-only flavor of Python on Apple M1. (#5640)

• (OSX) Suppress missing library error messages for system libraries as those are never collected by PyInstaller
and starting with Big Sur, they are hidden by the OS. (#5107)

• (Windows) Change default cache directory to LOCALAPPDATA (from the original APPDATA). This is to make sure
that cached data doesn’t get synced with the roaming profile. For this and future versions AppData\Roaming\
pyinstaller might be safely deleted. (#5537)

• (Windows) Fix onefile builds not having manifest embedded when icon is disabled via --icon NONE. (#5625)

• (Windows) Fix the frozen program crashing immediately with Failed to execute script
pyiboot01_bootstrap message when built in noconsole mode and with import logging enabled (ei-
ther via --debug imports or --debug all command-line switch). (#4213)

• CArchiveReader now performs full back-to-front file search for MAGIC, allowing pyi-archive_viewer to
open binaries with extra appended data after embedded package (e.g., digital signature). (#2372)

• Fix MERGE() to properly set references to nested resources with their full shared-package-relative path instead
of just basename. (#5606)

• Fix onefile builds failing to extract files when the full target path exceeds 260 characters. (#5617)

• Fix a crash in pyi-archive_viewer when quitting the application or moving up a level. (#5554)

• Fix extraction of nested files in onefile builds created in MSYS environments. (#5569)

• Fix installation issues stemming from unicode characters in file paths. (#5678)

• Fix the build-time error under python 3.7 and earlier when ctypes is manually added to hiddenimports.
(#3825)

• Fix the return code if the frozen script fails due to unhandled exception. The return code 1 is used instead of -1,
to keep the behavior consistent with that of the python interpreter. (#5480)

• Linux: Fix binary dependency scanner to support changes to ldconfig introduced in glibc 2.33. (#5540)

• Prevent MERGE (multipackage) from creating self-references for duplicated TOC entries. (#5652)

• PyInstaller-frozen onefile programs are now compatible with staticx even if the bootloader is built as position-
independent executable (PIE). (#5330)

• Remove dependence on a private function removed in matplotlib 3.4.0rc1. (#5568)

• Strip absolute paths from .pyc modules collected into base_library.zip to enable reproducible builds that
are invariant to Python install location. (#5563)

• (OSX) Fix issues with pycryptodomex on macOS. (#5583)

• Allow compiled modules to be collected into base_library.zip. (#5730)

• Fix a build error triggered by scanning ctypes.CDLL('libc.so') on certain Linux C compiler combinations.
(#5734)

• Improve performance and reduce stack usage of module scanning. (#5698)

152 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/5391
https://github.com/pyinstaller/pyinstaller/issues/5734
https://github.com/pyinstaller/pyinstaller/issues/5640
https://github.com/pyinstaller/pyinstaller/issues/5107
https://github.com/pyinstaller/pyinstaller/issues/5537
https://github.com/pyinstaller/pyinstaller/issues/5625
https://github.com/pyinstaller/pyinstaller/issues/4213
https://github.com/pyinstaller/pyinstaller/issues/2372
https://github.com/pyinstaller/pyinstaller/issues/5606
https://github.com/pyinstaller/pyinstaller/issues/5617
https://github.com/pyinstaller/pyinstaller/issues/5554
https://github.com/pyinstaller/pyinstaller/issues/5569
https://github.com/pyinstaller/pyinstaller/issues/5678
https://github.com/pyinstaller/pyinstaller/issues/3825
https://github.com/pyinstaller/pyinstaller/issues/5480
https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=dfb3f101c5ef23adf60d389058a2b33e23303d04
https://github.com/pyinstaller/pyinstaller/issues/5540
https://github.com/pyinstaller/pyinstaller/issues/5652
https://github.com/pyinstaller/pyinstaller/issues/5330
https://github.com/matplotlib/matplotlib/commit/e1352c71f07aee7eab004b73dd9bda2a260ab31b
https://github.com/pyinstaller/pyinstaller/issues/5568
https://github.com/pyinstaller/pyinstaller/issues/5563
https://github.com/pyinstaller/pyinstaller/issues/5583
https://github.com/pyinstaller/pyinstaller/issues/5730
https://github.com/pyinstaller/pyinstaller/issues/5734
https://github.com/pyinstaller/pyinstaller/issues/5698

PyInstaller Documentation, Release 6.4.0

Hooks

• Add support for Conda Forge’s distribution of NumPy. (#5168)

• Add support for package content listing via pkg_resources. The implementation enables querying/listing
resources in a frozen package (both PYZ-embedded and on-filesystem, in that order of precedence) via
pkg_resources.resource_exists(), resource_isdir(), and resource_listdir(). (#5284)

• Hooks: Import correct typelib for GtkosxApplication. (#5475)

• Prevent matplotlib hook from collecting current working directory when it fails to determine the path to
matplotlib’s data directory. (#5629)

• Update pandas hook for compatibility with version 1.2.0 and later. (#5630)

• Update hook for distutils.sysconfig to be compatible with pyenv-virtualenv. (#5218)

• Update hook for sqlalchemy to support version 1.4.0 and above. (#5679)

• Update hook for sysconfig to be compatible with pyenv-virtualenv. (#5018)

Bootloader

• Implement full back-to-front file search for the embedded archive. (#5511)

• Perform file extraction from the embedded archive in a streaming manner in order to limit memory footprint
when archive contains large files. (#5551)

• Set the __file__ attribute in the __main__ module (entry-point script) to the absolute file name inside the
_MEIPASS. (#5649)

• Enable cross compiling for FreeBSD from Linux. (#5733)

Documentation

• Doc: Add version spec file option for macOS Bundle. (#5476)

• Update the Run-time Information section to reflect the changes in behavior of __file__ inside the
__main__ module. (#5649)

PyInstaller Core

• Drop support for python 3.5; EOL since September 2020. (#5439)

• Collect python extension modules that correspond to built-ins into lib-dynload sub-directory instead of directly
into bundle’s root directory. This prevents them from shadowing shared libraries with the same basename that
are located in a package and loaded via ctypes or cffi, and also declutters the bundle’s root directory. (#5604)

2.16. Changelog for PyInstaller 153

https://github.com/pyinstaller/pyinstaller/issues/5168
https://github.com/pyinstaller/pyinstaller/issues/5284
https://github.com/pyinstaller/pyinstaller/issues/5475
https://github.com/pyinstaller/pyinstaller/issues/5629
https://github.com/pyinstaller/pyinstaller/issues/5630
https://github.com/pyinstaller/pyinstaller/issues/5218
https://github.com/pyinstaller/pyinstaller/issues/5679
https://github.com/pyinstaller/pyinstaller/issues/5018
https://github.com/pyinstaller/pyinstaller/issues/5511
https://github.com/pyinstaller/pyinstaller/issues/5551
https://github.com/pyinstaller/pyinstaller/issues/5649
https://github.com/pyinstaller/pyinstaller/issues/5733
https://github.com/pyinstaller/pyinstaller/issues/5476
https://github.com/pyinstaller/pyinstaller/issues/5649
https://github.com/pyinstaller/pyinstaller/issues/5439
https://github.com/pyinstaller/pyinstaller/issues/5604

PyInstaller Documentation, Release 6.4.0

Breaking

• No longer collect pyconfig.h and makefile for sysconfig. Instead of get_config_h_filename() and
get_makefile_filename(), you should use get_config_vars() which no longer depends on those files.
(#5218)

• The __file__ attribute in the __main__ module (entry-point script) is now set to the absolute file name inside
the _MEIPASS (as if script file existed there) instead of just script filename. This better matches the behavior
of __file__ in the unfrozen script, but might break the existing code that explicitly relies on the old frozen
behavior. (#5649)

2.16.36 4.2 (2021-01-13)

Features

• Add hooks utilities to find binary dependencies of Anaconda distributions. (#5213)

• (OSX) Automatically remove the signature from the collected copy of the Python shared library, using codesign
--remove-signature. This accommodates both onedir and onefile builds with recent python versions for
macOS, where invalidated signature on PyInstaller-collected copy of the Python library prevents the latter from
being loaded. (#5451)

• (Windows) PyInstaller’s console or windowed icon is now added at freeze-time and no longer built into the
bootloader. Also, using --icon=NONE allows to not apply any icon, thereby making the OS to show some
default icon. (#4700)

• (Windows) Enable longPathAware option in built application’s manifest in order to support long file paths on
Windows 10 v.1607 and later. (#5424)

Bugfix

• Fix loading of plugin-type modules at run-time of the frozen application: If the plugin path is one character
longer than sys._MEIPATH (e.g. “$PWD/p/plugin_1” and “$PWD/dist/main”), the plugin relative-imports a
sub-module (of the plugin) and the frozen application contains a module of the same name, the frozen application
module was imported. (#4141, #4299)

• Ensure that spec for frozen packages has submodule_search_locations set in order to fix compatibility with
importlib_resources 3.2.0 and later. (#5396)

• Fix: No rebuild if “noarchive” build-option changes. (#5404)

• (OSX) Fix the problem with Python shared library collected from recent python versions not being loaded due
to invalidated signature. (#5062, #5272, #5434)

• (Windows) PyInstaller’s default icon is no longer built into the bootloader, but added at freeze-time. Thus, when
specifying an icon, only that icon is contained in the executable and displayed for a shortcut. (#870, #2995)

• (Windows) Fix “toc is bad” error messages when passing a VSVersionInfo as the version parameter to EXE()
in a .spec file. (#5445)

• (Windows) Fix exception when trying to read a manifest from an exe or dll. (#5403)

• (Windows) Fix the --runtime-tmpdir option by creating paths if they don’t exist and expanding environment
variables (e.g. %LOCALAPPDATA%). (#3301, #4579, #4720)

154 Chapter 2. Contents:

https://docs.python.org/3/library/sysconfig.html#module-sysconfig
https://docs.python.org/3/library/sysconfig.html#sysconfig.get_config_h_filename
https://docs.python.org/3/library/sysconfig.html#sysconfig.get_makefile_filename
https://docs.python.org/3/library/sysconfig.html#sysconfig.get_config_vars
https://github.com/pyinstaller/pyinstaller/issues/5218
https://github.com/pyinstaller/pyinstaller/issues/5649
https://github.com/pyinstaller/pyinstaller/issues/5213
https://github.com/pyinstaller/pyinstaller/issues/5451
https://github.com/pyinstaller/pyinstaller/issues/4700
https://github.com/pyinstaller/pyinstaller/issues/5424
https://github.com/pyinstaller/pyinstaller/issues/4141
https://github.com/pyinstaller/pyinstaller/issues/4299
https://github.com/pyinstaller/pyinstaller/issues/5396
https://github.com/pyinstaller/pyinstaller/issues/5404
https://github.com/pyinstaller/pyinstaller/issues/5062
https://github.com/pyinstaller/pyinstaller/issues/5272
https://github.com/pyinstaller/pyinstaller/issues/5434
https://github.com/pyinstaller/pyinstaller/issues/870
https://github.com/pyinstaller/pyinstaller/issues/2995
https://github.com/pyinstaller/pyinstaller/issues/5445
https://github.com/pyinstaller/pyinstaller/issues/5403
https://github.com/pyinstaller/pyinstaller/issues/3301
https://github.com/pyinstaller/pyinstaller/issues/4579
https://github.com/pyinstaller/pyinstaller/issues/4720

PyInstaller Documentation, Release 6.4.0

Hooks

• (GNU/Linux) Collect xcbglintegrations and egldeviceintegrations plugins as part of Qt5Gui. (#5349)

• (macOS) Fix: Unable to code sign apps built with GTK (#5435)

• (Windows) Add a hook for win32ctypes.core. (#5250)

• Add hook for scipy.spatial.transform.rotation to fix compatibility with SciPy 1.6.0. (#5456)

• Add hook-gi.repository.GtkosxApplication to fix TypeError with Gtk macOS apps. (#5385)

• Add hooks utilities to find binary dependencies of Anaconda distributions. (#5213)

• Fix the Qt5 library availability check in PyQt5 and PySide2 hooks to re-enable support for Qt5 older than 5.8.
(#5425)

• Implement exec_statement_rc() and exec_script_rc() as exit-code returning counterparts of
exec_statement() and exec_script(). Implement can_import_module() helper for hooks that need to
query module availability. (#5301)

• Limit the impact of a failed sub-package import on the result of collect_submodules() to ensure that modules
from all other sub-packages are collected. (#5426)

• Removed obsolete pygame hook. (#5362)

• Update keyring hook to collect metadata, which is required for backend discovery. (#5245)

Bootloader

• (GNU/Linux) Reintroduce executable resolution via readlink() on /proc/self/exe and preserve the process
name using prctl() with PR_GET_NAME and PR_SET_NAME. (#5232)

• (Windows) Create temporary directories with user’s SID instead of S-1-3-4, to work around the lack of support
for the latter in wine. This enables onefile builds to run under wine again. (#5216)

• (Windows) Fix a bug in path-handling code with paths exceeding PATH_MAX, which is caused by use of
_snprintf instead of snprintf when building with MSC. Requires Visual Studio 2015 or later. Clean up
the MSC codepath to address other compiler warnings. (#5320)

• (Windows) Fix building of bootloader’s test suite under Windows with Visual Studio. This fixes build errors
when cmocka is present in the build environment. (#5318)

• (Windows) Fix compiler warnings produced by MinGW 10.2 in order to allow building the bootloader without
having to suppress the warnings. (#5322)

• (Windows) Fix windowed+debug bootloader variant not properly displaying the exception message and trace-
back information when the frozen script terminates due to uncaught exception. (#5446)

PyInstaller Core

• (Windows) Avoid using UPX with DLLs that have control flow guard (CFG) enabled. (#5382)

• Avoid using .pyo module file suffix (removed since PEP-488) in noarchive mode. (#5383)

• Improve support for PEP-420 namespace packages. (#5354)

• Strip absolute paths from .pyc modules collected in the CArchive (PKG). This enables build reproducibility
without having to match the location of the build environment. (#5380)

2.16. Changelog for PyInstaller 155

https://github.com/pyinstaller/pyinstaller/issues/5349
https://github.com/pyinstaller/pyinstaller/issues/5435
https://github.com/pyinstaller/pyinstaller/issues/5250
https://github.com/pyinstaller/pyinstaller/issues/5456
https://github.com/pyinstaller/pyinstaller/issues/5385
https://github.com/pyinstaller/pyinstaller/issues/5213
https://github.com/pyinstaller/pyinstaller/issues/5425
https://github.com/pyinstaller/pyinstaller/issues/5301
https://github.com/pyinstaller/pyinstaller/issues/5426
https://github.com/pyinstaller/pyinstaller/issues/5362
https://github.com/pyinstaller/pyinstaller/issues/5245
https://github.com/pyinstaller/pyinstaller/issues/5232
https://github.com/pyinstaller/pyinstaller/issues/5216
https://github.com/pyinstaller/pyinstaller/issues/5320
https://github.com/pyinstaller/pyinstaller/issues/5318
https://github.com/pyinstaller/pyinstaller/issues/5322
https://github.com/pyinstaller/pyinstaller/issues/5446
https://github.com/pyinstaller/pyinstaller/issues/5382
https://github.com/pyinstaller/pyinstaller/issues/5383
https://github.com/pyinstaller/pyinstaller/issues/5354
https://github.com/pyinstaller/pyinstaller/issues/5380

PyInstaller Documentation, Release 6.4.0

2.16.37 4.1 (2020-11-18)

Features

• Add support for Python 3.9. (#5289)

• Add support for Python 3.8. (#4311)

Bugfix

• Fix endless recursion if a package’s __init__ module is an extension module. (#5157)

• Remove duplicate logging messages (#5277)

• Fix sw_64 architecture support (#5296)

• (AIX) Include python-malloc labeled libraries in search for libpython. (#4210)

Hooks

• Add exclude_datas, include_datas, and filter_submodules to collect_all(). These arguments
map to the excludes and includes arguments of collect_data_files, and to the filter argument of
collect_submodules. (#5113)

• Add hook for difflib to not pull in doctests, which is only required when run as main program.

• Add hook for distutils.util to not pull in lib2to3 unittests, which will be rearly used in frozen packages.

• Add hook for heapq to not pull in doctests, which is only required when run as main program.

• Add hook for multiprocessing.util to not pull in python test-suite and thus e.g. tkinter.

• Add hook for numpy._pytesttester to not pull in pytest.

• Add hook for pickle to not pull in doctests and argpargs, which are only required when run as main program.

• Add hook for PIL.ImageFilter to not pull numpy, which is an optional component.

• Add hook for setuptools to not pull in numpy, which is only imported if installed, not mean to be a dependency

• Add hook for zope.interface to not pull in pytest unittests, which will be rearly used in frozen packages.

• Add hook-gi.repository.HarfBuzz to fix Typelib error with Gtk apps. (#5133)

• Enable overriding Django settings path by DJANGO_SETTINGS_MODULE environment variable. (#5267)

• Fix collect_system_data_files to scan the given input path instead of its parent. File paths returned by col-
lect_all_system_data are now relative to the input path. (#5110)

• Fix argument order in exec_script() and eval_script(). (#5300)

• Gevent hook does not unnecessarily bundle HTML documentation, __pycache__ folders, tests nor generated .c
and .h files (#4857)

• gevent: Do not pull in test-suite (still to be refined)

• Modify hook for gevent to exclude test submodules. (#5201)

• Prevent .pyo files from being collected by collect_data_files when include_py_files is False. (#5141)

• Prevent output to stdout during module imports from ending up in the modules list collected by
collect_submodules. (#5244)

156 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/5289
https://github.com/pyinstaller/pyinstaller/issues/4311
https://github.com/pyinstaller/pyinstaller/issues/5157
https://github.com/pyinstaller/pyinstaller/issues/5277
https://github.com/pyinstaller/pyinstaller/issues/5296
https://github.com/pyinstaller/pyinstaller/issues/4210
https://github.com/pyinstaller/pyinstaller/issues/5113
https://github.com/pyinstaller/pyinstaller/issues/5133
https://github.com/pyinstaller/pyinstaller/issues/5267
https://github.com/pyinstaller/pyinstaller/issues/5110
https://github.com/pyinstaller/pyinstaller/issues/5300
https://github.com/pyinstaller/pyinstaller/issues/4857
https://github.com/pyinstaller/pyinstaller/issues/5201
https://github.com/pyinstaller/pyinstaller/issues/5141
https://github.com/pyinstaller/pyinstaller/issues/5244

PyInstaller Documentation, Release 6.4.0

• Remove runtime hook and fix regular hook for matplotlib’s data to support matplotlib>=3.3.0, fix deprecation
warning on version 3.1<= & <3.3, and behave normally for versions <3.1. (#5006)

• Remove support for deprecated PyQt4 and PySide (#5118, #5126)

• setuptools: Exclude outdated compat modules.

• Update sqlalchemy hook to support v1.3.19 and later, by adding sqlalchemy.ext.baked as a hidden import
(#5128)

• Update tkinter hook to collect Tcl modules directory (tcl8) in addition to Tcl/Tk data directories. (#5175)

• (GNU/Linux) {PyQt5,PySide2}.QtWebEngineWidgets: fix search for extra NSS libraries to prevent an error on
systems where /lib64/nss/*.so comes up empty. (#5149)

• (OSX) Avoid collecting data from system Tcl/Tk framework in tkinter hook as we do not collect their shared
libraries, either. Affects only python versions that still use the system Tcl/Tk 8.5. (#5217)

• (OSX) Correctly locate the tcl/tk framework bundled with official python.org python builds from v.3.6.5 on.
(#5013)

• (OSX) Fix the QTWEBENGINEPROCESS_PATH set in PyQt5.QtWebEngineWidgets rthook. (#5183)

• (OSX) PySide2.QtWebEngineWidgets: add QtQmlModels to included libraries. (#5150)

• (Windows) Remove the obsolete python2.4-era _handle_broken_tcl_tk work-around for old virtual environ-
ments from the tkinter hook. (#5222)

Bootloader

• Fix freeing memory allocated by Python using free() instead of PyMem_RawFree(). (#4441)

• (GNU/Linux) Avoid segfault when temp path is missing. (#5255)

• (GNU/Linux) Replace a strncpy() call in pyi_path_dirname()with snprintf() to ensure that the resulting
string is always null-terminated. (#5212)

• (OSX) Added capability for already-running apps to accept URL & drag’n drop events via Apple Event forward-
ing (#5276)

• (OSX) Bump MACOSX_DEPLOYMENT_TARGET from 10.7 to 10.13. (#4627, #4886)

• (OSX) Fix to reactivate running app on “reopen” (#5295)

• (Windows) Use _wfullpath() instead of _fullpath() in pyi_path_fullpath to allow non-ASCII charac-
ters in the path. (#5189)

Documentation

• Add zlib to build the requirements in the Building the Bootlooder section of the docs. (#5130)

2.16. Changelog for PyInstaller 157

https://github.com/pyinstaller/pyinstaller/issues/5006
https://github.com/pyinstaller/pyinstaller/issues/5118
https://github.com/pyinstaller/pyinstaller/issues/5126
https://github.com/pyinstaller/pyinstaller/issues/5128
https://github.com/pyinstaller/pyinstaller/issues/5175
https://github.com/pyinstaller/pyinstaller/issues/5149
https://github.com/pyinstaller/pyinstaller/issues/5217
https://github.com/pyinstaller/pyinstaller/issues/5013
https://github.com/pyinstaller/pyinstaller/issues/5183
https://github.com/pyinstaller/pyinstaller/issues/5150
https://github.com/pyinstaller/pyinstaller/issues/5222
https://github.com/pyinstaller/pyinstaller/issues/4441
https://github.com/pyinstaller/pyinstaller/issues/5255
https://github.com/pyinstaller/pyinstaller/issues/5212
https://github.com/pyinstaller/pyinstaller/issues/5276
https://github.com/pyinstaller/pyinstaller/issues/4627
https://github.com/pyinstaller/pyinstaller/issues/4886
https://github.com/pyinstaller/pyinstaller/issues/5295
https://github.com/pyinstaller/pyinstaller/issues/5189
https://github.com/pyinstaller/pyinstaller/issues/5130

PyInstaller Documentation, Release 6.4.0

PyInstaller Core

• Add informative message what do to if RecurrsionError occurs. (#4406, #5156)

• Prevent a local directory with clashing name from shadowing a system library. (#5182)

• Use module loaders to get module content instea of an quirky way semming from early Python 2.x times. (#5157)

• (OSX) Exempt the Tcl/Tk dynamic libraries in the system framework from relative path overwrite. Fix missing
Tcl/Tk dynlib on older python.org builds that still make use of the system framework. (#5172)

Test-suite and Continuous Integration

• Replace skipif_xxx for platform-specific tests by markers. (#1427)

• Test/CI: Test failures are automatically retried once. (#5214)

Bootloader build

• Fix AppImage builds that were broken since PyInstaller 3.6. (#4693)

• Update build system to use Python 3.

• OSX: Fixed the ineffectiveness of the --distpath argument for the BUNDLE step. (#4892)

• OSX: Improve codesigning and notarization robustness. (#3550, #5112)

• OSX: Use high resolution mode by default for GUI applications. (#4337)

2.16.38 4.0 (2020-08-08)

Features

• Provide setuptools entrypoints to enable other packages to provide PyInstaller hooks specific to that package,
along with tests for these hooks.

Maintainers of Python packages requiring hooks are invited to use this new feature and provide up-to-date PyIn-
staller support along with their package. This is quite easy, see our sample project for more information (#4232,
#4301, #4582). Many thanks to Bryan A. Jones for implementing the important parts.

• A new package pyinstaller-hooks-contrib provides monthly updated hooks now. This package is installed auto-
matically when installing PyInstaller, but can be updated independently. Many thanks to Legorooj for setting up
the new package and moving the hooks there.

• Added the excludes and includes arguments to the hook utility function collect_data_files.

• Change the hook collection order so that the hook-priority is command line, then entry-point, then PyInstaller
builtins. (#4876)

158 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/4406
https://github.com/pyinstaller/pyinstaller/issues/5156
https://github.com/pyinstaller/pyinstaller/issues/5182
https://github.com/pyinstaller/pyinstaller/issues/5157
https://github.com/pyinstaller/pyinstaller/issues/5172
https://github.com/pyinstaller/pyinstaller/issues/1427
https://github.com/pyinstaller/pyinstaller/issues/5214
https://github.com/pyinstaller/pyinstaller/issues/4693
https://github.com/pyinstaller/pyinstaller/issues/4892
https://github.com/pyinstaller/pyinstaller/issues/3550
https://github.com/pyinstaller/pyinstaller/issues/5112
https://github.com/pyinstaller/pyinstaller/issues/4337
https://github.com/pyinstaller/hooksample
https://github.com/pyinstaller/pyinstaller/issues/4232
https://github.com/pyinstaller/pyinstaller/issues/4301
https://github.com/pyinstaller/pyinstaller/issues/4582
https://github.com/pyinstaller/pyinstaller-hooks-contrib
https://github.com/pyinstaller/pyinstaller/issues/4876

PyInstaller Documentation, Release 6.4.0

Bugfix

• (AIX) Include python-malloc labeled libraries in search for libpython. (#4738)

• (win32) Fix Security Alerts caused by subtle implementation differences between posix anf windows in os.
path.dirname(). (#4707)

• (win32) Fix struct format strings for versioninfo. (#4861)

• (Windows) cv2: bundle the opencv_videoio_ffmpeg*.dll, if available. (#4999)

• (Windows) GLib: bundle the spawn helper executables for g_spawn* API. (#5000)

• (Windows) PySide2.QtNetwork: search for SSL DLLs in PrefixPath in addition to BinariesPath. (#4998)

• (Windows) When building with 32-bit python in onefile mode, set the requestedExecutionLevel manifest
key every time and embed the manifest. (#4992)

• – (AIX) Fix uninitialized variable. (#4728, #4734)

• Allow building on a different drive than the source. (#4820)

• Consider Python<version> as possible library binary path. Fixes issue where python is not found if Python3 is
installed via brew on OSX (#4895)

• Ensure shared dependencies from onefile packages can be opened in the bootloader.

• Ensuring repeatable builds of base_library.zip. (#4654)

• Fix FileNotFoundError showing up in utils/misc.py which occurs when a namespace was processed as
an filename. (#4034)

• Fix multipackaging. The MERGE class will now have the correct relative paths between shared dependencies
which can correctly be opened by the bootloader. (#1527, #4303)

• Fix regression when trying to avoid hard-coded paths in .spec files.

• Fix SIGTSTP signal handling to allow typing Ctrl-Z from terminal. (#4244)

• Update the base library to support encrypting Python bytecode (--key option) again. Many thanks to Matteo
Bertini for finally fixing this. (#2365, #3093, #3133, #3160, #3198, #3316, #3619, #4241, #4652)

• When stripping the leading parts of paths in compiled code objects, the longest possible import path will now be
stripped. (#4922)

Incompatible Changes

• Remove support for Python 2.7. The minimum required version is now Python 3.5. The last version supporting
Python 2.7 was PyInstaller 3.6. (#4623)

• Many hooks are now part of the new pyinstaller-hooks-contrib repository. See below for a detailed list.

2.16. Changelog for PyInstaller 159

https://github.com/pyinstaller/pyinstaller/issues/4738
https://github.com/pyinstaller/pyinstaller/issues/4707
https://github.com/pyinstaller/pyinstaller/issues/4861
https://github.com/pyinstaller/pyinstaller/issues/4999
https://github.com/pyinstaller/pyinstaller/issues/5000
https://github.com/pyinstaller/pyinstaller/issues/4998
https://github.com/pyinstaller/pyinstaller/issues/4992
https://github.com/pyinstaller/pyinstaller/issues/4728
https://github.com/pyinstaller/pyinstaller/issues/4734
https://github.com/pyinstaller/pyinstaller/issues/4820
https://github.com/pyinstaller/pyinstaller/issues/4895
https://github.com/pyinstaller/pyinstaller/issues/4654
https://github.com/pyinstaller/pyinstaller/issues/4034
https://github.com/pyinstaller/pyinstaller/issues/1527
https://github.com/pyinstaller/pyinstaller/issues/4303
https://github.com/pyinstaller/pyinstaller/issues/4244
https://github.com/pyinstaller/pyinstaller/issues/2365
https://github.com/pyinstaller/pyinstaller/issues/3093
https://github.com/pyinstaller/pyinstaller/issues/3133
https://github.com/pyinstaller/pyinstaller/issues/3160
https://github.com/pyinstaller/pyinstaller/issues/3198
https://github.com/pyinstaller/pyinstaller/issues/3316
https://github.com/pyinstaller/pyinstaller/issues/3619
https://github.com/pyinstaller/pyinstaller/issues/4241
https://github.com/pyinstaller/pyinstaller/issues/4652
https://github.com/pyinstaller/pyinstaller/issues/4922
https://github.com/pyinstaller/pyinstaller/issues/4623

PyInstaller Documentation, Release 6.4.0

Hooks

• Add hook for scipy.stats._stats (needed for scipy since 1.5.0). (#4981)

• Prevent hook-nltk from adding non-existing directories. (#3900)

• Fix importlib_resources hook for modern versions (after 1.1.0). (#4889)

• Fix hidden imports in pkg_resources and packaging (#5044)

– Add yet more hidden imports to pkg_resources hook.

– Mirror the pkg_resources hook for packaging which may or may not be duplicate of pkg_resources.
_vendor.packaging.

• Update pkg_resources hook for setuptools v45.0.0.

• Add QtQmlModels to included libraries for QtWebEngine on OS X (#4631).

• Fix detecting Qt5 libraries and dependencies from conda-forge builds (#4636).

• Add an AssertionError message so that users who get an error due to Hook conflicts can resolve it (#4626).

• These hooks have been moved to the new pyinstaller-hooks-contrib repository: BTrees, Crypto, Cryptodome,
IPython, OpenGL, OpenGL_accelerate, Xlib, accessible_output2, adios, aliyunsdkcore, amazonproduct, ap-
pdirs, appy, astor, astroid, astropy, avro, bacon, boto, boto3, botocore, certifi, clr, countrycode, cryptography,
cv2, cx_Oracle, cytoolz, dateparser, dclab, distorm3, dns, docutils, docx, dynaconf, enchant, enzyme, eth_abi,
eth_account, eth_hash, eth_keyfile, eth_utils, faker, flex, fmpy, gadfly, gooey, google.*, gst, gtk, h5py, httplib,
httplib2, imageio, imageio_ffmpeg, jedi, jinja2, jira, jsonpath_rw_ext, jsonschema, jupyterlab, kinterbasdb, lang-
codes, lensfunpy, libaudioverse, llvmlite, logilab, lxml, lz4, magic, mako, markdown, migrate, mpl_toolkits,
mssql, mysql, nacl, names, nanite, nbconvert, nbdime, nbformat, ncclient, netCDF4, nltk, nnpy, notebook,
numba, openpyxl, osgeo, passlib, paste, patsy, pendulum, phonenumbers, pint, pinyin, psychopy, psycopg2, pub-
sub, pyarrow, pycountry, pycparser, pyexcel, pyexcelerate, pylint, pymssql, pyodbc, pyopencl, pyproj, pysnmp,
pytest, pythoncom, pyttsx, pywintypes, pywt, radicale, raven, rawpy, rdflib, redmine, regex, reportlab, reportlab,
resampy, selenium, shapely, skimage, sklearn, sound_lib, sounddevice, soundfile, speech_recognition, storm,
tables, tcod, tensorflow, tensorflow_corethon, text_unidecode, textdistance, torch, ttkthemes, ttkwidgets, u1db,
umap, unidecode, uniseg, usb, uvloop, vtkpython, wavefile, weasyprint, web3, webrtcvad, webview, win32com,
wx, xml.dom, xml.sax, xsge_gui, zeep, zmq.

• These hooks have been added while now moved to the new pyinstaller-hooks-contrib repository: astor (#4400,
#4704), argon2 (#4625) bcrypt. (#4735), (Bluetooth Low Energy platform Agnostic Klient for Python) (#4649)
jaraco.text (#4576, #4632), LightGBM. (#4634), xmldiff (#4680), puremagic (identify a file based off it’s magic
numbers) (#4709) webassets (#4760), tensorflow_core (to support tensorflow module forwarding logic (#4400,
#4704)

• These changes have been applied to hooks now moved to the new pyinstaller-hooks-contrib repository

– Update Bokeh hook for v2.0.0. (#4742, #4746)

– Fix shapely hook on Windows for non-conda shapely installations. (#2834, #4749)

160 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/4981
https://github.com/pyinstaller/pyinstaller/issues/3900
https://github.com/pyinstaller/pyinstaller/issues/4889
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://packaging.pypa.io/en/latest/
https://github.com/pyinstaller/pyinstaller/issues/5044
https://github.com/pyinstaller/pyinstaller/issues/4631
https://github.com/pyinstaller/pyinstaller/issues/4636
https://github.com/pyinstaller/pyinstaller/issues/4626
https://github.com/pyinstaller/pyinstaller-hooks-contrib
https://github.com/pyinstaller/pyinstaller/issues/4400
https://github.com/pyinstaller/pyinstaller/issues/4704
https://github.com/pyinstaller/pyinstaller/issues/4625
https://github.com/pyinstaller/pyinstaller/issues/4735
https://github.com/pyinstaller/pyinstaller/issues/4649
https://github.com/pyinstaller/pyinstaller/issues/4576
https://github.com/pyinstaller/pyinstaller/issues/4632
https://github.com/pyinstaller/pyinstaller/issues/4634
https://github.com/pyinstaller/pyinstaller/issues/4680
https://github.com/pyinstaller/pyinstaller/issues/4709
https://github.com/pyinstaller/pyinstaller/issues/4760
https://github.com/pyinstaller/pyinstaller/issues/4400
https://github.com/pyinstaller/pyinstaller/issues/4704
https://github.com/pyinstaller/pyinstaller/issues/4742
https://github.com/pyinstaller/pyinstaller/issues/4746
https://github.com/pyinstaller/pyinstaller/issues/2834
https://github.com/pyinstaller/pyinstaller/issues/4749

PyInstaller Documentation, Release 6.4.0

Bootloader

• Rework bootloader from using strcpy/strncpy with “is this string terminated”-check to use snprintf(); check suc-
cess at more places. (This started from fixing GCC warnings for strncpy and strncat.)

• Fix: When copying files, too much data was copied in most cases. This corrupted the file and inhibited using
shared dependencies. (#4303)

• In debug and windowed mode, show the traceback in dialogs to help debug pyiboot01_bootstrap errors. (#4213,
#4592)

• Started a small test-suite for bootloader basic functions. (#4585)

Documentation

• Add platform-specific usage notes and bootloader build notes for AIX. (#4731)

PyInstaller Core

• Provide setuptools entrypoints to enable other packages to provide PyInstaller hooks specific to that package,
along with tests for these hooks. See https://github.com/pyinstaller/hooksample for more information. (#4232,
#4582)

Bootloader build

• (AIX) The argument -X32 or -X64 is not recognized by the AIX loader - so this code needs to be removed.
(#4730, #4731)

• (OSX) Allow end users to override MACOSX_DEPLOYMENT_TARGET and mmacosx-version-min via envi-
ronment variables and set 10.7 as the fallback value for both. (#4677)

• Do not print info about --noconfirm when option is already being used. (#4727)

• Update waf to version 2.0.20 (#4839)

2.16.39 Older Versions

Changelog for PyInstaller 3.0 – 3.6

3.6 (2020-01-09)

Important: This is the last release of PyInstaller supporting Python 2.7. Python 2 is end-of-life, many packages are
about to drop support for Python 2.7 - or already did it.

2.16. Changelog for PyInstaller 161

https://github.com/pyinstaller/pyinstaller/issues/4303
https://github.com/pyinstaller/pyinstaller/issues/4213
https://github.com/pyinstaller/pyinstaller/issues/4592
https://github.com/pyinstaller/pyinstaller/issues/4585
https://github.com/pyinstaller/pyinstaller/issues/4731
https://github.com/pyinstaller/hooksample
https://github.com/pyinstaller/pyinstaller/issues/4232
https://github.com/pyinstaller/pyinstaller/issues/4582
https://github.com/pyinstaller/pyinstaller/issues/4730
https://github.com/pyinstaller/pyinstaller/issues/4731
https://github.com/pyinstaller/pyinstaller/issues/4677
https://github.com/pyinstaller/pyinstaller/issues/4727
https://github.com/pyinstaller/pyinstaller/issues/4839
https://python3statement.org/

PyInstaller Documentation, Release 6.4.0

Security

• [SECURITY] (Win32) Fix CVE-2019-16784: Local Privilege Escalation caused by insecure directory permis-
sions of sys._MEIPATH. This security fix effects all Windows software frozen by PyInstaller in “onefile” mode.
While PyInstaller itself was not vulnerable, all Windows software frozen by PyInstaller in “onefile” mode is
vulnerable.

If you are using PyInstaller to freeze Windows software using “onefile” mode, you should upgrade PyInstaller
and rebuild your software.

Features

• (Windows): Applications built in windowed mode have their debug messages sent to any attached debugger or
DebugView instead of message boxes. (#4288)

• Better error message when file exists at path we want to be dir. (#4591)

Bugfix

• (Windows) Allow usage of VSVersionInfo as version argument to EXE again. (#4381, #4539)

• (Windows) Fix MSYS2 dll’s are not found by modulegraph. (#4125, #4417)

• (Windows) The temporary copy of bootloader used add resources, icons, etc. is not created in –workpath instead
of in %TEMP%. This fixes issues on systems where the anti-virus cleans %TEMP% immediately. (#3869)

• Do not fail the build when ldconfig is missing/inoperable. (#4261)

• Fixed loading of IPython extensions. (#4271)

• Fixed pre-find-module-path hook for distutils to be compatible with virtualenv >= 16.3. (#4064, #4372)

• Improve error reporting when the Python library can’t be found. (#4162)

Hooks

• Add hook for avro (serialization and RPC framework) (#4388), django-babel (#4516), enzyme (#4338),
google.api (resp. google.api.core) (#3251), google.cloud.bigquery (#4083, #4084), google.cloud.pubsub
(#4446), google.cloud.speech (#3888), nnpy (#4483), passlib (#4520), pyarrow (#3720, #4517), pyexcel and
its plugins io, ods, ods3, odsr, xls, xlsx, xlsxw (#4305), pysnmp (#4287), scrapy (#4514), skimage.io (#3934),
sklearn.mixture (#4612), sounddevice on macOS and Windows (#4498), text-unidecode (#4327, #4530), the
google-cloud-kms client library (#4408), ttkwidgets (#4484), and webrtcvad (#4490).

• Correct the location of Qt translation files. (#4429)

• Exclude imports for pkg_resources to fix bundling issue. (#4263, #4360)

• Fix hook for pywebview to collect all required libraries and data-files. (#4312)

• Fix hook numpy and hook scipy to account for differences in location of extra dlls on Windows. (#4593)

• Fix pysoundfile hook to bundle files correctly on both OSX and Windows. (#4325)

• Fixed hook for pint to also copy metadata as required to retrieve the version at runtime. (#4280)

• Fixed PySide2.QtNetwork hook by mirroring PyQt5 approach. (#4467, #4468)

• Hook for pywebview now collects data files and dynamic libraries only for the correct OS (Windows). Hook for
pywebview now bundles only the required ‘lib’ subdirectory. (#4375)

162 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/4288
https://github.com/pyinstaller/pyinstaller/issues/4591
https://github.com/pyinstaller/pyinstaller/issues/4381
https://github.com/pyinstaller/pyinstaller/issues/4539
https://github.com/pyinstaller/pyinstaller/issues/4125
https://github.com/pyinstaller/pyinstaller/issues/4417
https://github.com/pyinstaller/pyinstaller/issues/3869
https://github.com/pyinstaller/pyinstaller/issues/4261
https://github.com/pyinstaller/pyinstaller/issues/4271
https://github.com/pyinstaller/pyinstaller/issues/4064
https://github.com/pyinstaller/pyinstaller/issues/4372
https://github.com/pyinstaller/pyinstaller/issues/4162
https://github.com/pyinstaller/pyinstaller/issues/4388
https://github.com/python-babel/django-babel
https://github.com/pyinstaller/pyinstaller/issues/4516
https://pypi.org/project/enzyme/
https://github.com/pyinstaller/pyinstaller/issues/4338
https://github.com/pyinstaller/pyinstaller/issues/3251
https://github.com/pyinstaller/pyinstaller/issues/4083
https://github.com/pyinstaller/pyinstaller/issues/4084
https://github.com/pyinstaller/pyinstaller/issues/4446
https://github.com/pyinstaller/pyinstaller/issues/3888
https://github.com/pyinstaller/pyinstaller/issues/4483
https://github.com/pyinstaller/pyinstaller/issues/4520
https://pypi.org/project/pyarrow/
https://github.com/pyinstaller/pyinstaller/issues/3720
https://github.com/pyinstaller/pyinstaller/issues/4517
https://github.com/pyinstaller/pyinstaller/issues/4305
https://github.com/pyinstaller/pyinstaller/issues/4287
https://github.com/pyinstaller/pyinstaller/issues/4514
https://github.com/pyinstaller/pyinstaller/issues/3934
https://github.com/pyinstaller/pyinstaller/issues/4612
https://github.com/pyinstaller/pyinstaller/issues/4498
https://github.com/pyinstaller/pyinstaller/issues/4327
https://github.com/pyinstaller/pyinstaller/issues/4530
https://github.com/pyinstaller/pyinstaller/issues/4408
https://github.com/pyinstaller/pyinstaller/issues/4484
https://github.com/pyinstaller/pyinstaller/issues/4490
https://github.com/pyinstaller/pyinstaller/issues/4429
https://github.com/pyinstaller/pyinstaller/issues/4263
https://github.com/pyinstaller/pyinstaller/issues/4360
https://github.com/pyinstaller/pyinstaller/issues/4312
https://github.com/pyinstaller/pyinstaller/issues/4593
https://github.com/pyinstaller/pyinstaller/issues/4325
https://github.com/hgrecco/pint
https://github.com/pyinstaller/pyinstaller/issues/4280
https://github.com/pyinstaller/pyinstaller/issues/4467
https://github.com/pyinstaller/pyinstaller/issues/4468
https://github.com/pyinstaller/pyinstaller/issues/4375

PyInstaller Documentation, Release 6.4.0

• Update hooks related to PySide2.QtWebEngineWidgets, ensure the relevant supporting files required for a
QtWebEngineView are copied into the distribution. (#4377)

• Update PyQt5 loader to support PyQt >=5.12.3. (#4293, #4332)

• Update PyQt5 to package 64-bit SSL support DLLs. (#4321)

• Update PyQt5 to place OpenGL DLLs correctly for PyQt >= 5.12.3. (#4322)

• (GNU/Linux) Make hook for GdkPixbuf compatible with Ubuntu and Debian (#4486).

Bootloader

• (OSX): Added support for appending URL to program arguments when applications is launched from custom
protocol handler. (#4397, #4399)

• (POSIX) For one-file binaries, if the program is started via a symlink, the second process now keeps the basename
of the symlink. (#3823, #3829)

• (Windows) If bundled with the application, proactivley load ucrtbase.dll before loading the Python library.
This works around unresolved symbol errors when loading python35.dll (or later) on legacy Windows (7, 8,
8.1) systems with Universal CRT update is not installed. (#1566, #2170, #4230)

• Add our own implementation for strndup and strnlen to be used on platforms one of these is missing.

PyInstaller Core

• Now uses hash based .pyc files as specified in PEP 552 in base_library.zip when using Python 3.7 (#4096)

Bootloader build

• (MinGW-w64) Fix .rc.o file not found error. (#4501, #4586)

• Add a check whether strndup and strnlen are available.

• Added OpenBSD support. (#4545)

• Fix build on Solaris 10.

• Fix checking for compiler flags in configure phase. The check for compiler flags actually did never work. (#4278)

• Update url for public key in update-waf script. (#4584)

• Update waf to version 2.0.19.

3.5 (2019-07-09)

Features

• (Windows) Force --windowed option if first script is a .pyw file. This might still be overwritten in the spec-file.
(#4001)

• Add support for relative paths for icon-files, resource-files and version-resource-files. (#3333, #3444)

• Add support for the RedHat Software Collections (SCL) Python 3.x. (#3536, #3881)

• Install platform-specific dependencies only on that platform. (#4166, #4173)

2.16. Changelog for PyInstaller 163

https://github.com/pyinstaller/pyinstaller/issues/4377
https://github.com/pyinstaller/pyinstaller/issues/4293
https://github.com/pyinstaller/pyinstaller/issues/4332
https://github.com/pyinstaller/pyinstaller/issues/4321
https://github.com/pyinstaller/pyinstaller/issues/4322
https://github.com/pyinstaller/pyinstaller/issues/4486
https://github.com/pyinstaller/pyinstaller/issues/4397
https://github.com/pyinstaller/pyinstaller/issues/4399
https://github.com/pyinstaller/pyinstaller/issues/3823
https://github.com/pyinstaller/pyinstaller/issues/3829
https://github.com/pyinstaller/pyinstaller/issues/1566
https://github.com/pyinstaller/pyinstaller/issues/2170
https://github.com/pyinstaller/pyinstaller/issues/4230
https://www.python.org/dev/peps/pep-0552
https://github.com/pyinstaller/pyinstaller/issues/4096
https://github.com/pyinstaller/pyinstaller/issues/4501
https://github.com/pyinstaller/pyinstaller/issues/4586
https://github.com/pyinstaller/pyinstaller/issues/4545
https://github.com/pyinstaller/pyinstaller/issues/4278
https://github.com/pyinstaller/pyinstaller/issues/4584
https://github.com/pyinstaller/pyinstaller/issues/4001
https://github.com/pyinstaller/pyinstaller/issues/3333
https://github.com/pyinstaller/pyinstaller/issues/3444
https://github.com/pyinstaller/pyinstaller/issues/3536
https://github.com/pyinstaller/pyinstaller/issues/3881
https://github.com/pyinstaller/pyinstaller/issues/4166
https://github.com/pyinstaller/pyinstaller/issues/4173

PyInstaller Documentation, Release 6.4.0

• New command-line option --upx-exclude, which allows the user to prevent binaries from being compressed
with UPX. (#3821)

Bugfix

• (conda) Fix detection of conda/anaconda platform.

• (GNU/Linux) Fix Anaconda Python library search. (#3885, #4015)

• (Windows) Fix UAC in one-file mode by embedding the manifest. (#1729, #3746)

• (Windows\Py3.7) Now able to locate pylib when VERSION.dll is listed in python.exe PE Header rather than
pythonXY.dll (#3942, #3956)

• Avoid errors if PyQt5 or PySide2 is referenced by the modulegraph but isn’t importable. (#3997)

• Correctly parse the --debug=import, --debug=bootloader, and --debug=noarchive command-line op-
tions. (#3808)

• Don’t treat PyQt5 and PySide2 files as resources in an OS X windowed build. Doing so causes the resulting
frozen app to fail under Qt 5.12. (#4237)

• Explicitly specify an encoding of UTF-8 when opening all text files. (#3605)

• Fix appending the content of datas in a spec files to binaries instead of the internal datas. (#2326, #3694)

• Fix crash when changing from --onefile to --onedir on consecutive runs. (#3662)

• Fix discovery of Qt paths on Anaconda. (#3740)

• Fix encoding error raised when reading a XML manifest file which includes non-ASCII characters. This error
inhibited building an executable which has non-ASCII characters in the filename. (#3478)

• Fix inputs to QCoreApplication constructor in Qt5LibraryInfo. Now the core application’s initialization
and finalization in addition to system-wide and application-wide settings is safer. (#4121)

• Fix installation with pip 19.0. (#4003)

• Fixes PE-file corruption during version update. (#3142, #3572)

• In the fake ´site` module set USER_BASE to empty string instead of None as Jupyter Notebook requires it to be
a ‘str’. (#3945)

• Query PyQt5 to determine if SSL is supported, only adding SSL DLLs if so. In addition, search the path for SSL
DLLs, instead of looking in Qt’s BinariesPath. (#4048)

• Require pywin32-ctypes version 0.2.0, the minimum version which supports Python 3.7. (#3763)

• Use pkgutil instead of filesystem operations for interacting with the modules. (#4181)

Incompatible Changes

• PyInstaller is no longer tested against Python 3.4, which is end-of-live.

• Functions compat.architecture(), compat.system() and compat.machine() have been replace by vari-
ables of the same name. This avoids evaluating the save several times.

• Require an option for the --debug argument, rather than assuming a default of all. (#3737)

164 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3821
https://github.com/pyinstaller/pyinstaller/issues/3885
https://github.com/pyinstaller/pyinstaller/issues/4015
https://github.com/pyinstaller/pyinstaller/issues/1729
https://github.com/pyinstaller/pyinstaller/issues/3746
https://github.com/pyinstaller/pyinstaller/issues/3942
https://github.com/pyinstaller/pyinstaller/issues/3956
https://github.com/pyinstaller/pyinstaller/issues/3997
https://github.com/pyinstaller/pyinstaller/issues/3808
https://github.com/pyinstaller/pyinstaller/issues/4237
https://github.com/pyinstaller/pyinstaller/issues/3605
https://github.com/pyinstaller/pyinstaller/issues/2326
https://github.com/pyinstaller/pyinstaller/issues/3694
https://github.com/pyinstaller/pyinstaller/issues/3662
https://github.com/pyinstaller/pyinstaller/issues/3740
https://github.com/pyinstaller/pyinstaller/issues/3478
https://github.com/pyinstaller/pyinstaller/issues/4121
https://github.com/pyinstaller/pyinstaller/issues/4003
https://github.com/pyinstaller/pyinstaller/issues/3142
https://github.com/pyinstaller/pyinstaller/issues/3572
https://github.com/pyinstaller/pyinstaller/issues/3945
https://github.com/pyinstaller/pyinstaller/issues/4048
https://github.com/pyinstaller/pyinstaller/issues/3763
https://github.com/pyinstaller/pyinstaller/issues/4181
https://github.com/pyinstaller/pyinstaller/issues/3737

PyInstaller Documentation, Release 6.4.0

Hooks

• Added hooks for aliyunsdkcore (#4228), astropy (#4274), BTrees (#4239), dateparser.utils.strptime (#3790),
faker (#3989, #4133), gooey (#3773), GtkSourceView (#3893), imageio_ffmpeg (#4051), importlib_metadata
and importlib_resources (#4095), jsonpath_rw_ext (#3841), jupyterlab (#3951), lz4 (#3710), magic (#4267),
nanite (#3860), nbconvert (#3947), nbdime (#3949), nbformat (#3946), notebook (#3950), pendulum (#3906),
pysoundfile (#3844), python-docx (#2574, #3848), python-wavefile (#3785), pytzdata (#3906), PyWavelets pywt
(#4120), pywebview (#3771), radicale (#4109), rdflib (#3708), resampy (#3702), sqlalchemy-migrate (#4250),
textdistance (#4239), tcod (#3622), ttkthemes (#4105), and umap-learn (#4165).

• Add runtime hook for certifi. (#3952)

• Updated hook for ‘notebook’ to look in all Jupyter paths reported by jupyter_core. (#4270)

• Fixed hook for ‘notebook’ to only include directories that actually exist. (#4270)

• Fixed pre-safe-import-module hook for setuptools.extern.six. (#3806)

• Fixed QtWebEngine hook on OS X. (#3661)

• Fixed the QtWebEngine hook on distributions which don’t have a NSS subdir (such as Archlinux) (#3758)

• Include dynamically-imported backends in the eth_hash package. (#3681)

• Install platform-specific dependencies only on that platform. (#4168)

• Skip packaging PyQt5 QML files if the QML directory doesn’t exist. (#3864)

• Support ECC in PyCryptodome. (#4212, #4229)

• Updated PySide2 hooks to follow PyQt5 approach. (#3655, #3689, #3724, #4040, #4103, #4136, #4175, #4177,
#4198, #4206)

• Updated the jsonschema hook for v3.0+. (#4100)

• Updated the Sphinx hook to correctly package Sphinx 1.8.

Bootloader

• Update bundled zlib library to 1.2.11 address vulnerabilities. (#3742)

Documentation

• Update the text produced by --help to state that the --debug argument requires an option. Correctly format
this argument in the Sphinx build process. (#3737)

Project & Process

• Remove the PEP-518 “build-system” table from pyproject.toml to fix installation with pip 19.0.

2.16. Changelog for PyInstaller 165

https://pypi.org/project/aliyun-python-sdk-core/
https://github.com/pyinstaller/pyinstaller/issues/4228
https://github.com/pyinstaller/pyinstaller/issues/4274
https://pypi.org/project/BTrees/
https://github.com/pyinstaller/pyinstaller/issues/4239
https://github.com/pyinstaller/pyinstaller/issues/3790
https://faker.readthedocs.io
https://github.com/pyinstaller/pyinstaller/issues/3989
https://github.com/pyinstaller/pyinstaller/issues/4133
https://github.com/pyinstaller/pyinstaller/issues/3773
https://github.com/pyinstaller/pyinstaller/issues/3893
https://github.com/pyinstaller/pyinstaller/issues/4051
https://github.com/pyinstaller/pyinstaller/issues/4095
https://github.com/pyinstaller/pyinstaller/issues/3841
https://github.com/pyinstaller/pyinstaller/issues/3951
https://github.com/pyinstaller/pyinstaller/issues/3710
https://pypi.org/project/python-magic-bin
https://github.com/pyinstaller/pyinstaller/issues/4267
https://github.com/pyinstaller/pyinstaller/issues/3860
https://github.com/pyinstaller/pyinstaller/issues/3947
https://github.com/pyinstaller/pyinstaller/issues/3949
https://github.com/pyinstaller/pyinstaller/issues/3946
https://github.com/pyinstaller/pyinstaller/issues/3950
https://github.com/pyinstaller/pyinstaller/issues/3906
https://github.com/pyinstaller/pyinstaller/issues/3844
https://github.com/pyinstaller/pyinstaller/issues/2574
https://github.com/pyinstaller/pyinstaller/issues/3848
https://github.com/pyinstaller/pyinstaller/issues/3785
https://github.com/pyinstaller/pyinstaller/issues/3906
https://github.com/PyWavelets/pywt
https://github.com/pyinstaller/pyinstaller/issues/4120
https://github.com/pyinstaller/pyinstaller/issues/3771
https://github.com/pyinstaller/pyinstaller/issues/4109
https://github.com/pyinstaller/pyinstaller/issues/3708
https://github.com/pyinstaller/pyinstaller/issues/3702
https://github.com/openstack/sqlalchemy-migrate
https://github.com/pyinstaller/pyinstaller/issues/4250
https://pypi.org/project/textdistance/
https://github.com/pyinstaller/pyinstaller/issues/4239
https://github.com/pyinstaller/pyinstaller/issues/3622
https://github.com/pyinstaller/pyinstaller/issues/4105
https://umap-learn.readthedocs.io/en/latest/
https://github.com/pyinstaller/pyinstaller/issues/4165
https://github.com/pyinstaller/pyinstaller/issues/3952
https://github.com/pyinstaller/pyinstaller/issues/4270
https://github.com/pyinstaller/pyinstaller/issues/4270
https://github.com/pyinstaller/pyinstaller/issues/3806
https://github.com/pyinstaller/pyinstaller/issues/3661
https://github.com/pyinstaller/pyinstaller/issues/3758
https://github.com/pyinstaller/pyinstaller/issues/3681
https://github.com/pyinstaller/pyinstaller/issues/4168
https://github.com/pyinstaller/pyinstaller/issues/3864
https://github.com/pyinstaller/pyinstaller/issues/4212
https://github.com/pyinstaller/pyinstaller/issues/4229
https://github.com/pyinstaller/pyinstaller/issues/3655
https://github.com/pyinstaller/pyinstaller/issues/3689
https://github.com/pyinstaller/pyinstaller/issues/3724
https://github.com/pyinstaller/pyinstaller/issues/4040
https://github.com/pyinstaller/pyinstaller/issues/4103
https://github.com/pyinstaller/pyinstaller/issues/4136
https://github.com/pyinstaller/pyinstaller/issues/4175
https://github.com/pyinstaller/pyinstaller/issues/4177
https://github.com/pyinstaller/pyinstaller/issues/4198
https://github.com/pyinstaller/pyinstaller/issues/4206
https://github.com/pyinstaller/pyinstaller/issues/4100
https://github.com/pyinstaller/pyinstaller/issues/3742
https://github.com/pyinstaller/pyinstaller/issues/3737

PyInstaller Documentation, Release 6.4.0

PyInstaller Core

• Add support for folders in COLLECT and BUNDLE. (#3653)

• Completely remove pywin32 dependency, which has erratic releases and the version on pypi may no longer have
future releases. Require pywin32-ctypes instead which is pure python. (#3728, #3729)

• modulegraph: Align with upstream version 0.17.

• Now prints a more descriptive error when running a tool fails (instead of dumping a trace-back). (#3772)

• Suppress warnings about missing UCRT dependencies on Win 10. (#1566, #3736)

Test-suite and Continuous Integration

• Fix Appveyor failures of test_stderr_encoding() and test_stdout_encoding() on Windows Python 3.7
x64. (#4144)

• November update of packages used in testing. Prevent pyup from touching test/requirements-tools.txt.
(#3845)

• Rewrite code to avoid a RemovedInPytest4Warning: Applying marks directly to parameters is
deprecated, please use pytest.param(..., marks=...) instead.

• Run Travis tests under Xenial; remove the deprecated sudo: false tag. (#4140)

• Update the Markdown test to comply with Markdown 3.0 changes by using correct syntax for extensions.

3.4 (2018-09-09)

Features

• Add support for Python 3.7 (#2760, #3007, #3076, #3399, #3656), implemented by Hartmut Goebel.

• Improved support for Qt5-based applications (#3439). By emulating much of the Qt deployment tools’ behav-
ior most PyQt5 variants are supported. However, Anaconda’s PyQt5 packages are not supported because its
QlibraryInfo implementation reports incorrect values. CI tests currently run on PyQt5 5.11.2. Many thanks
to Bryan A. Jones for taking this struggle.

• --debug now allows more debugging to be activated more easily. This includes bootloader messages, Python’s
“verbose imports” and store collected Python files in the output directory instead of freezing. See pyinstaller
–-help for details. (#3546, #3585, #3587)

• Hint users to install development package for missing pyconfig.h. (#3348)

• In setup.py specify Python versions this distribution is compatible with.

• Make base_library.zip reproducible: Set time-stamp of files. (#2952, #2990)

• New command-line option --bootloader-ignore-signals to make the bootloader forward all signals to the
bundle application. (#208, #3515)

• (OS X) Python standard library module plistlib is now used for generating the Info.plist file. This allows
passing complex and nested data in info_plist. (#3532, #3541)

166 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3653
https://github.com/pyinstaller/pyinstaller/issues/3728
https://github.com/pyinstaller/pyinstaller/issues/3729
https://github.com/pyinstaller/pyinstaller/issues/3772
https://github.com/pyinstaller/pyinstaller/issues/1566
https://github.com/pyinstaller/pyinstaller/issues/3736
https://github.com/pyinstaller/pyinstaller/issues/4144
https://github.com/pyinstaller/pyinstaller/issues/3845
https://github.com/pyinstaller/pyinstaller/issues/4140
https://python-markdown.github.io/change_log/release-3.0/#positional-arguments-deprecated
https://python-markdown.github.io/reference/#extensions
https://github.com/pyinstaller/pyinstaller/issues/2760
https://github.com/pyinstaller/pyinstaller/issues/3007
https://github.com/pyinstaller/pyinstaller/issues/3076
https://github.com/pyinstaller/pyinstaller/issues/3399
https://github.com/pyinstaller/pyinstaller/issues/3656
https://github.com/pyinstaller/pyinstaller/issues/3439
https://github.com/pyinstaller/pyinstaller/issues/3546
https://github.com/pyinstaller/pyinstaller/issues/3585
https://github.com/pyinstaller/pyinstaller/issues/3587
https://github.com/pyinstaller/pyinstaller/issues/3348
https://github.com/pyinstaller/pyinstaller/issues/2952
https://github.com/pyinstaller/pyinstaller/issues/2990
https://github.com/pyinstaller/pyinstaller/issues/208
https://github.com/pyinstaller/pyinstaller/issues/3515
https://github.com/pyinstaller/pyinstaller/issues/3532
https://github.com/pyinstaller/pyinstaller/issues/3541

PyInstaller Documentation, Release 6.4.0

Bugfix

• Add missing warnings module to base_library.zip. (#3397, #3400)

• Fix and simplify search for libpython on Windows, msys2, cygwin. (#3167, #3168)

• Fix incompatibility with pycryptodome (a replacement for the apparently abandoned pycrypto library) when
using encrypted PYZ-archives. (#3537)

• Fix race condition caused by the bootloader parent process terminating before the child is finished. This might
happen e.g. when the child process itself plays with switch_root. (#2966)

• Fix wrong security alert if a filename contains ... (#2641, #3491)

• Only update resources of cached files when necessary to keep signature valid. (#2526)

• (OS X) Fix: App icon appears in the dock, even if LSUIElement=True. (#1917, #2075, #3566)

• (Windows) Fix crash when trying to add resources to Windows executable using the --resource option. (#2675,
#3423)

• (Windows) Only update resources when necessary to keep signature valid (#3323)

• (Windows) Use UTF-8 when reading XML manifest file. (#3476)

• (Windows) utils/win32: trap invalid --icon arguments and terminate with a message. (#3126)

Incompatible Changes

• Drop support for Python 3.3 (#3288), Thanks to Hugo and xoviat.

• --debug now expects an (optional) argument. Thus using ... --debug script.py will break. Use ...
script.py --debug or ... --debug=all script.py instead. Also --debug=all (which is the default
if no argument is given) includes noarchive, which will store all collected Python files in the output directory
instead of freezing them. Use --debug=bootloader to get the former behavior. (#3546, #3585, #3587)

• (minor) Change naming of intermediate build files and the warn file. This only effects 3rd-party tools (if any
exists) relying on the names of these files.

• (minor) The destination path for --add-data and --add-binary must no longer be empty, use . instead.
(#3066)

• (minor) Use standard path, not dotted path, for C extensions (Python 3 only).

Hooks

• New hooks for bokeh visualization library (#3607), Champlain, Clutter (#3443) dynaconf (#3641), flex (#3401),
FMPy (#3589), gi.repository.xlib (#2634, #3396) google-cloud-translate, google-api-core (#3658), jedi (#3535,
#3612), nltk (#3705), pandas (#2978, #2998, #2999, #3015, #3063, #3079), phonenumbers (#3381, #3558),
pinyin (#2822), PySide.phonon, PySide.QtSql (#2859), pytorch (#3657), scipy (#2987, #3048), uvloop (#2898),
web3, eth_account, eth_keyfile (#3365, #3373).

• Updated hooks for Cryptodome 3.4.8, Django 2.1, gevent 1.3. Crypto (support for PyCryptodome) (#3424), Gst
and GdkPixbuf (to work on msys2, #3257, #3387), sphinx 1.7.1, setuptools 39.0.

• Updated hooks for PyQt5 (#1930, #1988, #2141, #2156, #2220, #2518, #2566, #2573, #2577, #2857, #2924,
#2976, #3175, #3211, #3233, #3308, #3338, #3417, #3439, #3458, #3505), among others:

– All QML is now loaded by QtQml.QQmlEngine.

– Improve error reporting when determining the PyQt5 library location.

2.16. Changelog for PyInstaller 167

https://github.com/pyinstaller/pyinstaller/issues/3397
https://github.com/pyinstaller/pyinstaller/issues/3400
https://github.com/pyinstaller/pyinstaller/issues/3167
https://github.com/pyinstaller/pyinstaller/issues/3168
https://github.com/pyinstaller/pyinstaller/issues/3537
https://github.com/pyinstaller/pyinstaller/issues/2966
https://github.com/pyinstaller/pyinstaller/issues/2641
https://github.com/pyinstaller/pyinstaller/issues/3491
https://github.com/pyinstaller/pyinstaller/issues/2526
https://github.com/pyinstaller/pyinstaller/issues/1917
https://github.com/pyinstaller/pyinstaller/issues/2075
https://github.com/pyinstaller/pyinstaller/issues/3566
https://github.com/pyinstaller/pyinstaller/issues/2675
https://github.com/pyinstaller/pyinstaller/issues/3423
https://github.com/pyinstaller/pyinstaller/issues/3323
https://github.com/pyinstaller/pyinstaller/issues/3476
https://github.com/pyinstaller/pyinstaller/issues/3126
https://github.com/pyinstaller/pyinstaller/issues/3288
https://github.com/pyinstaller/pyinstaller/issues/3546
https://github.com/pyinstaller/pyinstaller/issues/3585
https://github.com/pyinstaller/pyinstaller/issues/3587
https://github.com/pyinstaller/pyinstaller/issues/3066
https://github.com/pyinstaller/pyinstaller/issues/3607
https://github.com/pyinstaller/pyinstaller/issues/3443
https://github.com/pyinstaller/pyinstaller/issues/3641
https://github.com/pyinstaller/pyinstaller/issues/3401
https://github.com/pyinstaller/pyinstaller/issues/3589
https://github.com/pyinstaller/pyinstaller/issues/2634
https://github.com/pyinstaller/pyinstaller/issues/3396
https://github.com/pyinstaller/pyinstaller/issues/3658
https://github.com/pyinstaller/pyinstaller/issues/3535
https://github.com/pyinstaller/pyinstaller/issues/3612
https://github.com/pyinstaller/pyinstaller/issues/3705
https://github.com/pyinstaller/pyinstaller/issues/2978
https://github.com/pyinstaller/pyinstaller/issues/2998
https://github.com/pyinstaller/pyinstaller/issues/2999
https://github.com/pyinstaller/pyinstaller/issues/3015
https://github.com/pyinstaller/pyinstaller/issues/3063
https://github.com/pyinstaller/pyinstaller/issues/3079
https://github.com/pyinstaller/pyinstaller/issues/3381
https://github.com/pyinstaller/pyinstaller/issues/3558
https://github.com/pyinstaller/pyinstaller/issues/2822
https://github.com/pyinstaller/pyinstaller/issues/2859
https://github.com/pyinstaller/pyinstaller/issues/3657
https://github.com/pyinstaller/pyinstaller/issues/2987
https://github.com/pyinstaller/pyinstaller/issues/3048
https://github.com/pyinstaller/pyinstaller/issues/2898
https://github.com/pyinstaller/pyinstaller/issues/3365
https://github.com/pyinstaller/pyinstaller/issues/3373
https://github.com/pyinstaller/pyinstaller/issues/3424
https://github.com/pyinstaller/pyinstaller/issues/3257
https://github.com/pyinstaller/pyinstaller/issues/3387
https://github.com/pyinstaller/pyinstaller/issues/1930
https://github.com/pyinstaller/pyinstaller/issues/1988
https://github.com/pyinstaller/pyinstaller/issues/2141
https://github.com/pyinstaller/pyinstaller/issues/2156
https://github.com/pyinstaller/pyinstaller/issues/2220
https://github.com/pyinstaller/pyinstaller/issues/2518
https://github.com/pyinstaller/pyinstaller/issues/2566
https://github.com/pyinstaller/pyinstaller/issues/2573
https://github.com/pyinstaller/pyinstaller/issues/2577
https://github.com/pyinstaller/pyinstaller/issues/2857
https://github.com/pyinstaller/pyinstaller/issues/2924
https://github.com/pyinstaller/pyinstaller/issues/2976
https://github.com/pyinstaller/pyinstaller/issues/3175
https://github.com/pyinstaller/pyinstaller/issues/3211
https://github.com/pyinstaller/pyinstaller/issues/3233
https://github.com/pyinstaller/pyinstaller/issues/3308
https://github.com/pyinstaller/pyinstaller/issues/3338
https://github.com/pyinstaller/pyinstaller/issues/3417
https://github.com/pyinstaller/pyinstaller/issues/3439
https://github.com/pyinstaller/pyinstaller/issues/3458
https://github.com/pyinstaller/pyinstaller/issues/3505

PyInstaller Documentation, Release 6.4.0

– Improved method for finding qt.conf.

– Include OpenGL fallback DLLs for PyQt5. (#3568).

– Place PyQt5 DLLs in the correct location (#3583).

• Fix hooks for cryptodome (#3405), PySide2 (style mismatch) (#3374, #3578)

• Fix missing SSL libraries on Windows with PyQt5.QtNetwork. (#3511, #3520)

• Fix zmq on Windows Python 2.7. (#2147)

• (GNU/Linux) Fix hook usb: Resolve library name reported by usb.backend. (#2633, #2831, #3269)

• Clean up the USB hook logic.

Bootloader

• Forward all signals to the child process if option pyi-bootloader-ignore-signals to be set in the archive.
(#208, #3515)

• Use waitpid instead of wait to avoid the bootloder parent process gets signaled. (#2966)

• (OS X) Don’t make the application a GUI app by default, even in --windowed mode. Not enforcing this pro-
grammatically in the bootloader allows to control behavior using Info.plist options - which can by set in
PyInstaller itself or in the .spec-file. (#1917, #2075, #3566)

• (Windows) Show respectively print utf-8 debug messages ungarbled. (#3477)

• Fix setenv() call when HAVE_UNSETENV is not defined. (#3722, #3723)

Module Loader

• Improved error message in case importing an extension module fails. (#3017)

Documentation

• Fix typos, smaller errors and formatting errors in documentation. (#3442, #3521, #3561, #3638)

• Make clear that --windowed is independent of --onedir. (#3383)

• Mention imports using imports imp.find_module() are not detected.

• Reflect actual behavior regarding LD_LIBRARY_PATH. (#3236)

• (OS X) Revise section on info_plist for plistlib functionality and use an example more aligned with real
world usage. (#3532, #3540, #3541)

• (developers) Overhaul guidelines for commit and commit-messages. (#3466)

• (developers) Rework developer’s quick-start guide.

168 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3568
https://github.com/pyinstaller/pyinstaller/issues/3583
https://github.com/pyinstaller/pyinstaller/issues/3405
https://github.com/pyinstaller/pyinstaller/issues/3374
https://github.com/pyinstaller/pyinstaller/issues/3578
https://github.com/pyinstaller/pyinstaller/issues/3511
https://github.com/pyinstaller/pyinstaller/issues/3520
https://github.com/pyinstaller/pyinstaller/issues/2147
https://github.com/pyinstaller/pyinstaller/issues/2633
https://github.com/pyinstaller/pyinstaller/issues/2831
https://github.com/pyinstaller/pyinstaller/issues/3269
https://github.com/pyinstaller/pyinstaller/issues/208
https://github.com/pyinstaller/pyinstaller/issues/3515
https://github.com/pyinstaller/pyinstaller/issues/2966
https://github.com/pyinstaller/pyinstaller/issues/1917
https://github.com/pyinstaller/pyinstaller/issues/2075
https://github.com/pyinstaller/pyinstaller/issues/3566
https://github.com/pyinstaller/pyinstaller/issues/3477
https://github.com/pyinstaller/pyinstaller/issues/3722
https://github.com/pyinstaller/pyinstaller/issues/3723
https://github.com/pyinstaller/pyinstaller/issues/3017
https://github.com/pyinstaller/pyinstaller/issues/3442
https://github.com/pyinstaller/pyinstaller/issues/3521
https://github.com/pyinstaller/pyinstaller/issues/3561
https://github.com/pyinstaller/pyinstaller/issues/3638
https://github.com/pyinstaller/pyinstaller/issues/3383
https://github.com/pyinstaller/pyinstaller/issues/3236
https://github.com/pyinstaller/pyinstaller/issues/3532
https://github.com/pyinstaller/pyinstaller/issues/3540
https://github.com/pyinstaller/pyinstaller/issues/3541
https://github.com/pyinstaller/pyinstaller/issues/3466

PyInstaller Documentation, Release 6.4.0

Project & Process

• Add a pip requirements.txt file.

• Let pyup update package requirements for “Test – Libraries” every month only.

• Use towncrier to manage the change log entries. (#2756, #2837, #3698)

PyInstaller Core

• Add requirements_for_package() and collect_all() helper functions for hooks.

• Add a explanatory header to the warn-file, hopefully reducing the number of those posting the file to the issue
tracker.

• Add module enum to base_library.zip, required for module re in Python 3.6 (and re is required by warnings).

• Always write the warn file.

• Apply format_binaries_and_datas() (which converts hook-style tuples into TOC-style tuples) to binaries
and datas added through the hook api.

• Avoid printing a useless exceptions in the get_module_file_attribute() helper function..

• Don’t gather Python extensions in collect_dynamic_libc().

• Fix several ResourceWarnings and DeprecationWarnings (#3677)

• Hint users to install necessary development packages if, in format_binaries_and_datas(), the file not found
is pyconfig.h. (#1539, #3348)

• Hook helper function is_module_satisfies() returns False for packages not found. (#3428, #3481)

• Read data for cache digest in chunks. (#3281)

• Select correct file extension for C-extension file-names like libzmq.cp36-win_amd64.pyd.

• State type of import (conditional, delayed, etc.) in the warn file again.

• (modulegraph) Unbundle altgraph library, use from upstream. (#3058)

• (OS X) In --consolemode set LSBackgroundOnly=True in``Info.plist`` to hide the app-icon in the dock. This
can still be overruled by passing info_plist in the .spec-file. (#1917, #3566)

• (OS X) Use the python standard library plistlib for generating the Info.plist file. (#3532, #3541)

• (Windows) Completely remove pywin32 dependency, which has erratic releases and the version on pypi may no
longer have future releases. Require pywin32-ctypes instead, which is pure python. (#3141)

• (Windows) Encode manifest before updating resource. (#3423)

• (Windows) Make import compatible with python.net, which uses an incompatible signature for __import__.
(#3574)

2.16. Changelog for PyInstaller 169

https://github.com/pyinstaller/pyinstaller/issues/2756
https://github.com/pyinstaller/pyinstaller/issues/2837
https://github.com/pyinstaller/pyinstaller/issues/3698
https://github.com/pyinstaller/pyinstaller/issues/3677
https://github.com/pyinstaller/pyinstaller/issues/1539
https://github.com/pyinstaller/pyinstaller/issues/3348
https://github.com/pyinstaller/pyinstaller/issues/3428
https://github.com/pyinstaller/pyinstaller/issues/3481
https://github.com/pyinstaller/pyinstaller/issues/3281
https://github.com/pyinstaller/pyinstaller/issues/3058
https://github.com/pyinstaller/pyinstaller/issues/1917
https://github.com/pyinstaller/pyinstaller/issues/3566
https://github.com/pyinstaller/pyinstaller/issues/3532
https://github.com/pyinstaller/pyinstaller/issues/3541
https://github.com/pyinstaller/pyinstaller/issues/3141
https://github.com/pyinstaller/pyinstaller/issues/3423
https://github.com/pyinstaller/pyinstaller/issues/3574

PyInstaller Documentation, Release 6.4.0

Test-suite and Continuous Integration

• Add script and dockerfile for running tests in docker. (Contributed, not maintained) (#3519)

• Avoid log messages to be written (and captured) twice.

• Fix decorator skipif_no_compiler.

• Fix the test for the “W” run-time Python option to verify module warnings can actually be imported. (#3402,
#3406)

• Fix unicode errors when not capturing output by pytest.

• Run pyinstaller -h to verify it works.

• test_setuptools_nspkg no longer modifies source files.

• Appveyor:

– Add documentation for Appveyor variables used to appveyor.yml.

– Significantly clean-up appveyor.yml (#3107)

– Additional tests produce > 1 hour runs. Split each job into two jobs.

– Appveyor tests run on 2 cores; therefore, run 2 jobs in parallel.

– Reduce disk usage.

– Split Python 2.7 tests into two jobs to avoid the 1 hour limit.

– Update to use Windows Server 2016. (#3563)

• Travis

– Use build-stages.

– Clean-up travis.yml (#3108)

– Fix Python installation on OS X. (#3361)

– Start a X11 server for the “Test - Libraries” stage only.

– Use target python interpreter to compile bootloader to check if the build tool can be used with that this
Python version.

Bootloader build

• Print invoking python version when compiling.

• Update waf build-tool to 2.0.9 and fix our wscript for waf 2.0.

• (GNU/Linux) When building with --debug turn of FORTIFY_SOURCE to ease debugging.

170 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/issues/3519
https://github.com/pyinstaller/pyinstaller/issues/3402
https://github.com/pyinstaller/pyinstaller/issues/3406
https://github.com/pyinstaller/pyinstaller/issues/3107
https://github.com/pyinstaller/pyinstaller/issues/3563
https://github.com/pyinstaller/pyinstaller/issues/3108
https://github.com/pyinstaller/pyinstaller/issues/3361

PyInstaller Documentation, Release 6.4.0

Known Issues

• Anaconda’s PyQt5 packages are not supported because its QlibraryInfo implementation reports incorrect
values.

• All scripts frozen into the package, as well as all run-time hooks, share the same global variables. This issue
exists since v3.2 but was discovered only lately, see #3037. This may lead to leaking global variables from
run-time hooks into the script and from one script to subsequent ones. It should have effects in rare cases only,
though.

• Data-files from wheels, unzipped eggs or not ad egg at all are not included automatically. This can be worked
around using a hook-file, but may not suffice when using --onefile and something like python-daemon.

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

• (Windows) With Python 2.7 the frozen application may not run if the user-name (more specifically %TEMPDIR%)
includes some Unicode characters. This does not happen with all Unicode characters, but only some and seems
to be a windows bug. As a work-around please upgrade to Python 3 (#2754, #2767).

• (Windows) For Python >= 3.5 targeting Windows < 10, the developer needs to take special care to include the
Visual C++ run-time .dlls. Please see the section Platform-specific Notes in the manual. (#1566)

3.3.1 (2017-12-13)

Hooks

• Fix imports in hooks accessible_output and sound_lib (#2860).

• Fix ImportError for sysconfig for 3.5.4 Conda (#3105, #3106).

• Fix shapely hook for conda environments on Windows (#2838).

• Add hook for unidecode.

Bootloader

• (Windows) Pre-build bootloaders (and custom-build ones using MSVC) can be used on Windows XP again. Set
minimum target OS to XP (#2974).

Bootloader build

• Fix build for FreeBSD (#2861, #2862).

2.16. Changelog for PyInstaller 171

https://github.com/pyinstaller/pyinstaller/issues/3037
https://github.com/pyinstaller/pyinstaller/issues/1527
https://github.com/pyinstaller/pyinstaller/issues/1309
https://github.com/pyinstaller/pyinstaller/issues/2754
https://github.com/pyinstaller/pyinstaller/issues/2767
https://github.com/pyinstaller/pyinstaller/issues/1566

PyInstaller Documentation, Release 6.4.0

PyInstaller Core

• Usage: Add help-message clarifying use of options when a spec-file is provided (#3039).

• Add printing infos on UnicodeDecodeError in exec_command(_all).

• (win32) Issue an error message on errors loading the icon file (#2039).

• (aarch64) Use correct bootloader for 64-bit ARM (#2873).

• (OS X) Fix replacement of run-time search path keywords (@...) (#3100).

• Modulegraph

– Fix recursion too deep errors cause by reimporting SWIG-like modules (#2911, #3040, #3061).

– Keep order of imported identifiers.

Test-suite and Continuous Integration

• In Continuous Integration tests: Enable flake8-diff linting. This will refuse all changed lines not following PEP
8.

• Enable parallel testing on Windows,

• Update requirements.

• Add more test cases for modulegraph.

• Fix a test-case for order of module import.

• Add test-cases to check scripts do not share the same global vars (see Known Issues).

Documentation

• Add clarification about treatment of options when a spec-file is provided (#3039).

• Add docs for running PyInstaller with Python optimizations (#2905).

• Add notes about limitations of Cython support.

• Add information how to handle undetected ctypes libraries.

• Add notes about requirements and restrictions of SWIG support.

• Add note to clarify what binary files are.

• Add a Development Guide.

• Extend “How to Contribute”.

• Add “Running the Test Suite”.

• Remove badges from the Readme (#2853).

• Update outdated sections in man-pages and other enhancements to the man-page.

172 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Known Issues

• All scripts frozen into the package, as well as all run-time hooks, share the same global variables. This issue
exists since v3.2 but was discovered only lately, see #3037. This may lead to leaking global variables from
run-time hooks into the script and from one script to subsequent ones. It should have effects in rare cases only,
though.

• Further see the Known Issues for release 3.3.

3.3 (2017-09-21)

• Add Support for Python 3.6! Many thanks to xiovat! (#2331, #2341)

• New command line options for adding data files (--datas, #1990) and binaries (--binaries, #703)

• Add command line option ‘–runtime-tmpdir’.

• Bootloaders for Windows are now build using MSVC and statically linked with the run-time-library (CRT). This
solved a lot of issues related to .dlls being incompatible with the ones required by python.dll.

• Bootloaders for GNU/Linux are now officially no LSB binaries. This was already the case since release 3.1, but
documented the other way round. Also the build defaults to non-LSB binaries now. (#2369)

• We improved and stabilized both building the bootloaders and the continuous integration tests. See below for
details. Many thanks to all who worked on this.

• To ease solving issues with packages included wrongly, the html-file with a cross-reference is now always gen-
erated. It’s visual appearance has been modernized (#2765).

Incompatible changes

• Command-line option obsoleted several version ago are not longer handled gracefully but raise an error (#2413)

• Installation: PyInstaller removed some internal copies of 3rd-party packages. These are now taken from their of-
ficial releases at PyPI (#2589). This results in PyInstaller to no longer can be used from just an unpacked archive,
but needs to be installed like any Python package. This should effect only a few people, e.g. the developers.

• Following PEP 527, we only release one source archive now and decided to use .tar.gz (#2754).

Hooks

• New and Updated hooks: accessible_output2 (#2266), ADIOS (#2096), CherryPy (#2112), PySide2 (#2471,
#2744) (#2472), Sphinx (#2612, 2708) (#2708), appdir (#2478), clr (#2048), cryptodome (#2125), cryp-
tography (#2013), dclab (#2657), django (#2037), django migrations (#1795), django.contrib (#2336),
google.cloud, google.cloud.storage, gstreamer (#2603), imageio (#2696), langcodes (#2682), libaudioverse
(#2709), mpl_toolkits (#2400), numba, llvmlite (#2113), openpyxl (#2066), pylint, pymssql, pyopencl, pyproj
(#2677), pytest (#2119), qtawesome (#2617), redmine, requests (#2334), setuptools, setuptools (#2565), shapely
(#2569), sound_lib (#2267), sysconfig, uniseg (#2683), urllib3, wx.rc (#2295),

– numpy: Look for .dylib libraries, too ((#2544), support numpy MKL builds (#1881, #2111)

– osgeo: Add conda specific places to check for auxiliary data (#2401)

– QT and related

∗ Add hooks for PySide2

∗ Eliminate run-time hook by placing files in the correct directory

2.16. Changelog for PyInstaller 173

https://github.com/pyinstaller/pyinstaller/issues/3037
https://www.python.org/dev/peps/pep-0527

PyInstaller Documentation, Release 6.4.0

∗ Fix path in homebrew for searching for qmake (#2354)

∗ Repair Qt dll location (#2403)

∗ Bundle PyQT 5.7 DLLs (#2152)

∗ PyQt5: Return qml plugin path including subdirectory (#2694)

∗ Fix hooks for PyQt5.QtQuick (#2743)

∗ PyQt5.QtWebEngineWidgets: Include files needed by QWebEngine

– GKT+ and related

∗ Fix Gir file path on windows.

∗ Fix unnecessary file search & generation when GI’s typelib is exists

∗ gi: change gir search path when running from a virtualenv

∗ gi: package gdk-pixbuf in osx codesign agnostic dir

∗ gi: rewrite the GdkPixbuf loader cache at runtime on Linux

∗ gi: support onefile mode for GdkPixbuf

∗ gi: support using gdk-pixbuf-query-loaders-64 when present

∗ gi: GIR files are only required on OSX

∗ gio: copy the mime.cache also

∗ Fix hooks for PyGObject on windows platform (#2306)

• Fixed hooks: botocore (#2384), clr (#1801), gstreamer (#2417), h5py (#2686), pylint, Tix data files (#1660),
usb.core (#2088), win32com on non-windows-systems (#2479)

• Fix multiprocess spawn mode on POSIX OSs (#2322, #2505, #2759, #2795).

Bootloader

• Add tempdir option to control where bootloader will extract files (#2221)

• (Windows) in releases posted on PyPI requires msvcr*.dll (#2343)

• Fix unsafe string manipulation, resource and memory leaks. Thanks to Vito Kortbeek (#2489, #2502, #2503)

• Remove a left-over use of getenv()

• Set proper LISTEN_PID (set by systemd) in child process (#2345)

• Adds PID to bootloader log messages (#2466, #2480)

• (Windows) Use _wputenv_s() instead of SetEnvironmentVariableW()

• (Windows) Enhance error messages (#1431)

• (Windows) Add workaround for a Python 3 issue http://bugs.python.org/issue29778 (#2496, #2844)

• (OS X): Use single process for –onedir mode (#2616, #2618)

• (GNU/Linux) Compile bootloaders with –no-lsb by default (#2369)

• (GNU/Linux) Fix: linux64 bootloader requires glibc 2.14 (#2160)

• (GNU/Linux) set_dynamic_library_path change breaks plugin library use (#625)

174 Chapter 2. Contents:

http://bugs.python.org/issue29778

PyInstaller Documentation, Release 6.4.0

Bootloader build

The bootloader build was largely overhauled. In the wscript, the build no longer depends on the Python interpreter’s
bit-size, but on the compiler. We have a machine for building bootloaders for Windows and cross-building for OS X.
Thus all mainteriner are now able to build the bootloaders for all supported platforms.

• Add “official” build-script.

• (GNU/Linux) Make –no-lsb the default, add option –lsb.

• Largely overhauled Vagrantfile:

– Make Darwin bootloaders build in OS X box (unused)

– Make Windows bootloaders build using MSVC

– Allow specifying cross-target on linux64.

– Enable cross-building for OS X.

– Enable cross-building for Windows (unused)

– Add box for building osxcross.

• Largely overhauled wscript:

– Remove options –target-cpu.

– Use compiler’s target arch, not Python’s.

– Major overhaul of the script

– Build zlib if required, not if “on windows”.

– Remove obsolete warnings.

– Update Solaris, AIX and HPUX support.

– Add flags for ‘strip’ tool in AIX platform.

– Don’t set POSIX / SUS version defines.

• (GNU/Linux) for 64-bit arm/aarch ignore the gcc flag -m64 (#2801).

Module loader

• Implement PEP-451 ModuleSpec type import system (#2377)

• Fix: Import not thread-save? (#2010, #2371)

PyInstaller Core

• Analyze: Check Python version when testing whether to rebuild.

• Analyze: Don’t fail on syntax error in modules, simply ignore them.

• Better error message when datas are not found. (#2308)

• Building: OSX: Use unicode literals when creating Info.plist XML

• Building: Don’t fail if “datas” filename contain glob special characters. (#2314)

• Building: Read runtime-tmpdir from .spec-file.

• Building: Update a comment.

2.16. Changelog for PyInstaller 175

PyInstaller Documentation, Release 6.4.0

• building: warn users if bincache gets corrupted. (#2614)

• Cli-utils: Remove graceful handling of obsolete command line options.

• Configure: Create new parent-dir when moving old cache-dir. (#2679)

• Depend: Include vcruntime140.dll on Windows. (#2487)

• Depend: print nice error message if analyzed script has syntax error.

• Depend: When scanning for ctypes libs remove non-basename binaries.

• Enhance run-time error message on ctypes import error.

• Fix #2585: py2 non-unicode sys.path been tempted by os.path.abspath(). (#2585)

• Fix crash if extension module has hidden import to ctypes. (#2492)

• Fix handling of obsolete command line options. (#2411)

• Fix versioninfo.py breakage on Python 3.x (#2623)

• Fix: “Unicode-objects must be encoded before hashing” (#2124)

• Fix: UnicodeDecodeError - collect_data_files does not return filenames as unicode (#1604)

• Remove graceful handling of obsolete command line options. (#2413)

• Make grab version more polite on non-windows (#2054)

• Make utils/win32/versioninfo.py round trip the version info correctly.

• Makespec: Fix version number processing for PyCrypto. (#2476)

• Optimizations and refactoring to modulegraph and scanning for ctypes dependencies.

• pyinstaller should not crash when hitting an encoding error in source code (#2212)

• Remove destination for COLLECT and EXE prior to copying it (#2701)

• Remove uninformative traceback when adding not found data files (#2346)

• threading bug while processing imports (#2010)

• utils/hooks: Add logging to collect_data_files.

• (win32) Support using pypiwin32 or pywin32-ctypes (#2602)

• (win32) Use os.path.normpath to ensure that system libs are excluded.

• (win32) Look for libpython%.%.dll in Windows MSYS2 (#2571)

• (win32) Make versioninfo.py round trip the version info correctly (#2599)

• (win32) Ensure that pywin32 isn’t imported before check_requirements is called

• (win32) pyi-grab_version and –version-file not working? (#1347)

• (win32) Close PE() object to avoid mmap memory leak (#2026)

• (win32) Fix: ProductVersion in windows version info doesn’t show in some cases (#846)

• (win32) Fix multi-byte path bootloader import issue with python2 (#2585)

• (win32) Forward DYLD_LIBRARY_PATH through arch command. (#2035)

• (win32) Add vcruntime140.dll to_win_includes for Python 3.5 an 3.6 (#2487)

• (OS X) Add libpython%d.%dm.dylib to Darwin (is_darwin) PYDYLIB_NAMES. (#1971)

• (OS X) macOS bundle Info.plist should be in UTF-8 (#2615)

176 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• (OS X) multiprocessing spawn in python 3 does not work on macOS (#2322)

• (OS X) Pyinstaller not able to find path (@rpath) of dynamic library (#1514)

• Modulegraph

– Align with upstream version 0.13.

– Add the upstream test-suite

– Warn on syntax error and unicode error. (#2430)

– Implement enumerate_instructions() (#2720)

– Switch byte-code analysis to use Instruction (like dis3 does) (#2423)

– Log warning on unicode error instead of only a debug message (#2418)

– Use standard logging for messages. (#2433)

– Fix to reimport failed SWIG C modules (1522, #2578).

• Included 3rd-party libraries

– Remove bundled pefile and macholib, use the releases from PyPI. (#1920, #2689)

– altgraph: Update to altgraph 0.13, add upstream test-suite.

Utilities

• grab_version.py: Display a friendly error message when utility fails (#859, #2792).

Test-suite and Continuous Integration

• Rearrange requirements files.

• Pin required versions – now updated using pyup (#2745)

• Hide useless trace-backs of helper-functions.

• Add a test for PyQt5.QtQuick.

• Add functional tests for PySide2

• Add test for new feature –runtime-tmpdir.

• Fix regression-test for #2492.

• unit: Add test-cases for PyiModuleGraph.

• unit/altgraph: Bringing in upstream altgraph test-suite.

• unit/modulegraph: Bringing in the modulegraph test-suite.

• Continuous Integration

– Lots of enhancements to the CI tests to make them more stabile and reliable.

– Pin required versions – now updated using pyup (#2745)

– OS X is now tested along with GNU/Linux at Travis CI (#2508)

– Travis: Use stages (#2753)

– appveyor: Save cache on failure (#2690)

2.16. Changelog for PyInstaller 177

PyInstaller Documentation, Release 6.4.0

– appveyor: Verify built bootloaders have the expected arch.

Documentation

• Add information how to donate (#2755, #2772).

• Add how to install the development version using pip.

• Fix installation instructions for development version. (#2761)

• Better examples for hidden imports.

• Clarify and fix “Adding Data Files” and “Adding Binary Files”. (#2482)

• Document new command line option ‘–runtime-tmpdir’.

• pyinstaller works on powerpc linux, big endian arch (#2000)

• Largely rewrite section “Building the Bootloader”, update from the wiki page.

• Describe building LSB-compliant bootloader as (now) special case.

• help2rst: Add cross-reference labels for option-headers.

• Enable sphinx.ext.intersphinx and links to our website.

• Sphinx should not “adjust” display of command line documentation (#2217)

Known Issues

• Data-files from wheels, unzipped eggs or not ad egg at all are not included automatically. This can be worked
around using a hook-file, but may not suffice when using --onefile and something like python-daemon.

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

• (Windows) With Python 2.7 the frozen application may not run if the user-name (more specifically %TEMPDIR%)
includes some Unicode characters. This does not happen with all Unicode characters, but only some and seems
to be a windows bug. As a work-around please upgrade to Python 3 (#2754, #2767).

• (Windows) For Python >= 3.5 targeting Windows < 10, the developer needs to take special care to include the
Visual C++ run-time .dlls. Please see the section Platform-specific Notes in the manual. (#1566)

• For Python 3.3, imports are not thread-safe (#2371#). Since Python 3.3 is end of live at 2017-09-29, we are not
going to fix this.

3.2.1 (2017-01-15)

• New, updated and fixed hooks: botocore (#2094), gi (#2347), jira (#2222), PyQt5.QtWebEngineWidgets
(#2269), skimage (#2195, 2225), sphinx (#2323,) xsge_gui (#2251).

Fixed the following issues:

• Don’t fail if working directory already exists (#1994)

• Avoid encoding errors in main script (#1976)

• Fix hasher digest bytes not str (#2229, #2230)

• (Windows) Fix additional dependency on the msvcrt10.dll (#1974)

178 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• (Windows) Correctly decode a bytes object produced by pefile (#1981)

• (Windows) Package pefile with pyinstaller. This partially undoes some changes in 3.2 in which the packaged
pefiles were removed to use the pypi version instead. The pypi version was considerably slower in some appli-
cations, and still has a couple of small issues on PY3. (#1920)

• (OS X) PyQt5 packaging issues on MacOS (#1874)

• (OS X) Replace run-time search path keyword (#1965)

• (OS X) (Re-) add argv emulation for OSX, 64-bit (#2219)

• (OS X) use decode(“utf-8”) to convert bytes in getImports_macholib() (#1973)

• (Bootloader) fix segfaults (#2176)

• (setup.py) pass option –no-lsb on GNU/Linux only (#1975)

• Updates and fixes in documentation, manuals, et al. (#1986, 2002, #2153, #2227, #2231)

3.2 (2016-05-03)

• Even the “main” script is now byte-compiled (#1847, #1856)

• The manual is on readthedocs.io now (#1578)

• On installation try to compile the bootloader if there is none for the current platform (#1377)

• (Unix) Use objcopy to create a valid ELF file (#1812, #1831)

• (Linux): Compile with _FORTIFY_SOURCE (#1820)

• New, updated and fixed hooks: CherryPy (#1860), Cryptography (#1425, #1861), enchant (1562),
gi.repository.GdkPixbuf (#1843), gst (#1963), Lib2to3 (#1768), PyQt4, PyQt5, PySide (#1783, #1897, #1887),
SciPy (#1908, #1909), sphinx (#1911, #1912), sqlalchemy (#1951), traitlets wx.lib.pubsub (#1837, #1838),

• For windowed mode add isatty() for our dummy NullWriter (#1883)

• Suppress “Failed to execute script” in case of SystemExit (#1869)

• Do not apply Upx compressor for bootloader files (#1863)

• Fix absolute path for lib used via ctypes (#1934)

• (OSX) Fix binary cache on NFS (#1573, #1849)

• (Windows) Fix message in grab_version (#1923)

• (Windows) Fix wrong icon parameter in Windows example (#1764)

• (Windows) Fix win32 unicode handling (#1878)

• (Windows) Fix unnecessary rebuilds caused by rebuilding winmanifest (#1933)

• (Cygwin) Fix finding the Python library for Cygwin 64-bit (#1307, #1810, #1811)

• (OSX) Fix compilation issue (#1882)

• (Windows) No longer bundle pefile, use package from pypi for windows (#1357)

• (Windows) Provide a more robust means of executing a Python script

• AIX fixes.

• Update waf to version 1.8.20 (#1868)

• Fix excludedimports, more predictable order how hooks are applied #1651

2.16. Changelog for PyInstaller 179

PyInstaller Documentation, Release 6.4.0

• Internal improvements and code clean-up (#1754, #1760, #1794, #1858, #1862, #1887, #1907, #1913)

• Clean-ups fixes and improvements for the test suite

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

3.1.1 (2016-01-31)

Fixed the following issues:

• Fix problems with setuptools 19.4 (#1772, #1773, #1790, #1791)

• 3.1 does not collect certain direct imports (#1780)

• Git reports wrong version even if on unchanged release (#1778)

• Don’t resolve symlinks in modulegraph.py (#1750, #1755)

• ShortFileName not returned in win32 util (#1799)

3.1 (2016-01-09)

• Support reproducible builds (#490, #1434, #1582, #1590).

• Strip leading parts of paths in compiled code objects (#1059, #1302, #1724).

• With --log-level=DEBUG, a dependency graph-file is emitted in the build-directory.

• Allow running pyinstaller as user root. By popular demand, see e.g. #1564, #1459, #1081.

• New Hooks: botocore, boto3, distorm3, GObject, GI (G Introspection), GStreamer, GEvent, kivy,
lxml.isoschematron, pubsub.core, PyQt5.QtMultimedia, scipy.linalg, shelve.

• Fixed or Updated Hooks: astroid, django, jsonschema logilab, PyQt4, PyQt5, skimage, sklearn.

• Add option --hiddenimport as an alias for --hidden-import.

• (OSX): Fix issues with st_flags (#1650).

• (OSX) Remove warning message about 32bit compatibility (#1586).

• (Linux) The cache is now stored in $XDG_CACHE_HOME/pyinstaller instead of $XDG_DATA_HOME - the cache
is moved automatically (#1118).

• Documentation updates, e.g. about reproducible builds

• Put back full text of GPL license into COPYING.txt.

• Fix crashes when looking for ctypes DLLs (#1608, #1609, #1620).

• Fix: Imports in byte-code not found if code contains a function (#1581).

• Fix recursion into bytes-code when scanning for ctypes (#1620).

• Fix PyCrypto modules to work with crypto feature (--key option) (#1663).

• Fix problems with excludedimports in some hook excluding the named modules even if used elswhere (#1584,
#1600).

180 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Fix freezing of pip 7.1.2 (#1699).

• FreeBSD and Solaris fixes.

• Search for ldconfig in $PATH first (#1659)

• Deny processing outdated package _xmlplus.

• Improvements to the test-suite, testing infrastructure and continuous integration.

• For non-release builds, the exact git revision is not used.

• Internal code refactoring.

• Enhancements and clean-ups to the hooks API - only relevant for hook authors. See the manual for details. E.g:

– Removed attrs in hooks - they were not used anymore anyway.

– Change add/del_import() to accept arbitrary number of module names.

– New hook utility function copy_metadata().

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

3.0 (2015-10-04)

• Python 3 support (3.3 / 3.4 / 3.5).

• Remove support for Python 2.6 and lower.

• Full unicode support in the bootloader (#824, #1224, #1323, #1340, #1396)

– (Windows) Python 2.7 apps can now run from paths with non-ASCII characters

– (Windows) Python 2.7 onefile apps can now run for users whose usernames contain non-ASCII characters

– Fix sys.getfilesystemencoding() to return correct values (#446, #885).

• (OSX) Executables built with PyInstaller under OS X can now be digitally signed.

• (OSX) 32bit precompiled bootloader no longer distributed, only 64bit.

• (Windows) for 32bit bootloader enable flag LARGEADDRESSAWARE that allows to use 4GB of RAM.

• New hooks: amazon-product-api, appy, certifi, countrycode, cryptography, gi, httplib2, jsonschema, keyring,
lensfunpy, mpl_toolkits.basemap, ncclient, netCDF4, OpenCV, osgeo, patsy, PsychoPy, pycountry, pycparser,
PyExcelerate, PyGobject, pymssql, PyNaCl, PySiDe.QtCore, PySide.QtGui, rawpy, requests, scapy, scipy, six,
SpeechRecognition, u1db, weasyprint, Xlib.

• Hook fixes: babel, ctypes, django, IPython, pint, PyEnchant, Pygments, PyQt5, PySide, pyusb, sphinx,
sqlalchemy, tkinter, wxPython.

• Add support for automatically including data files from eggs.

• Add support for directory eggs support.

• Add support for all kind of namespace packages e.g. zope.interface, PEP302 (#502, #615, #665, #1346).

• Add support for pkgutil.extend_path().

• New option --key to obfuscate the Python bytecode.

2.16. Changelog for PyInstaller 181

PyInstaller Documentation, Release 6.4.0

• New option --exclude-module to ignore a specific module or package.

• (Windows) New option --uac-admin to request admin permissions before starting the app.

• (Windows) New option --uac-uiaccess allows an elevated application to work with Remote Desktop.

• (Windows) New options for Side-by-side Assembly searching:

– --win-private-assemblies bundled Shared Assemblies into the application will be changed into Pri-
vate Assemblies

– --win-no-prefer-redirects while searching for Assemblies PyInstaller will prefer not to follow poli-
cies that redirect to newer versions.

• (OSX) New option --osx-bundle-identifier to set .app bundle identifier.

• (Windows) Remove old COM server support.

• Allow override PyInstaller default config directory by environment variable PYINSTALLER_CONFIG_DIR.

• Add FreeBSD support.

• AIX fixes.

• Solaris fixes.

• Use library modulegraph for module dependency analysis.

• Bootloader debug messages LOADER: ... printed to stderr.

• PyInstaller no longer extends sys.path and bundled 3rd-party libraries do not interfere with their other versions.

• Enhancemants to Analysis():

– New arguments excludedimports to exclude Python modules in import hooks.

– New argument binaries to bundle dynamic libraries in .spec file and in import hooks.

– New argument datas to bundle additional data files in .spec file and in import hooks.

• A lot of internal code refactoring.

• Test suite migrated to pytest framework.

• Improved testing infrastructure with continuous integration (Travis - Linux, Appveyor - Windows)

• Wiki and bug tracker migrated to github.

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

Changelog for PyInstaller 2.x

2.1 (2013-09-27)

• Rewritten manual explaining even very basic topics.

• PyInstaller integration with setuptools (direct installation with easy_install or pip from PYPI - https://pypi.
python.org/pypi). After installation there will be available command ‘pyinstaller’ for PyInstaller usage.

• (Windows) Alter –version-file resource format to allow unicode support.

182 Chapter 2. Contents:

https://docs.python.org/3/library/sys.html#sys.path
https://pypi.python.org/pypi
https://pypi.python.org/pypi

PyInstaller Documentation, Release 6.4.0

• (Windows) Fix running frozen app running from paths containing foreign characters.

• (Windows) Fix running PyInstaller from paths containing foreign characters.

• (OSX) Implement –icon option for the .app bundles.

• (OSX) Add argv emulation for OpenDocument AppleEvent (see manual for details).

• Rename –buildpath to –workpath.

• Created app is put to –distpath.

• All temporary work files are now put to –workpath.

• Add option –clean to remove PyInstaller cache and temporary files.

• Add experimental support for Linux arm.

• Minimum supported Python version is 2.4.

• Add import hooks for docutils, jinja2, sphinx, pytz, idlelib, sqlite3.

• Add import hooks for IPython, Scipy, pygst, Python for .NET.

• Add import hooks for PyQt5, Bacon, raven.

• Fix django import hook to work with Django 1.4.

• Add rthook for twisted, pygst.

• Add rthook for pkg_resource. It fixes the following functions for frozen app pkg_resources.resource_stream(),
pkg_resources.resource_string().

• Better support for pkg_resources (.egg manipulation) in frozen executables.

• Add option –runtime-hook to allow running custom code from frozen app before loading other Python from the
frozen app. This is useful for some specialized preprocessing just for the frozen executable. E.g. this option can
be used to set SIP api v2 for PyQt4.

• Fix runtime option –Wignore.

• Rename utils to lowercase: archieve_viewer.py, bindepend.py, build.py, grab_version.py, make_comserver.py,
makespec.py, set_version.py.

• (OSX) Fix missing qt_menu.nib in dist directory when using PySide.

• (OSX) Fix bootloader compatibility with Mac OS X 10.5

• (OSX) Search libpython in DYLD_LIBRARY_PATH if libpython cannot be found.

• (OSX) Fix Python library search in virtualenv.

• Environment variable PYTHONHOME is now unset and path to python home is set in bootloader by function
Py_SetPythonHome().This overrides sys.prefix and sys.exec_prefix for frozen application.

• Python library filename (e.g. python27.dll, libpython2.7.so.1.0, etc) is embedded to the created exe file. Boot-
loader is not trying several filenames anymore.

• Frozen executables now use PEP-302 import hooks to import frozen modules and C extensions. (sys.meta_path)

• Drop old import machinery from iu.py.

• Drop own code to import modules from zip archives (.egg files) in frozen executales. Native Python implemen-
tation is kept unchanged.

• Drop old crypto code. This feature was never completed.

• Drop bootloader dependency on Python headers for compilation.

2.16. Changelog for PyInstaller 183

PyInstaller Documentation, Release 6.4.0

• (Windows) Recompile bootloaders with VS2008 to ensure win2k compatibility.

• (Windows) Use 8.3 filenames for homepath/temppath.

• Add prefix LOADER to the debug text from bootloader.

• Allow running PyInstaller programmatically.

• Move/Rename some files, code refactoring.

• Add more tests.

• Tilde is in PyInstaller recognized as $HOME variable.

2.0 (2012-08-08)

• Minimum supported Python version is 2.3.

• (OSX) Add support for Mac OS X 64-bit

• (OSX) Add support Mac OS X 10.7 (Lion) and 10.8 (Mountain Lion).

• (OSX) With argument –windowed PyInstaller creates application bundle (.app)

• automatically.

• Add experimental support for AIX (thanks to Martin Gamwell Dawids).

• Add experimental support for Solaris (thanks to Hywel Richards).

• Add Multipackage function to create a collection of packages to avoid

• library duplication. See documentation for more details.

• New symplified command line interface. Configure.py/Makespec.py/Build.py

• replaced by pyinstaller.py. See documentation for more details.

• Removed cross-building/bundling feature which was never really finished.

• Added option –log-level to all scripts to adjust level of output (thanks to Hartmut Goebel).

• rthooks.dat moved to support/rthooks.dat

• Packaged executable now returns the same return-code as the

• unpackaged script (thanks to Brandyn White).

• Add import hook for PyUSB (thanks to Chien-An “Zero” Cho).

• Add import hook for wx.lib.pubsub (thanks to Daniel Hyams).

• Add import hook for pyttsx.

• Improve import hook for Tkinter.

• Improve import hook for PyQt4.

• Improve import hook for win32com.

• Improve support for running PyInstaller in virtualenv.

• Add cli options –additional-hooks-dir and –hidden-import.

• Remove cli options -X, -K, -C, –upx, –tk, –configfile, –skip-configure.

• UPX is used by default if available in the PATH variable.

• Remove compatibility code for old platforms (dos, os2, MacOS 9).

184 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Use Python logging system for message output (thanks to Hartmut Goebel).

• Environment variable MEIPASS2 is accessible as sys._MEIPASS.

• Bootloader now overrides PYTHONHOME and PYTHONPATH. PYTHONHOME and PYTHONPATH is set
to the value of MEIPASS2 variable.

• Bootloader uses absolute paths.

• (OSX) Drop dependency on otool from Xcode on Mac OSX.

• (OSX) Fix missing qt_menu.nib in dist directory when using PyQt4.

• (OSX) Bootloader does not use DYLD_LIBRARY_PATH on Mac OS X anymore. @loader_path is used instead.

• (OSX) Add support to detect .dylib dependencies on Mac OS X containing @executable_path, @loader_path
and @rpath.

• (OSX) Use macholib to detect dependencies on dynamic libraries.

• Improve test suite.

• Improve source code structure.

• Replace os.system() calls by suprocess module.

• Bundle fake ‘site’ module with frozen applications to prevent loading any user’s Python modules from host OS.

• Include runtime hooks (rthooks) in code analysis.

• Source code hosting moved to github: https://github.com/pyinstaller/pyinstaller

• Hosting for running tests daily: https://jenkins.shiningpanda-ci.com/pyinstaller/

Changelog for PyInstaller 1.x

1.5.1 (2011-08-01)

• New default PyInstaller icon for generated executables on Windows.

• Add support for Python built with –enable-shared on Mac OSX.

• Add requirements section to documentation.

• Documentation is now generated by rst2html and rst2pdf.

• Fix wrong path separators for bootloader-file on Windows

• Add workaround for incorrect platform.system() on some Python Windows installation where this function re-
turns ‘Microsoft’ instead ‘Windows’.

• Fix –windowed option for Mac OSX where a console executable was created every time even with this option.

• Mention dependency on otool, ldd and objdump in documentation.

• Fix typo preventing detection of DLL libraries loaded by ctypes module.

2.16. Changelog for PyInstaller 185

https://github.com/pyinstaller/pyinstaller
https://jenkins.shiningpanda-ci.com/pyinstaller/

PyInstaller Documentation, Release 6.4.0

1.5 (2011-05-05)

• Full support for Python 2.7.

• Full support for Python 2.6 on Windows. No manual redistribution of DLLs, CRT, manifest, etc. is required:
PyInstaller is able to bundle all required dependencies (thanks to Florian Hoech).

• Added support for Windows 64-bit (thanks to Martin Zibricky).

• Added binary bootloaders for Linux (32-bit and 64-bit, using LSB), and Darwin (32-bit). This means that PyIn-
staller users on this platform don’t need to compile the bootloader themselves anymore (thanks to Martin Zibricky
and Lorenzo Mancini).

• Rewritten the build system for the bootloader using waf (thanks to Martin Zibricky)

• Correctly detect Python unified binary under Mac OSX, and bail out if the unsupported 64-bit version is used
(thanks to Nathan Weston).

• Fix TkInter support under Mac OSX (thanks to Lorenzo Mancini).

• Improve bundle creation under Mac OSX and correctly support also one-dir builds within bundles (thanks to
Lorenzo Mancini).

• Fix spurious KeyError when using dbhash

• Fix import of nested packages made from Pyrex-generated files.

• PyInstaller is now able to follow dependencies of binary extensions (.pyd/.so) compressed within .egg-files.

• Add import hook for PyTables.

• Add missing import hook for QtWebKit.

• Add import hook for pywinauto.

• Add import hook for reportlab (thanks Nevar).

• Improve matplotlib import hook (for Mac OSX).

• Improve Django import hooks.

• Improve compatibility across multiple Linux distributions by being more careful on which libraries are in-
cluded/excluded in the package.

• Improve compatibility with older Python versions (Python 2.2+).

• Fix double-bouncing-icon bug on Mac OSX. Now windowed applications correctly start on Mac OSX showing
a single bouncing icon.

• Fix weird “missing symbol” errors under Mac OSX (thanks to Isaac Wagner).

1.4 (2010-03-22)

• Fully support up to Python 2.6 on Linux/Mac and Python 2.5 on Windows.

• Preliminar Mac OSX support: both one-file and one-dir is supported; for non-console applications, a bundle can
be created. Thanks to many people that worked on this across several months (Daniele Zannotti, Matteo Bertini,
Lorenzo Mancini).

• Improved Linux support: generated executables are fatter but now should now run on many different Linux
distributions (thanks to David Mugnai).

• Add support for specifying data files in import hooks. PyInstaller can now automatically bundle all data files or
plugins required for a certain 3rd-party package.

186 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Add intelligent support for ctypes: PyInstaller is now able to track all places in the source code where ctypes
is used and automatically bundle dynamic libraries accessed through ctypes. (Thanks to Lorenzo Mancini for
submitting this). This is very useful when using ctypes with custom-made dynamic libraries.

• Executables built with PyInstaller under Windows can now be digitally signed.

• Add support for absolute imports in Python 2.5+ (thanks to Arve Knudsen).

• Add support for relative imports in Python 2.5+.

• Add support for cross-compilation: PyInstaller is now able to build Windows executables when running under
Linux. See documentation for more details.

• Add support for .egg files: PyInstaller is now able to look for dependencies within .egg files, bundle them and
make them available at runtime with all the standard features (entry-points, etc.).

• Add partial support for .egg directories: PyInstaller will treat them as normal packages and thus it will not bundle
metadata.

• Under Linux/Mac, it is now possible to build an executable even when a system packages does not have .pyc
or .pyo files available and the system-directory can be written only by root. PyInstaller will in fact generate the
required .pyc/.pyo files on-the-fly within a build-temporary directory.

• Add automatic import hooks for many third-party packages, including:

– PyQt4 (thanks to Pascal Veret), with complete plugin support.

– pyodbc (thanks to Don Dwiggins)

– cElementTree (both native version and Python 2.5 version)

– lxml

– SQLAlchemy (thanks to Greg Copeland)

– email in Python 2.5 (though it does not support the old-style Python 2.4 syntax with Python 2.5)

– gadfly

– PyQWt5

– mako

– Improved PyGTK (thanks to Marco Bonifazi and foxx).

– paste (thanks to Jamie Kirkpatrick)

– matplotlib

• Add fix for the very annoying “MSVCRT71 could not be extracted” bug, which was caused by the DLL being
packaged twice (thanks to Idris Aykun).

• Removed C++-style comments from the bootloader for compatibility with the AIX compiler.

• Fix support for .py files with DOS line endings under Linux (fixes PyOpenGL).

• Fix support for PIL when imported without top-level package (“import Image”).

• Fix PyXML import hook under NT (thanks to Lorenzo Mancini)

• Fixed problem with PyInstaller picking up the wrong copy of optparse.

• Improve correctness of the binary cache of UPX’d/strip’d files. This fixes problems when switching between
multiple versions of the same third-party library (like e.g. wxPython allows to do).

• Fix a stupid bug with modules importing optparse (under Linux) (thanks to Louai Al-Khanji).

2.16. Changelog for PyInstaller 187

PyInstaller Documentation, Release 6.4.0

• Under Python 2.4+, if an exception is raised while importing a module inside a package, the module is now
removed from the parent’s namespace (to match the behaviour of Python itself).

• Fix random race-condition at startup of one-file packages, that was causing this exception to be generated: “PYZ
entry ‘encodings’ (0j) is not a valid code object”.

• Fix problem when having unicode strings among path elements.

• Fix random exception (“bad file descriptor”) with “prints” in non-console mode (actually a pythonw “bug” that’s
fixed in Python 3.0).

• Sometimes the temporary directory did not get removed upon program exit, when running on Linux.

• Fixed random segfaults at startup on 64-bit platforms (like x86-64).

1.3 (2006-12-20)

• Fix bug with user-provided icons disappearing from built executables when these were compressed with UPX.

• Fix problems with packaging of applications using PIL (that was broken because of a bug in Python’s import
machinery, in recent Python versions). Also add a workaround including Tcl/Tk with PIL unless ImageTk is
imported.

• (Windows) When used under Windows XP, packaged programs now have the correct look & feel and follow
user’s themes (thanks to the manifest file being linked within the generated executable). This is especially useful
for applications using wxPython.

• Fix a buffer overrun in the bootloader (which could lead to a crash) when the built executable is run from within
a deep directory (more than 70-80 characters in the pathname).

• Bootstrap modules are now compressed in the executable (so that they are not visible in plaintext by just looking
at it with a hex editor).

• Fixed a regression introduced in 1.1: under Linux, the bootloader does not depend on libpythonX.X.so anymore.

1.2 (2006-06-29)

• Fix a crash when invoking UPX with certain kinds of builds.

• Fix icon support by re-adding a resource section in the bootloader executable.

1.1 (2006-02-13)

• (Windows) Make single-file packages not depend on MSVCRT71.DLL anymore, even under Python 2.4. You
can eventually ship your programs really as single-file executables, even when using the newest Python version!

• Fix problem with incorrect python path detection. Now using helpers from distutils.

• Fix problem with rare encodings introduced in newer Python versions: now all the encodings are automatically
found and included, so this problem should be gone forever.

• Fix building of COM servers (was broken in 1.0 because of the new build system).

• Mimic Python 2.4 behaviour with broken imports: sys.modules is cleaned up afterwise. This allows to package
SQLObject applications under Windows with Python 2.4 and above.

• Add import hook for the following packages:

– GTK

188 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

– PyOpenGL (tested 2.0.1.09)

– dsnpython (tested 1.3.4)

– KInterasDB (courtesy of Eugene Prigorodov)

• Fix packaging of code using “time.strptime” under Python 2.3+.

• (Linux) Ignore linux-gate.so while calculating dependencies (fix provided by Vikram Aggarwal).

• (Windows) With Python 2.4, setup UPX properly so to be able to compress binaries generated with Visual Studio
.NET 2003 (such as most of the extensions). UPX 1.92+ is needed for this.

1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

• Add support for Python 2.3 (fix packaging of codecs).

• Add support for Python 2.4 (under Windows, needed to recompiled the bootloader with a different compiler
version).

• Fix support for Python 1.5.2, should be fully functional now (required to rewrite some parts of the string module
for the bootloader).

• Fix a rare bug in extracting the dependencies of a DLL (bug in PE header parser).

• Fix packaging of PyQt programs (needed an import hook for a hidden import).

• Fix imports calculation for modules using the “from __init__ import” syntax.

• Fix a packaging bug when a module was being import both through binary dependency and direct import.

• Restyle documentation (now using docutils and reStructuredText).

• New Windows build system for automatic compilations of bootloader in all the required flavours (using Scons)

2.17 Credits

Thanks goes to all the kind PyInstaller contributors who have contributed new code, bug reports, fixes, comments and
ideas. A brief list follows, please let us know if your name is omitted by accident:

2.17.1 Contributions to PyInstaller 6.4.0

• Rok Mandeljc

• Dan Yeaw

• Andrey Marakulin

• mbushkov

• xuanzhi33

2.17. Credits 189

PyInstaller Documentation, Release 6.4.0

2.17.2 Contributions to PyInstaller 6.3.0

• Rok Mandeljc

• Dan Yeaw

2.17.3 Contributions to PyInstaller 6.2.0

• Rok Mandeljc

• David Baumgold

2.17.4 Contributions to PyInstaller 6.1.0

• Rok Mandeljc

• Sebastian Thomschke

2.17.5 Contributions to PyInstaller 6.0.0

• Rok Mandeljc

• Brénainn Woodsend

• Benedikt Würkner

• Blank

• Brandon

• James Gerity

• Lorenzo Villani

• axoroll7

• byehack

• coolcatco888

• gentlegiantJGC

2.17.6 Contributions to PyInstaller 5.13.2

• Rok Mandeljc

2.17.7 Contributions to PyInstaller 5.13.1

• Rok Mandeljc

• Brénainn Woodsend

• James Gerity

• Lorenzo Villani

• coolcatco888

• gentlegiantJGC

190 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.17.8 Contributions to PyInstaller 5.13.0

• Dan Yeaw

• Rok Mandeljc

• Brénainn Woodsend

• Fabian Dröge

• Levin Ma

2.17.9 Contributions to PyInstaller 5.12.0

• Rok Mandeljc

• Brénainn Woodsend

• Joshua Bronson

• caption

2.17.10 Contributions to PyInstaller 5.11.0

• Rok Mandeljc

• cat (also known as 0xb8)

• eduardomotta-emottasistemas

2.17.11 Contributions to PyInstaller 5.10.1

• Rok Mandeljc

• Christian Clauss

2.17.12 Contributions to PyInstaller 5.10.0

• Rok Mandeljc

• Michael Shigorin

• V. Armando Solé

2.17.13 Contributions to PyInstaller 5.9.0

• Brénainn Woodsend

• Hugo van Kemenade

• Rok Mandeljc

• Ievgen Popovych

2.17. Credits 191

PyInstaller Documentation, Release 6.4.0

2.17.14 Contributions to PyInstaller 5.8.0

• Rok Mandeljc

• Brénainn Woodsend

• Arjan Molenaar

• Breeze

• Ievgen Popovych

• João Vitor

• bersbersbers

2.17.15 Contributions to PyInstaller 5.7.0

• Rok Mandeljc

• Brénainn Woodsend

• Dan Yeaw

• Rumbelows

• Shoshana Berleant

2.17.16 Contributions to PyInstaller 5.6.2

• Rok Mandeljc

• bersbersbers

2.17.17 Contributions to PyInstaller 5.6.1

• Timmy Welch

• Rok Mandeljc

• Brénainn Woodsend

2.17.18 Contributions to PyInstaller 5.6

• Rok Mandeljc

• Brénainn Woodsend

• Padsala Tushal

192 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.17.19 Contributions to PyInstaller 5.5

• Rok Mandeljc

• Jasper Harrison

• Alex

• Andreas Schwab

• jsagarribay

2.17.20 Contributions to PyInstaller 5.4.1

• Rok Mandeljc

2.17.21 Contributions to PyInstaller 5.4

• Rok Mandeljc

• Brénainn Woodsend

• Efrem Braun

• Samuel T

2.17.22 Contributions to PyInstaller 5.3

• Rok Mandeljc

• Dan Yeaw

• Tim Gates

2.17.23 Contributions to PyInstaller 5.2

• Rok Mandeljc

• Brénainn Woodsend

• Florian Bruhin

• Zev Lee

• Highfire1

• Jasper Harrison

• KnockKnockWho

• Temerold

• relativisticelectron

2.17. Credits 193

PyInstaller Documentation, Release 6.4.0

2.17.24 Contributions to PyInstaller 5.1

• Rok Mandeljc

• Brénainn Woodsend

• Jasper Harrison

• byehack

• ARNTechnology

• James Gerity

• Kian-Meng Ang

2.17.25 Contributions to PyInstaller 5.0.1

• Rok Mandeljc

• Abdelhakim Qbaich

• Brénainn Woodsend

• Jasper Harrison

2.17.26 Contributions to PyInstaller 5.0

• Rok Mandeljc

• Brénainn Woodsend

• Jasper Harrison

• Starbuck5

• Chris Hillery

• Dan Yeaw

• eric15342335

•

• AdrianIssott

• Andreas Schwab

• Andrii Oriekhov

• Anssi Alahuhta

• Brian Teague

• Charlie Hayden

• Emil Berg

• Eric Missimer

• GoldinGuy

• James Gerity

• Melvin Wang

194 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Sapphire Becker

• dennisvang

• gentlegiantJGC

• johnthagen

• luc-x41

• wangling12

2.17.27 Contributions to PyInstaller 4.10

• Rok Mandeljc

• Brénainn Woodsend

• Andreas Schwab

• GoldinGuy

• Sapphire Becker

• dennisvang

2.17.28 Contributions to PyInstaller 4.9

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison - Core Develop, Maintainer, Release Manager

• gentlegiantJGC

2.17.29 Contributions to PyInstaller 4.8

• Rok Mandeljc - Core Developer

• Jasper Harrison - Core Develop, Maintainer, Release Manager

• Brénainn Woodsend - Core Developer

• Ankith, Safihre, luc-x41

2.17.30 Contributions to PyInstaller 4.7

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison - Core Develop, Maintainer, Release Manager

2.17. Credits 195

PyInstaller Documentation, Release 6.4.0

2.17.31 Contributions to PyInstaller 4.6

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison - Maintainer, Release Manager

• Anssi Alahutta, Dan Yeaw, Eric Missimer, Chris Hillery, Melvin Wang, wangling12, eric15342335

2.17.32 Contributions to PyInstaller 4.5.1

• Jasper Harrison - Maintainer, Release Manager

• ankith26

2.17.33 Contributions to PyInstaller 4.5

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison - Maintainer, Release Manager

• Dave Dykstra

• Andy Hobbs

• Nicholas Ollinger

2.17.34 Contributions to PyInstaller 4.4

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison - Core Developer, Maintainer, Release Manager

• Hartmut Goebel - Core Developer

• xoviat

• Chrisg2000

• Alex Gembe, James Duley, Jeffrey, Kenny Huynh, Maxim Mazurok, mozbugbox

2.17.35 Contributions to PyInstaller 4.3

• Rok Mandeljc - Core Developer

• Brénainn Woodsend - Core Developer

• Jasper Harrison (Legorooj) - Core Developer, Maintainer, Release Manager

• Hartmut Goebel, Core Developer, Maintainer

• xoviat

• Dan Yeaw, Bruno Oliveira, Maxim Kalinchenko, Max Mäusezahl, Olivier FAURAX, richardsheridan, memo-off

196 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.17.36 Contributions to PyInstaller 4.2

• Rok Mandeljc

• Hartmut Goebel - Core developer, maintainer and release manager.

• Legorooj - Core developer.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• Mickaël Schoentgen

• Brénainn Woodsend

• Damien Elmes, Dan Yeaw, hdf, Diggy, Filip Gospodinov, Kyle Altendorf, Matt Simpson, Nathan Summers,
Phoenix, Starbuck5, Tom Hu, rockwalrus

2.17.37 Contributions to PyInstaller 4.1

• Hartmut Goebel - Core developer, maintainer and release manager.

• Legorooj - Core developer.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• Rok Mandeljc

• Mickaël Schoentgen

• Brénainn Woodsend

• Aaron Althauser, Alex, Andrew Nelson, Benedikt Brückmann, Brénainn Woodsend, Calin Culianu, Dan Yeaw,
Ievgen Popovych, Loïc Messal, Łukasz Stolcman, Matt, Mohamed, Petrus, Riz, Riz Syed, Santi Santichaivekin,
Sid Gupta, Victor Stinner, byehack, dcgloe, johnthagen, ozelikov,

2.17.38 Contributions to PyInstaller 4.0

• Hartmut Goebel - Core developer, maintainer and release manager.

• Legorooj - Core developer.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• M Felt aka aixtools, jonnyhsu, Corey Dexter, Rok Mandeljc, Dan Yeaw, Florian Baumann, Ievgen Popovych, Ram
Rachum, coreydexter, AndCycle, Dan Cutright, David Kiliani, David Maiden Mueller, FeralRobot, Frederico,
Ilya Orson, ItsCinnabar, Juan Sotomayor, Matt M, Matteo Bertini, Michael Felt, Mohamed Feddad, Nehal J
Wani, Or Groman, Sebastian Hohmann, Vaclav Dvorak, Ville Ilvonen, bwoodsend, eldadr, jeremyd2019, kraptor,
seedgou.

2.17.39 Contributions to PyInstaller 3.6

• Hartmut Goebel - Core developer, maintainer and release manager.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• Dan Yeaw, Amir Rossert, Hugo Martins, Felix Schwarz, Giuseppe Corbelli, HoLuLuLu, Jonathan Springer,
Matt Khan, Min’an, Oracizan, Victor Stinner, Andres, Andrew Chow, Bernát Gábor, Charles Duffy, Chris,
Chrisg2000, FranzPio, Lee Jeonghun, Lukasz Stolcman, Lyux, László Kiss Kollár, Mathias Lohne, Michael
Felt, Noodle-Head, Ogi Moore, Patryk, RedFantom, Rémy Roy, Sean McGuire, Thomas Robitaille, Tim, Toby,

2.17. Credits 197

PyInstaller Documentation, Release 6.4.0

Tuomo, V.Shkaberda, Vojtěch Drábek, Wilmar den Ouden, david, ethframe, lnv42, ripdog, satvidh, thisisivan-
fong

2.17.40 Contributions to PyInstaller 3.5

• Hartmut Goebel - Core developer, maintainer and release manager.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• Dave Cortesi, Kuisong Tong, melvyn2, Giuseppe Corbelli, Florian Bruhin, Amir Ramezani, Cesar Vandevelde,
Paul Müller, Thomas Robitaille, zachbateman, Addison Elliott, Amir Rossert, AndCycle, Atomfighter10101,
Chris Berthiaume, Craig Younkins (bot), Don Krueger, Edward Chen, Exane Server Team, Hannes, Iwan,
Jakob Schnitzer, Janzert, Jendrik Seipp, Jonathan Springer, Kirill German, Laszlo Kiss-Kollar, Loran425, Lori
J, M*C*O, Nikita Melentev, Peter Bittner, RedFantom, Roman, Roman Yurchak, Ruslan Kuprieiev, Spencer
Brown, Suzumizaki, Tobias Gruetzmacher, Tobias V. Langhoff, TobiasRzepka, Tom Hacohen, Yuval Shkolar,
cclauss, charlesoblack, djl197, matias morant, satejkhedekar, zhu

2.17.41 Contributions to PyInstaller 3.4

• Hartmut Goebel - Core developer, maintainer and release manager.

• Bryan A. Jones - Core developer and PyQt5-tamer.

• David Vierra - Core developer and encoding specialist.

• xoviat - brave contributor

• Hugo vk - brave contributor

• Mickaël Schoentgen, Charles Nicholson, Jonathan Springer, Benoît Vinot, Brett Higgins, Dustin Spicuzza,
Marco Nenciarini, Aaron Hampton, Cody Scot, Dave Cortesi, Helder Eijs, Innokenty Lebedev, Joshua Klein,
Matthew Clapp, Misha Turnbull, ethframe, Amir Ramezani, Arthur Silva, Blue, Craig MacEachern, Cédric RI-
CARD, Fredrik Ahlberg, Glenn Ramsey, Jack Mordaunt, Johann Bauer, Joseph Heck, Kyle Stewart, Lev Maxi-
mov, Luo Shawn, Marco Nenciarini, Mario Costa, Matt Reynolds, Matthieu Gautier, Michael Herrmann, Moritz
Kassner, Natanael Arndt, Nejc Habjan, Paweł Kowalik, Pedro de Medeiros, Peter Conerly, Peter Würtz, Rémy
Roy, Saurabh Yadav, Siva Prasad, Steve Peak, Steven M. Vascellaro, Steven M. Vascellaro, Suzumizaki-Kimitaka,
ThomasV, Timothée Lecomte, Torsten Sommer, Weliton Freitas, Zhen Zhang, dimitriepirghie, lneuhaus, s3goat,
satarsa,

2.17.42 Contributions to PyInstaller 3.3.1

• Hartmut Goebel - Core developer and release manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• xoviat - brave contributor

• Dave Cortesi, David Hoese, John Daytona, Nejc Habjan, Addison Elliott, Bharath Upadhya, Bill Dengler, Chris
Norman, Miles Erickson, Nick Dimou, Thomas Waldmann, David Weil, Placinta

198 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.17.43 Contributions to PyInstaller 3.3

Special Thanks xiovat for implementing Python3.6 support and to Jonathan Springer and xoviat for stabilizing the
continuous integration tests.

• Hartmut Goebel - Core developer and release manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• xoviat - brave programmer

• Jonathan Springer

• Vito Kortbeek

• Dustin Spicuzza

• Ben Hagen

• Paavo

• Brian Teague

• Chris Norman

• Jonathan Stewmon

• Guillaume Thiolliere

• Justin Harris

• Kenneth Zhao

• Paul Müller

• giumas

• y2kbugger

•

• Adam Clark, AndCycle, Andreas Schiefer, Arthur Silva, Aswa Paul, Bharath Upadhya, Brian Teague, Charles
Duffy, Chris Coutinho, Cody Scott, Czarek Tomczak, Dang Mai, Daniel Hyams, David Hoese, Eelco van Vliet,
Eric Drechsel, Erik Bjäreholt, Hatem AlSum, Henry Senyondo, Jan Čapek, Jeremy T. Hetzel, Jonathan Dan, Julie
Marchant, Luke Lee, Marc Abramowitz, Matt Wilkie, Matthew Einhorn, Michael Herrmann, Niklas Rosenstein,
Philippe Ombredanne, Piotr Radkowski, Ronald Oussoren, Ruslan Kuprieiev, Segev Finer, Shengjing Zhu , Steve,
Steven Noonan, Tibor Csonka, Till Bey, Tobias Gruetzmacher, (float)

2.17.44 Contributions to PyInstaller 3.2.1

Special Thanks to Thomas Waldmann and David Vierra for support when working on the new build system.

• Hartmut Goebel - Core developer and release manager.

• Martin Zibricky - Core developer.

• David Cortesi - Core developer and documentation manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• Cecil Curry - brave bug-fixing and code-refactoring

2.17. Credits 199

PyInstaller Documentation, Release 6.4.0

• Amane Suzuki

• Andy Cycle

• Axel Huebl

• Bruno Oliveira

• Dan Auerbach

• Daniel Hyams

• Denis Akhiyarov

• Dror Asaf

• Dustin Spicuzza

• Emanuele Bertoldi

• Glenn Ramsey

• Hugh Dowling

• Jesse Suen

• Jonathan Dan

• Jonathan Springer

• Jonathan Stewmon

• Julie Marchant

• Kenneth Zhao

• Linus Groh

• Mansour Moufid

• Martin Zibricky

• Matteo Bertini

• Nicolas Dickreuter

• Peter Würtz

• Ronald Oussoren

• Santiago Reig

• Sean Fisk

• Sergei Litvinchuk

• Stephen Rauch

• Thomas Waldmann

• Till Bald

• xoviat

200 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

2.17.45 Contributions to PyInstaller 3.2

• Hartmut Goebel - Core developer and release manager.

• Martin Zibricky - Core developer.

• David Cortesi - Core developer and documentation manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• Cecil Curry - brave bug-fixing and code-refactoring

• And Cycle - unicode fixes.

• Chris Hager - QtQuick hook.

• David Schoorisse - wrong icon parameter in Windows example.

• Florian Bruhin - typo hunting.

• Garth Bushell - Support for objcopy.

• Insoleet - lib2to3 hook

• Jonathan Springer - hook fixes, brave works on PyQt.

• Matteo Bertini - code refactoring.

• Jonathan Stewmon - bug hunting.

• Kenneth Zhao - waf update.

• Leonid Rozenberg - typo hunting.

• Merlijn Wajer - bug fixing.

• Nicholas Chammas - cleanups.

• nih - hook fixes.

• Olli-Pekka Heinisuo - CherryPy hook.

• Rui Carmo - cygwin fixes.

• Stephen Rauch - hooks and fixes for unnecessary rebuilds.

• Tim Stumbaugh - bug hunting.

2.17.46 Contributions to PyInstaller 3.1.1

• Hartmut Goebel - Core developer and release manager.

• David Vierra - Core developer and encoding specialist.

• Torsten Landschoff - Fix problems with setuptools

• Peter Inglesby - resolve symlinks in modulegraph.py

• syradium - bug hunting

• dessant - bug hunting

• Joker Qyou - bug hunting

2.17. Credits 201

PyInstaller Documentation, Release 6.4.0

2.17.47 Contributions to PyInstaller 3.1

• Hartmut Goebel - Core developer and release manager.

• Martin Zibricky - Core developer.

• David Cortesi - Core developer and documentation manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• Andrei Kopats - Windows fixes.

• Andrey Malkov - Django runtime hooks.

• Ben Hagen - kivy hook, GStreamer realtime hook.

• Cecil Curry - Module Version Comparisons and and reworking hooks.

• Dustin Spicuzza - Hooks for GLib, GIntrospection, Gstreamer, etc.

• giumas - lxml.isoschematron hook.

• Jonathan Stewmon - Hooks for botocore, boto, boto3 and gevent.monkey.

• Kenneth Zhao - Solaris fixes.

• Matthew Einhorn - kivy hook.

• mementum - pubsub.core hook.

• Nicholas Chammas - Documentation updates.

• Nico Galoppo - Hooks for skimage and sklearn.

• Panagiotis H.M. Issaris - weasyprint hook.

• Penaz - shelve hook.

• Roman Yurchak - scipy.linalg hook.

• Starwarsfan2099 - Distorm3 hook.

• Thomas Waldmann - Fixes for Bootloader and FreeBSD.

• Tim Stumbaugh - Bug fixes.

• zpin - Bug fixes.

2.17.48 Contributions to PyInstaller 3.0

• Martin Zibricky - Core developer and release manager.

• Hartmut Goebel - Core developer.

• David Cortesi - Initial work on Python 3 support, Python 3 fixes, documentation updates, various hook fixes.

• Cecil Curry - ‘six’ hook for Python 3, various modulegraph improvements, wxPython hook fixes,

• David Vierra - unicode support in bootloader, Windows SxS Assembly Manifest fixes and many other Windows
improvements.

• Michael Mulley - keyring, PyNaCl import hook.

• Rainer Dreyer - OS X fixes, hook fixes.

• Bryan A. Jones - test suite fixes, various hook fixes.

202 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Philippe Pepiot - Linux fixes.

• Emanuele Bertoldi - pycountry import hook, Django import hook fixes.

• Glenn Ramsey - PyQt5 import hook - support for QtWebEngine on OSX, various hook fixes, Windows fixes.

• Karol Woźniak - import hook fixes.

• Jonathan Springer - PyGObject hooks. ctypes, PyEnchant hook fixes, OS X fixes.

• Giuseppe Masetti - osgeo, mpl_toolkits.basemap and netCDF4 import hooks.

• Yuu Yamashita - OS X fixes.

• Thomas Waldmann - FreeBSD fixes.

• Boris Savelev - FreeBSD and Solaris fixes.

• Guillermo Gutiérrez - Python 3 fixes.

• Jasper Geurtz - gui fixes, hook fixes.

• Holger Pandel - Windows fixes.

• Anthony Zhang - SpeechRecognition import hook.

• Andrei Fokau - Python 3.5 fixes.

• Kenneth Zhao - AIX fixes.

• Maik Riechert - lensfunpy, rawpy import hooks.

• Tim Stumbaugh - hook fixes.

• Andrew Leech - Windows fixes.

• Patrick Robertson - tkinter import hook fixes.

• Yaron de Leeuw - import hook fixes.

• Bryan Cort - PsychoPy import hook.

• Phoebus Veiz - bootloader fixes.

• Sean Johnston - version fix.

• Kevin Zhang - PyExcelerate import hook.

• Paulo Matias - unicode fixes.

• Lorenzo Villani - crypto feature, various fixes.

• Janusz Skonieczny - hook fixes.

• Martin Gamwell Dawids - Solaris fixes.

• Volodymyr Vitvitskyi - typo fixes.

• Thomas Kho - django import hook fixes.

• Konstantinos Koukopoulos - FreeBSD support.

• Jonathan Beezley - PyQt5 import hook fixes.

• Andraz Vrhovec - various fixes.

• Noah Treuhaft - OpenCV import hook.

• Michael Hipp - reportlab import hook.

• Michael Sverdlik - certifi, httplib2, requests, jsonschema import hooks.

2.17. Credits 203

PyInstaller Documentation, Release 6.4.0

• Santiago Reig - apply import hook.

2.17.49 Contributions to PyInstaller 2.1 and older

• Glenn Ramsey - PyQt5 import hook.

• David Cortesi - PyInstaller manual rewrite.

• Vaclav Smilauer - IPython import hook.

• Shane Hansen - Linux arm support.

• Bryan A. Jones - docutils, jinja2, sphinx, pytz, idlelib import hooks.

• Patrick Stewart <patstew at gmail dot com> - scipy import hook.

• Georg Schoelly <mail at georg-schoelly dot com> - storm ORM import hook.

• Vinay Sajip - zmq import hook.

• Martin Gamwell Dawids - AIX support.

• Hywel Richards - Solaris support.

• Brandyn White - packaged executable return code fix.

• Chien-An “Zero” Cho - PyUSB import hook.

• Daniel Hyams - h2py, wx.lib.pubsub import hooks.

• Hartmut Goebel - Python logging system for message output. Option –log-level.

• Florian Hoech - full Python 2.6 support on Windows including automatic handling of DLLs, CRT, manifest, etc.
Read and write resources from/to Win32 PE files.

• Martin Zibricky - rewrite the build system for the bootloader using waf. LSB compliant precompiled bootloaders
for Linux. Windows 64-bit support.

• Peter Burgers - matplotlib import hook.

• Nathan Weston - Python architecture detection on OS X.

• Isaac Wagner - various OS X fixes.

• Matteo Bertini - OS X support.

• Daniele Zannotti - OS X support.

• David Mugnai - Linux support improvements.

• Arve Knudsen - absolute imports in Python 2.5+

• Pascal Veret - PyQt4 import hook with Qt4 plugins.

• Don Dwiggins - pyodbc import hook.

• Allan Green - refactoring and improved in-process COM servers.

• Daniele Varrazzo - various bootloader and OS X fixes.

• Greg Copeland - sqlalchemy import hook.

• Seth Remington - PyGTK hook improvements.

• Marco Bonifazi - PyGTK hook improvements. PyOpenGL import hook.

• Jamie Kirkpatrick - paste import hook.

204 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

• Lorenzo Mancini - PyXML import hook fixes under Windows. OS X support. App bundle creation on OS X.
Tkinter on OS X. Precompiled bootloaders for OS X.

• Lorenzo Berni - django import hook.

• Louai Al-Khanji - fixes with optparse module.

• Thomas Heller - set custom icon of Windows exe files.

• Eugene Prigorodov <eprigorodov at naumen dot ru> - KInterasDB import hook.

• David C. Morrill - vtkpython import hook.

• Alan James Salmoni - Tkinter interface to PyInstaller.

2.18 Man Pages

2.18.1 pyinstaller

SYNOPSIS

pyinstaller <options> SCRIPT. . .

pyinstaller <options> SPECFILE

DESCRIPTION

PyInstaller is a program that freezes (packages) Python programs into stand-alone executables, under Windows,
GNU/Linux, macOS, FreeBSD, OpenBSD, Solaris and AIX. Its main advantages over similar tools are that PyInstaller
works with Python 3.8-3.11, it builds smaller executables thanks to transparent compression, it is fully multi-platform,
and use the OS support to load the dynamic libraries, thus ensuring full compatibility.

You may either pass one or more file-names of Python scripts or a single .spec-file-name. In the first case, pyinstaller
will generate a .spec-file (as pyi-makespec would do) and immediately process it.

If you pass a .spec-file, this will be processed and most options given on the command-line will have no effect. Please
see the PyInstaller Manual for more information.

OPTIONS

Positional Arguments

scriptname

Name of scriptfiles to be processed or exactly one .spec file. If a .spec file is specified, most options are
unnecessary and are ignored.

2.18. Man Pages 205

PyInstaller Documentation, Release 6.4.0

Options

-h, --help show this help message and exit

-v, --version Show program version info and exit.

--distpath DIR Where to put the bundled app (default: ./dist)

--workpath WORKPATH Where to put all the temporary work files, .log, .pyz and etc. (default:
./build)

-y, --noconfirm Replace output directory (default: SPECPATH/dist/SPECNAME) without asking
for confirmation

--upx-dir UPX_DIR Path to UPX utility (default: search the execution path)

--clean Clean PyInstaller cache and remove temporary files before building.

--log-level LEVEL Amount of detail in build-time console messages. LEVEL may be one of TRACE,
DEBUG, INFO, WARN, DEPRECATION, ERROR, FATAL (default: INFO).
Also settable via and overrides the PYI_LOG_LEVEL environment variable.

What To Generate

-D, --onedir Create a one-folder bundle containing an executable (default)

-F, --onefile Create a one-file bundled executable.

--specpath DIR Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME Name to assign to the bundled app and spec file (default: first script’s base-
name)

--contents-directory CONTENTS_DIRECTORY For onedir builds only, specify the name of the di-
rectory in which all supporting files (i.e. everything except the executable itself)
will be placed in. Use “.” to re-enable old onedir layout without contents directory.

What To Bundle, Where To Search

–add-data SOURCE:DEST

Additional data files or directories containing data files to be added to the application. The argument
value should be in form of “source:dest_dir”, where source is the path to file (or directory) to be collected,
dest_dir is the destination directory relative to the top-level application directory, and both paths are sepa-
rated by a colon (:). To put a file in the top-level application directory, use . as a dest_dir. This option can
be used multiple times.

–add-binary SOURCE:DEST

Additional binary files to be added to the executable. See the --add-data option for the format. This
option can be used multiple times.

-p DIR, --paths DIR A path to search for imports (like using PYTHONPATH). Multiple paths are al-
lowed, separated by ':', or use this option multiple times. Equivalent to supply-
ing the pathex argument in the spec file.

--hidden-import MODULENAME, --hiddenimport MODULENAME Name an import not visible
in the code of the script(s). This option can be used multiple times.

206 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

--collect-submodules MODULENAME Collect all submodules from the specified package or mod-
ule. This option can be used multiple times.

--collect-data MODULENAME, --collect-datas MODULENAME Collect all data from the speci-
fied package or module. This option can be used multiple times.

--collect-binaries MODULENAME Collect all binaries from the specified package or module. This
option can be used multiple times.

--collect-all MODULENAME Collect all submodules, data files, and binaries from the specified pack-
age or module. This option can be used multiple times.

--copy-metadata PACKAGENAME Copy metadata for the specified package. This option can be used
multiple times.

--recursive-copy-metadata PACKAGENAME Copy metadata for the specified package and all its de-
pendencies. This option can be used multiple times.

--additional-hooks-dir HOOKSPATH An additional path to search for hooks. This option can be
used multiple times.

--runtime-hook RUNTIME_HOOKS Path to a custom runtime hook file. A runtime hook is code that
is bundled with the executable and is executed before any other code or module
to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES Optional module or package (the Python name, not the path name)
that will be ignored (as though it was not found). This option can be used multiple
times.

--splash IMAGE_FILE (EXPERIMENTAL) Add an splash screen with the image IMAGE_FILE to
the application. The splash screen can display progress updates while unpacking.

How To Generate

-d {all,imports,bootloader,noarchive}, –debug {all,imports,bootloader,noarchive}

Provide assistance with debugging a frozen application. This argument may be provided multiple times to
select several of the following options. - all: All three of the following options. - imports: specify the -v
option to the underlying Python interpreter, causing it to print a message each time a module is initialized,
showing the place (filename or built-in module) from which it is loaded. See https://docs.python.org/3/
using/cmdline.html#id4. - bootloader: tell the bootloader to issue progress messages while initializing
and starting the bundled app. Used to diagnose problems with missing imports. - noarchive: instead of
storing all frozen Python source files as an archive inside the resulting executable, store them as files in
the resulting output directory.

--python-option PYTHON_OPTION Specify a command-line option to pass to the Python interpreter
at runtime. Currently supports “v” (equivalent to “–debug imports”), “u”, “W
<warning control>”, “X <xoption>”, and “hash_seed=<value>”. For details, see
the section “Specifying Python Interpreter Options” in PyInstaller manual.

-s, --strip Apply a symbol-table strip to the executable and shared libs (not recommended
for Windows)

--noupx Do not use UPX even if it is available (works differently between Windows and
*nix)

--upx-exclude FILE Prevent a binary from being compressed when using upx. This is typically used
if upx corrupts certain binaries during compression. FILE is the filename of the
binary without path. This option can be used multiple times.

2.18. Man Pages 207

https://docs.python.org/3/using/cmdline.html#id4
https://docs.python.org/3/using/cmdline.html#id4

PyInstaller Documentation, Release 6.4.0

Windows And Mac Os X Specific Options

-c, --console, --nowindowed Open a console window for standard i/o (default). On Windows this option
has no effect if the first script is a ‘.pyw’ file.

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a console window for standard
i/o. On Mac OS this also triggers building a Mac OS .app bundle. On Windows
this option is automatically set if the first script is a ‘.pyw’ file. This option is
ignored on *NIX systems.

–hide-console {hide-early,minimize-late,minimize-early,hide-late}

Windows only: in console-enabled executable, have bootloader automatically hide or minimize the console
window if the program owns the console window (i.e., was not launched from an existing console window).

-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>, --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>
FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the icon
with ID from an exe. FILE.icns: apply the icon to the .app bundle on Mac OS. If
an image file is entered that isn’t in the platform format (ico on Windows, icns on
Mac), PyInstaller tries to use Pillow to translate the icon into the correct format
(if Pillow is installed). Use “NONE” to not apply any icon, thereby making the
OS show some default (default: apply PyInstaller’s icon). This option can be
used multiple times.

--disable-windowed-traceback Disable traceback dump of unhandled exception in windowed (nocon-
sole) mode (Windows and macOS only), and instead display a message that this
feature is disabled.

Windows Specific Options

--version-file FILE Add a version resource from FILE to the exe.

-m <FILE or XML>, --manifest <FILE or XML> Add manifest FILE or XML to the exe.

-r RESOURCE, --resource RESOURCE Add or update a resource to a Windows executable. The
RESOURCE is one to four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE
can be a data file or an exe/dll. For data files, at least TYPE and NAME must
be specified. LANGUAGE defaults to 0 or may be specified as wildcard * to
update all resources of the given TYPE and NAME. For exe/dll files, all resources
from FILE will be added/updated to the final executable if TYPE, NAME and
LANGUAGE are omitted or specified as wildcard *. This option can be used
multiple times.

--uac-admin Using this option creates a Manifest that will request elevation upon application
start.

--uac-uiaccess Using this option allows an elevated application to work with Remote Desktop.

208 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

Mac Os Specific Options

--argv-emulation Enable argv emulation for macOS app bundles. If enabled, the initial open docu-
ment/URL event is processed by the bootloader and the passed file paths or URLs
are appended to sys.argv.

--osx-bundle-identifier BUNDLE_IDENTIFIER Mac OS .app bundle identifier is used as the
default unique program name for code signing purposes. The usual
form is a hierarchical name in reverse DNS notation. For example:
com.mycompany.department.appname (default: first script’s basename)

--target-architecture ARCH, --target-arch ARCH Target architecture (macOS only; valid values:
x86_64, arm64, universal2). Enables switching between universal2 and single-
arch version of frozen application (provided python installation supports the tar-
get architecture). If not target architecture is not specified, the current running
architecture is targeted.

--codesign-identity IDENTITY Code signing identity (macOS only). Use the provided identity to sign
collected binaries and generated executable. If signing identity is not provided,
ad- hoc signing is performed instead.

--osx-entitlements-file FILENAME Entitlements file to use when code-signing the collected binaries
(macOS only).

Rarely Used Special Options

--runtime-tmpdir PATH Where to extract libraries and support files in onefile-mode. If this option is
given, the bootloader will ignore any temp-folder location defined by the run-time
OS. The _MEIxxxxxx-folder will be created here. Please use this option only if
you know what you are doing.

--bootloader-ignore-signals Tell the bootloader to ignore signals rather than forwarding them to the
child process. Useful in situations where for example a supervisor process signals
both the bootloader and the child (e.g., via a process group) to avoid signalling
the child twice.

ENVIRONMENT VARIABLES

PYINSTALLER_CONFIG_DIR This changes the directory where PyInstaller caches some files. The
default location for this is operating system dependent, but is typically a subdirectory of the home
directory.

SEE ALSO

pyi-makespec(1), The PyInstaller Manual https://pyinstaller.readthedocs.io/, Project Homepage http://www.
pyinstaller.org

2.18. Man Pages 209

https://pyinstaller.readthedocs.io/
http://www.pyinstaller.org
http://www.pyinstaller.org

PyInstaller Documentation, Release 6.4.0

2.18.2 pyi-makespec

SYNOPSIS

pyi-makespec <options> SCRIPT [SCRIPT . . .]

DESCRIPTION

The spec file is the description of what you want PyInstaller to do with your program. pyi-makespec is a simple
wizard to create spec files that cover basic usages:

pyi-makespec [--onefile] yourprogram.py

By default, pyi-makespec generates a spec file that tells PyInstaller to create a distribution directory contains the main
executable and the dynamic libraries. The option --onefile specifies that you want PyInstaller to build a single file
with everything inside.

In most cases the specfile generated by pyi-makespec is all you need. If not, see When things go wrong in the manual
and be sure to read the introduction to Spec Files.

OPTIONS

Positional Arguments

scriptname

Options

-h, --help show this help message and exit

--log-level LEVEL Amount of detail in build-time console messages. LEVEL may be one of TRACE,
DEBUG, INFO, WARN, DEPRECATION, ERROR, FATAL (default: INFO).
Also settable via and overrides the PYI_LOG_LEVEL environment variable.

What To Generate

-D, --onedir Create a one-folder bundle containing an executable (default)

-F, --onefile Create a one-file bundled executable.

--specpath DIR Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME Name to assign to the bundled app and spec file (default: first script’s base-
name)

--contents-directory CONTENTS_DIRECTORY For onedir builds only, specify the name of the di-
rectory in which all supporting files (i.e. everything except the executable itself)
will be placed in. Use “.” to re-enable old onedir layout without contents directory.

210 Chapter 2. Contents:

PyInstaller Documentation, Release 6.4.0

What To Bundle, Where To Search

–add-data SOURCE:DEST

Additional data files or directories containing data files to be added to the application. The argument
value should be in form of “source:dest_dir”, where source is the path to file (or directory) to be collected,
dest_dir is the destination directory relative to the top-level application directory, and both paths are sepa-
rated by a colon (:). To put a file in the top-level application directory, use . as a dest_dir. This option can
be used multiple times.

–add-binary SOURCE:DEST

Additional binary files to be added to the executable. See the --add-data option for the format. This
option can be used multiple times.

-p DIR, --paths DIR A path to search for imports (like using PYTHONPATH). Multiple paths are al-
lowed, separated by ':', or use this option multiple times. Equivalent to supply-
ing the pathex argument in the spec file.

--hidden-import MODULENAME, --hiddenimport MODULENAME Name an import not visible
in the code of the script(s). This option can be used multiple times.

--collect-submodules MODULENAME Collect all submodules from the specified package or mod-
ule. This option can be used multiple times.

--collect-data MODULENAME, --collect-datas MODULENAME Collect all data from the speci-
fied package or module. This option can be used multiple times.

--collect-binaries MODULENAME Collect all binaries from the specified package or module. This
option can be used multiple times.

--collect-all MODULENAME Collect all submodules, data files, and binaries from the specified pack-
age or module. This option can be used multiple times.

--copy-metadata PACKAGENAME Copy metadata for the specified package. This option can be used
multiple times.

--recursive-copy-metadata PACKAGENAME Copy metadata for the specified package and all its de-
pendencies. This option can be used multiple times.

--additional-hooks-dir HOOKSPATH An additional path to search for hooks. This option can be
used multiple times.

--runtime-hook RUNTIME_HOOKS Path to a custom runtime hook file. A runtime hook is code that
is bundled with the executable and is executed before any other code or module
to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES Optional module or package (the Python name, not the path name)
that will be ignored (as though it was not found). This option can be used multiple
times.

--splash IMAGE_FILE (EXPERIMENTAL) Add an splash screen with the image IMAGE_FILE to
the application. The splash screen can display progress updates while unpacking.

2.18. Man Pages 211

PyInstaller Documentation, Release 6.4.0

How To Generate

-d {all,imports,bootloader,noarchive}, –debug {all,imports,bootloader,noarchive}

R|Provide assistance with debugging a frozen application. This argument may be provided multiple times
to select several of the following options. - all: All three of the following options. - imports: specify the -v
option to the underlying Python interpreter, causing it to print a message each time a module is initialized,
showing the place (filename or built-in module) from which it is loaded. See https://docs.python.org/3/
using/cmdline.html#id4. - bootloader: tell the bootloader to issue progress messages while initializing
and starting the bundled app. Used to diagnose problems with missing imports. - noarchive: instead of
storing all frozen Python source files as an archive inside the resulting executable, store them as files in
the resulting output directory.

--python-option PYTHON_OPTION Specify a command-line option to pass to the Python interpreter
at runtime. Currently supports “v” (equivalent to “–debug imports”), “u”, “W
<warning control>”, “X <xoption>”, and “hash_seed=<value>”. For details, see
the section “Specifying Python Interpreter Options” in PyInstaller manual.

-s, --strip Apply a symbol-table strip to the executable and shared libs (not recommended
for Windows)

--noupx Do not use UPX even if it is available (works differently between Windows and
*nix)

--upx-exclude FILE Prevent a binary from being compressed when using upx. This is typically used
if upx corrupts certain binaries during compression. FILE is the filename of the
binary without path. This option can be used multiple times.

Windows And Mac Os X Specific Options

-c, --console, --nowindowed Open a console window for standard i/o (default). On Windows this option
has no effect if the first script is a ‘.pyw’ file.

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a console window for standard
i/o. On Mac OS this also triggers building a Mac OS .app bundle. On Windows
this option is automatically set if the first script is a ‘.pyw’ file. This option is
ignored on *NIX systems.

–hide-console {hide-early,minimize-late,minimize-early,hide-late}

Windows only: in console-enabled executable, have bootloader automatically hide or minimize the console
window if the program owns the console window (i.e., was not launched from an existing console window).

-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>, --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>
FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the icon
with ID from an exe. FILE.icns: apply the icon to the .app bundle on Mac OS. If
an image file is entered that isn’t in the platform format (ico on Windows, icns on
Mac), PyInstaller tries to use Pillow to translate the icon into the correct format
(if Pillow is installed). Use “NONE” to not apply any icon, thereby making the
OS show some default (default: apply PyInstaller’s icon). This option can be
used multiple times.

--disable-windowed-traceback Disable traceback dump of unhandled exception in windowed (nocon-
sole) mode (Windows and macOS only), and instead display a message that this
feature is disabled.

212 Chapter 2. Contents:

https://docs.python.org/3/using/cmdline.html#id4
https://docs.python.org/3/using/cmdline.html#id4

PyInstaller Documentation, Release 6.4.0

Windows Specific Options

--version-file FILE Add a version resource from FILE to the exe.

-m <FILE or XML>, --manifest <FILE or XML> Add manifest FILE or XML to the exe.

-r RESOURCE, --resource RESOURCE Add or update a resource to a Windows executable. The
RESOURCE is one to four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE
can be a data file or an exe/dll. For data files, at least TYPE and NAME must
be specified. LANGUAGE defaults to 0 or may be specified as wildcard * to
update all resources of the given TYPE and NAME. For exe/dll files, all resources
from FILE will be added/updated to the final executable if TYPE, NAME and
LANGUAGE are omitted or specified as wildcard *. This option can be used
multiple times.

--uac-admin Using this option creates a Manifest that will request elevation upon application
start.

--uac-uiaccess Using this option allows an elevated application to work with Remote Desktop.

Mac Os Specific Options

--argv-emulation Enable argv emulation for macOS app bundles. If enabled, the initial open docu-
ment/URL event is processed by the bootloader and the passed file paths or URLs
are appended to sys.argv.

--osx-bundle-identifier BUNDLE_IDENTIFIER Mac OS .app bundle identifier is used as the
default unique program name for code signing purposes. The usual
form is a hierarchical name in reverse DNS notation. For example:
com.mycompany.department.appname (default: first script’s basename)

--target-architecture ARCH, --target-arch ARCH Target architecture (macOS only; valid values:
x86_64, arm64, universal2). Enables switching between universal2 and single-
arch version of frozen application (provided python installation supports the tar-
get architecture). If not target architecture is not specified, the current running
architecture is targeted.

--codesign-identity IDENTITY Code signing identity (macOS only). Use the provided identity to sign
collected binaries and generated executable. If signing identity is not provided,
ad- hoc signing is performed instead.

--osx-entitlements-file FILENAME Entitlements file to use when code-signing the collected binaries
(macOS only).

Rarely Used Special Options

--runtime-tmpdir PATH Where to extract libraries and support files in onefile-mode. If this option is
given, the bootloader will ignore any temp-folder location defined by the run-time
OS. The _MEIxxxxxx-folder will be created here. Please use this option only if
you know what you are doing.

--bootloader-ignore-signals Tell the bootloader to ignore signals rather than forwarding them to the
child process. Useful in situations where for example a supervisor process signals
both the bootloader and the child (e.g., via a process group) to avoid signalling
the child twice.

2.18. Man Pages 213

PyInstaller Documentation, Release 6.4.0

ENVIRONMENT VARIABLES

PYINSTALLER_CONFIG_DIR This changes the directory where PyInstaller caches some files. The
default location for this is operating system dependent, but is typically a subdirectory of the home
directory.

SEE ALSO

pyinstaller(1), The PyInstaller Manual https://pyinstaller.readthedocs.io/, Project Homepage http://www.
pyinstaller.org

2.19 Development Guide

2.19.1 Quickstart

• Our git repository is at https://github.com/pyinstaller/pyinstaller:

git clone https://github.com/pyinstaller/pyinstaller

– Development is done on the develop branch. Pull-request shall be filed against this branch.

– Releases will reside on the master branch.

• Install required testing tools:

pip install -r tests/requirements-tools.txt

• Commit as often as you’d like, but squash or otherwise rewrite your commits into logical patches before asking
for code review. git rebase -i is your friend. Read the »» Detailed Commit Guideline for more information.

Reformatting code without functional changes will generally not be accepted (for rationale see #2727).

• Write meaningful commit messages.

– The first line shall be a short sentence that can stand alone as a short description of the change, written in
the present tense, and prefixed with the subsystem-name.

– The body of the commit message should explain or justify the change. Read the »» Detailed Commit
Message Rules for more information.

• Provide tests that cover your changes and try to run the tests locally first.

• Submit pull-requests against the develop branch. Mind adding a changelog entry so our users can learn about
your change!

• For new files mind adding the copyright header, see PyInstaller/__init__.py (also mind updating to the
current year).

• In response to feedback, squash the new “fix up” commits into the respective commit that is being fixed with an
interactive rebase (git rebase -i). Push the new, rewritten branch with a git push --force. (Scary! But
github doesn’t play nicely with a safer method.)

214 Chapter 2. Contents:

https://pyinstaller.readthedocs.io/
http://www.pyinstaller.org
http://www.pyinstaller.org
https://github.com/pyinstaller/pyinstaller
https://github.com/pyinstaller/pyinstaller/issues/2727
https://github.com/pyinstaller/pyinstaller/blob/develop/PyInstaller/__init__.py

PyInstaller Documentation, Release 6.4.0

2.19.2 New to GitHub or Git?

Our development workflow is build around Git and GitHub. Please take your time to become familiar with these. If
you are new to GitHub, GitHub has instructions for getting you started. If you are new to Git there are a tutorial and
an excellent book available online.

Further Reading

• Please Write Good Commit Messages

• Creating Pull-Requests

• Updating a Pull-Request

• PyInstaller’s Branch Model

2.19.3 Coding conventions

The PyInstaller project follows the PEP 8 Style Guide for Python Code for new code. It uses yapf to do the bulk of
the formatting (mostly putting spaces in the correct places) automatically and ruff to validate PEP 8 rules which yapf
doesn’t cover.

Before submitting changes to PyInstaller, please check your code with both tools.

To install them run:

pip install ruff toml yapf==0.32.0

Reformat your code automatically with yapf:

yapf -rip .

Then manually adjust your code based on any suggestions given by ruff:

ruff --fix .

Please abstain from reformatting existing code, even it it doesn’t follow PEP 8. We will not accept reformatting changes
since they make it harder to review the changes and to follow changes in the long run. For a complete rationale please
see #2727.

2.19.4 Running the Test Suite

To run the test-suite, please proceed as follows.

1. If you don’t have a git clone of PyInstaller, first fetch the current development head, either using pip, . . . :

pip download --no-deps https://github.com/pyinstaller/pyinstaller/archive/develop.
→˓zip
unzip develop.zip
cd pyinstaller-develop/

. . . or using git:

git clone https://github.com/pyinstaller/pyinstaller.git
cd pyinstaller

2. Then setup a fresh virtualenv for running the test suite in and install all required tools:

2.19. Development Guide 215

https://help.github.com/categories/bootcamp/
https://git-scm.com/docs/gittutorial
https://git-scm.com/book
https://www.python.org/dev/peps/pep-0008
https://github.com/google/yapf
https://ruff.rs/docs/
https://www.python.org/dev/peps/pep-0008
https://github.com/google/yapf
https://github.com/google/yapf
https://ruff.rs/docs/
https://github.com/pyinstaller/pyinstaller/issues/2727
https://virtualenv.pypa.io

PyInstaller Documentation, Release 6.4.0

pip install --user virtualenv
virtualenv /tmp/venv
. /tmp/venv/bin/activate
pip install -r tests/requirements-tools.txt

3. To run a single test use e.g.:

pytest tests/unit -k test_collect_submod_all_included

4. Run the test-suite:

pytest tests/unit tests/functional

This only runs the tests for the core functionality and some packages from the Python standard library.

5. To get better coverage, including many of the available hooks, you need to download the Python packages to be
tested. For this please run:

pip install -U -r tests/requirements-libraries.txt
pytest tests/unit tests/functional

To learn how we run the test-suite in the continuous integration tests please have a look at .travis.yml (for
GNU/Linux and macOS) and appveyor.yml (for Windows).

2.19.5 Guidelines for Commits

Please help keeping code and changes comprehensible for years. Provide a readable commit-history following
this guideline.

A commit

• stands alone as a single, complete, logical change,

• has a descriptive commit message (see below),

• has no extraneous modifications (whitespace changes, fixing a typo in an unrelated file, etc.),

• follows established coding conventions (PEP 8) closely.

Avoid committing several unrelated changes in one go. It makes merging difficult, and also makes it harder to determine
which change is the culprit if a bug crops up.

If you did several unrelated changes before committing, git gui makes committing selected parts and even selected
lines easy. Try the context menu within the windows diff area.

This results in a more readable history, which makes it easier to understand why a change was made. In case of an
issue, it’s easier to git bisect to find breaking changes any revert those breaking changes.

216 Chapter 2. Contents:

https://github.com/pyinstaller/pyinstaller/blob/develop/.travis.yml
https://github.com/pyinstaller/pyinstaller/blob/develop/appveyor.yml
https://www.python.org/dev/peps/pep-0008

PyInstaller Documentation, Release 6.4.0

In Detail

A commit should be one (and just one) logical unit. It should be something that someone might want to patch or revert
in its entirety, and never piece-wise. If it could be useful in pieces, make separate commits.

• Make small patches (i.e. work in consistent increments).

• Reformatting code without functional changes will generally not be accepted (for rationale see #2727). If such
changes are required, separate it into a commit of its own and document as such.

This means that when looking at patches later, we don’t have to wade through loads of non-functional changes
to get to the relevant parts of the patch.

• Especially don’t mix different types of change, and put a standard prefix for each type of change to identify it in
your commit message.

• Abstain refactorings! If any, restrict refactorings (that should not change functionality) to their own commit (and
document).

• Restrict functionality changes (bug fix or new feature) to their own changelists (and document).

• If your commit-series includes any “fix up” commits (“Fix typo.”, “Fix test.”, “Remove commented code.”)
please use git rebase -i ... to clean them up prior to submitting a pull-request.

• Use git rebase -i to sort, squash, and fixup commits prior to submitting the pull-request. Make it a readable
history, easy to understand what you’ve done.

Please Write Good Commit Messages

Please help keeping code and changes comprehensible for years. Write good commit messages following this
guideline.

Commit messages should provide enough information to enable a third party to decide if the change is relevant to them
and if they need to read the change itself.

PyInstaller is maintained since 2005 and we often need to comprehend years later why a certain change has been
implemented as it is. What seemed to be obvious when the change was applied may be just obscure years later. The
original contributor may be out of reach, while another developer needs to comprehend the reasons, side-effects and
decisions the original author considered.

We learned that commit messages are important to comprehend changes and thus we are a bit picky about them.

We may ask you to reword your commit messages. In this case, use git rebase -i ... and git push -f ... to
update your pull-request. See Updating a Pull-Request for details.

Content of the commit message

Write meaningful commit messages.

• The first line shall be a short sentence that can stand alone as a short description of the change, written in the
present tense, and prefixed with the subsystem-name. See below for details.

• The body of the commit message should explain or justify the change, see below for details.

Examples of good commit messages are @5c1628e or @73d7710.

2.19. Development Guide 217

https://github.com/pyinstaller/pyinstaller/issues/2727
https://github.com/pyinstaller/pyinstaller/commit/5c1628e66e18e2bb1c44faa88387b1f627181b43
https://github.com/pyinstaller/pyinstaller/commit/73d7710613e26c3d59212e9e031f41a916c1e892

PyInstaller Documentation, Release 6.4.0

The first Line

The first line of the commit message shall

• be a short sentence (72 characters maximum, but shoot for 50),

• use the present tense (“Add awesome feature.”)1,

• be prefixed with an identifier for the subsystem this commit is related to (“tests: Fix the frob.” or “building: Make
all nodes turn faster.”),

• always end with a period.

• Ending punctuation other than a period should be used to indicate that the summary line is incomplete and
continues after the separator; “. . . ” is conventional.

The Commit-Message Body

The body of a commit log should:

• explain or justify the change,

– If you find yourself describing implementation details, this most probably should go into a source code
comment.

– Please include motivation for the change, and contrasts its implementation with previous behavior.

– For more complicate or serious changes please document relevant decisions, contrast them with other pos-
sibilities for chosen, side-effect you experienced, or other thinks to keep in mind when touching this peace
of code again. (Although the later might better go into a source code comment.)

• for a bug fix, provide a ticket number or link to the ticket,

• explain what changes were made at a high level (The GNU ChangeLog standard is worth a read),

• be word-wrapped to 72 characters per line, don’t go over 80; and

• separated by a blank line from the first line.

• Bullet points and numbered lists are okay, too:

* Typically a hyphen or asterisk is used for the bullet, preceded by a
single space, with blank lines in between, but conventions vary here.

* Use a hanging indent.

• Do not start your commit message with a hash-mark (#) as git some git commands may dismiss these message.
(See this discussion. for details.)

1 Consider these messages as the instructions for what applying the commit will do. Further this convention matches up with commit messages
generated by commands like git merge and git revert.

218 Chapter 2. Contents:

https://www.gnu.org/prep/standards/html_node/Change-Logs.html#Change-Logs
http://stackoverflow.com/questions/2788092/start-a-git-commit-message-with-a-hashmark

PyInstaller Documentation, Release 6.4.0

Standard prefixes

Please state the “subsystem” this commit is related to as a prefix in the first line. Do learn which prefixes others used
for the files you changed you can use git log --oneline path/to/file/or/dir.

Examples for “subsystems” are:

• Hooks for hook-related changes

• Bootloader, Bootloader build for the bootloader or it’s build system

• depend for the dependency detection parts (PyInstaller/depend)

• building for the building part (PyInstaller/building)

• compat for code related to compatibility of different Python versions (primary PyInstaller/compat.py)

• loader

• utils, utils/hooks

• Tests, Test/CI: For changes to the test suite (incl. requirements), resp. the CI.

• modulegraph: changes related to PyInstaller/lib/modulegraph

• Doc, Doc build for the documentation content resp. it’s build system. You may want to specify the chapter or
section too.

Please set the correct Author

Please make sure you have setup git to use the correct name and email for your commits. Use the same name and email
on all machines you may push from. Example:

Set name and email
git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

This will set this name and email-address to be used for all git-repos you are working on on this system. To set it for
just the PyInstaller repo, remove the --global flag.

Alternatively you may use git gui→ Edit → Options . . . to set these values.

Further Reading

Further hints and tutorials about writing good commit messages can also be found at:

• FreeBSD Committer’s Guide

• http://365git.tumblr.com/post/3308646748/writing-git-commit-messages

• http://wincent.com/blog/commit-messages: The Good, the Bad and the Ugly.

• http://wiki.scummvm.org/index.php/Commit_Guidelines

• http://lbrandy.com/blog/2009/03/writing-better-commit-messages/

• http://blog.looplabel.net/2008/07/28/best-practices-for-version-control/

• http://subversion.apache.org/docs/community-guide/conventions.html (Targeted a bit too much to subversion
usage, which does not use such fine-grained commits as we ask you strongly to use.)

2.19. Development Guide 219

http://www.freebsd.org/doc/en_US.ISO8859-1/articles/committers-guide/article.html
http://365git.tumblr.com/post/3308646748/writing-git-commit-messages
http://wincent.com/blog/commit-messages
http://wiki.scummvm.org/index.php/Commit_Guidelines
http://lbrandy.com/blog/2009/03/writing-better-commit-messages/
http://blog.looplabel.net/2008/07/28/best-practices-for-version-control/
http://subversion.apache.org/docs/community-guide/conventions.html

PyInstaller Documentation, Release 6.4.0

Credits

This page was composed from material found at

• http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions/Git

• http://lbrandy.com/blog/2009/03/writing-better-commit-messages/

• http://365git.tumblr.com/post/3308646748/writing-git-commit-messages

• http://www.catb.org/esr/dvcs-migration-guide.html

• https://git.dthompson.us/presentations.git/tree/HEAD:/happy-patching

• and other places.

2.19.6 Improving and Building the Documentation

PyInstaller’s documentation is created using Sphinx. Sphinx uses reStructuredText as its markup language, and many
of its strengths come from the power and straightforwardness of reStructuredText and its parsing and translating suite,
Docutils.

The documentation is maintained in the Git repository along with the code and pushing to the develop branch will
create a new version at https://pyinstaller.readthedocs.io/en/latest/.

For small changes (like typos) you may just fork PyInstaller on Github, edit the documentation online and create a
pull-request.

For anything else we ask you to clone the repository and verify your changes like this:

pip install -r doc/requirements.txt
cd doc
make html
xdg-open _build/html/index.html

Please watch out for any warnings and errors while building the documentation. In your browser check if the markup
is valid prior to pushing your changes and creating the pull-request. Please also run:

make clean
...
make html

to verify once again everything is fine. Thank you!

We may ask you to rework your changes or reword your commit messages. In this case, use git rebase -i ... and
git push -f ... to update your pull-request. See Updating a Pull-Request for details.

PyInstaller extensions

For the PyInstaller documentation there are roles available*0 in addition to the ones from Sphinx and docutils.

:commit:
Refer to a commit, creating a web-link to the online git repository. The commit-id will be shortened to 8 digits
for readability. Example: :commit:`a1b2c3d4e5f6a7b8c9` will become @a1b2c3d.

:issue:
Link to an issue or pull-request number at Github. Example: :issue:`123` will become #123.

0 Defined in doc/_extensions/pyi_sphinx_roles.py

220 Chapter 2. Contents:

http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions/Git
http://lbrandy.com/blog/2009/03/writing-better-commit-messages/
http://365git.tumblr.com/post/3308646748/writing-git-commit-messages
http://www.catb.org/esr/dvcs-migration-guide.html
https://git.dthompson.us/presentations.git/tree/HEAD:/happy-patching
http://www.sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
https://pyinstaller.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/markup/inline.html
http://www.sphinx-doc.org/en/stable/rest.html#inline-markup
https://github.com/pyinstaller/pyinstaller/commit/a1b2c3d4e5f6a7b8c9
https://github.com/pyinstaller/pyinstaller/issues/123

PyInstaller Documentation, Release 6.4.0

reStructuredText Cheat-sheet

• Combining markup and links:

The easiest way to install PyInstaller is using |pip|_::

.. |pip| replace:: :command:`pip`

.. _pip: https://pip.pypa.io/

2.19.7 Creating Pull-Requests

Example

• Create an account on https://github.com

• Create a fork of project pyinstaller/pyinstaller on github.

• Set up your git client by following this documentation on github.

• Clone your fork to your local machine.:

git clone git@github.com:YOUR_GITHUB_USERNAME/pyinstaller.git
cd pyinstaller

• Develop your changes (aka “hack”)

– Create a branch to work on (optional):

git checkout -b my-patch

– If you are going to implement a hook, start with creating a minimalistic build-test (see below). You will
need to test your hook anyway, so why not use a build-test from the start?

– Incorporate your changes into PyInstaller.

– Test your changes by running all build tests to ensure nothing else is broken. Please test on as many platform
as you can.

– You may reference relevant issues in commit messages (like #1259) to make GitHub link issues and commits
together, and with phrase like “fixes #1259” you can even close relevant issues automatically.

• Synchronize your fork with the PyInstaller upstream repository. There are two ways for this:

1. Rebase you changes on the current development head (preferred, as it results in a straighter history and
conflicts are easier to solve):

git remote add upstream https://github.com/pyinstaller/pyinstaller.git
git checkout my-patch
git pull --rebase upstream develop
git log --online --graph

2. Merge the current development head into your changes:

git remote add upstream https://github.com/pyinstaller/pyinstaller.git
git fetch upstream develop
git checkout my-patch
git merge upstream/develop
git log --online --graph

2.19. Development Guide 221

https://github.com
https://github.com/pyinstaller/pyinstaller/
http://help.github.com/set-up-git-redirect

PyInstaller Documentation, Release 6.4.0

For details see syncing a fork at github.

• Push your changes up to your fork:

git push

• Open the Pull Requests page at https://github.com/YOUR_GITHUB_USERNAME/pyinstaller/pulls and click
“New pull request”. That’s it.

Updating a Pull-Request

We may ask you to update your pull-request to improve it’s quality or for other reasons. In this case, use git rebase
-i ... and git push -f ... as explained below.1 Please do not close the pull-request and open a new one – this
would kill the discussion thread.

This is the workflow without actually changing the base:

git checkout my-branch
find the commit your branch forked from 'develop'
mb=$(git merge-base --fork-point develop)
rebase interactively without actually changing the base
git rebase -i $mb
... process rebase
git push -f my-fork my-branch

Or if you want to actually base your code on the current development head:

git checkout my-branch
rebase interactively on 'develop'
git rebase -i develop
... process rebase
git push -f my-fork my-branch

2.19.8 Changelog Entries

If your change is noteworthy, there needs to be a changelog entry so our users can learn about it!

To avoid merge conflicts, we use the towncrier package to manage our changelog. towncrier uses independent files for
each pull request – called news fragments – instead of one monolithic changelog file. On release, those news fragments
are compiled into our doc/CHANGELOG.rst.

You don’t need to install towncrier yourself, you just have to abide by a few simple rules:

• For each pull request, add a new file into news/ with a filename adhering to the pr#.
(feature|bugfix|breaking).rst schema: For example, news/42.feature.rst for a new feature
that is proposed in pull request #42.

Our categories are: feature, bugfix, breaking (breaking changes), deprecation, hooks (all hook-related
changes), bootloader, moduleloader, doc, process (project infrastructure, development process, etc.),
core, build (the bootloader build process), and tests.

• As with other docs, please use semantic newlines within news fragments.

• Prefer present tense or constructions with “now” or “new”. For example:
1 There are other ways to update a pull-request, e.g. by “amending” a commit. But for casual (and not-so-casual :-) users rebase -i might be

the easiest way.

222 Chapter 2. Contents:

https://help.github.com/articles/syncing-a-fork
https://github.com/YOUR_GITHUB_USERNAME/pyinstaller/pulls
https://pypi.org/project/towncrier/
http://rhodesmill.org/brandon/2012/one-sentence-per-line/

PyInstaller Documentation, Release 6.4.0

– Add hook for my-fancy-library.

– Fix crash when trying to add resources to Windows executable using --resource option.

If the change is relevant only for a specific platform, use a prefix, like here:

– (GNU/Linux) When building with --debug turn of FORTIFY_SOURCE to ease debugging.

• Wrap symbols like modules, functions, or classes into double backticks so they are rendered in a monospace
font. If you mention functions or other callables, add parentheses at the end of their names: is_module(). This
makes the changelog a lot more readable.

• If you want to reference multiple issues, copy the news fragment to another filename. towncrier will merge
all news fragments with identical contents into one entry with multiple links to the respective pull requests. You
may also reference to an existing newsfragment by copying that one.

• If your pull-request includes several distinct topics, you may want to add several news fragment files. For example
4242.feature.rst for the new feature, 4242.bootloader for the accompanying change to the bootloader.

Remember that a news entry is meant for end users and should only contain details relevant to an end user.

2.19.9 pyenv and PyInstaller

Note: This section is a still a draft. Please help extending it.

• clone pyenv repository:

git clone https://github.com/yyuu/pyenv.git ~/.pyenv

• clone virtualenv plugin:

git clone https://github.com/yyuu/pyenv-virtualenv.git \
~/.pyenv/plugins/pyenv-virtualenv

• add to .bashrc or .zshrc:

Add 'pyenv' to PATH.
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"

Enable shims and autocompletion for pyenv.
eval "$(pyenv init -)"
Load pyenv-virtualenv automatically by adding
the following to ~/.zshrc:
#
eval "$(pyenv virtualenv-init -)"

• Install python version with shared libpython (necessary for PyInstaller to work):

env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.5.0

• setup virtualenv pyenv virtualenv 3.5.0 venvname

• activate virtualenv pyenv activate venvname

• deactivate virtualenv pyenv deactivate

2.19. Development Guide 223

PyInstaller Documentation, Release 6.4.0

2.19.10 PyInstaller’s Branch Model

develop branch We consider origin/develop to be the main branch where the source code of HEAD always
reflects a state with the latest delivered development changes for the next release. Some would call
this the “integration branch”.

master branch We consider origin/master to be the main branch where the source code of HEAD always
reflects a production-ready state. Each commit to master is considered a new release and will be
tagged.

The PyInstaller project doesn’t use long living branches (beside master and develop) as we don’t support bugfixes for
several major releases in parallel.

Occasionally you might find these branches in the repository:1

release/ branches These branches are for preparing the next release. This is for example: updating the
version numbers, completing the change-log, recompiling the bootloader, rebuilding the manuals.
See ref:release-workflow for details about the release process and what steps have to be performed.

hotfix/ branches These branches are also meant to prepare for a new production release, albeit unplanned.
This is what is commonly known as a “hotfix”.

feature/ branches Feature branches (or sometimes called topic branches) are used to develop new features
for the upcoming or a distant future release.

2.20 Indices and tables

• genindex

• modindex

• search

1 This branching-model is basically the same as Vincent Driessen described in this blog. But currently we are not following it strictly.

224 Chapter 2. Contents:

http://nvie.com/posts/a-successful-git-branching-model/

PYTHON MODULE INDEX

p
pyi_splash, 78
PyInstaller.compat, 88
PyInstaller.isolated, 98
PyInstaller.utils.hooks, 89
PyInstaller.utils.hooks.conda, 95

225

PyInstaller Documentation, Release 6.4.0

226 Python Module Index

INDEX

Symbols
__init__() (Splash method), 43
-D

command line option, 13
-F

command line option, 13
--add-binary SOURCE:DEST

command line option, 14
--add-data SOURCE:DEST

command line option, 14
--additional-hooks-dir HOOKSPATH

command line option, 14
--argv-emulation

command line option, 16
--bootloader-ignore-signals

command line option, 16
--clean

command line option, 13
--codesign-identity IDENTITY

command line option, 16
--collect-all MODULENAME

command line option, 14
--collect-binaries MODULENAME

command line option, 14
--collect-data MODULENAME

command line option, 14
--collect-datas MODULENAME

command line option, 14
--collect-submodules MODULENAME

command line option, 14
--console

command line option, 15
--contents-directory CONTENTS_DIRECTORY

command line option, 13
--copy-metadata PACKAGENAME

command line option, 14
--debug {all,imports,bootloader,noarchive}

command line option, 15
--disable-windowed-traceback

command line option, 15
--distpath DIR

command line option, 13

--exclude-module EXCLUDES
command line option, 14

--help
command line option, 13

--hidden-import MODULENAME
command line option, 14

--hiddenimport MODULENAME
command line option, 14

--hide-console {hide-early,minimize-late,minimize-early,hide-late}
command line option, 15

--icon <FILE.ico or FILE.exe,ID or
FILE.icns or Image or "NONE">

command line option, 15
--log-level LEVEL

command line option, 13
--manifest <FILE or XML>

command line option, 16
--name NAME

command line option, 13
--noconfirm

command line option, 13
--noconsole

command line option, 15
--noupx

command line option, 15
--nowindowed

command line option, 15
--onedir

command line option, 13
--onefile

command line option, 13
--osx-bundle-identifier BUNDLE_IDENTIFIER

command line option, 16
--osx-entitlements-file FILENAME

command line option, 16
--paths DIR

command line option, 14
--python-option PYTHON_OPTION

command line option, 15
--recursive-copy-metadata PACKAGENAME

command line option, 14
--resource RESOURCE

227

PyInstaller Documentation, Release 6.4.0

command line option, 16
--runtime-hook RUNTIME_HOOKS

command line option, 14
--runtime-tmpdir PATH

command line option, 16
--specpath DIR

command line option, 13
--splash IMAGE_FILE

command line option, 14
--strip

command line option, 15
--target-arch ARCH

command line option, 16
--target-architecture ARCH

command line option, 16
--uac-admin

command line option, 16
--uac-uiaccess

command line option, 16
--upx-dir UPX_DIR

command line option, 13
--upx-exclude FILE

command line option, 15
--version

command line option, 13
--version-file FILE

command line option, 16
--windowed

command line option, 15
--workpath WORKPATH

command line option, 13
-c

command line option, 15
-d {all,imports,bootloader,noarchive}

command line option, 15
-h

command line option, 13
-i <FILE.ico or FILE.exe,ID or FILE.icns or

Image or "NONE">
command line option, 15

-m <FILE or XML>
command line option, 16

-n NAME
command line option, 13

-p DIR
command line option, 14

-r RESOURCE
command line option, 16

-s
command line option, 15

-v
command line option, 13

-w
command line option, 15

-y
command line option, 13

B
base_prefix (in module PyInstaller.compat), 89

C
call() (in module PyInstaller.isolated), 98
call() (Python method), 100
CC, 114
check_requirement() (in module PyIn-

staller.utils.hooks), 90
close() (in module pyi_splash), 78
collect_all() (in module PyInstaller.utils.hooks), 90
collect_data_files() (in module PyIn-

staller.utils.hooks), 92
collect_delvewheel_libs_directory() (in module

PyInstaller.utils.hooks), 95
collect_dynamic_libs() (in module PyIn-

staller.utils.hooks), 92
collect_dynamic_libs() (in module PyIn-

staller.utils.hooks.conda), 97
collect_entry_point() (in module PyIn-

staller.utils.hooks), 94
collect_submodules() (in module PyIn-

staller.utils.hooks), 91
command line option

-D, 13
-F, 13
--add-binary SOURCE:DEST, 14
--add-data SOURCE:DEST, 14
--additional-hooks-dir HOOKSPATH, 14
--argv-emulation, 16
--bootloader-ignore-signals, 16
--clean, 13
--codesign-identity IDENTITY, 16
--collect-all MODULENAME, 14
--collect-binaries MODULENAME, 14
--collect-data MODULENAME, 14
--collect-datas MODULENAME, 14
--collect-submodules MODULENAME, 14
--console, 15
--contents-directory CONTENTS_DIRECTORY,

13
--copy-metadata PACKAGENAME, 14
--debug {all,imports,bootloader,noarchive},

15
--disable-windowed-traceback, 15
--distpath DIR, 13
--exclude-module EXCLUDES, 14
--help, 13
--hidden-import MODULENAME, 14
--hiddenimport MODULENAME, 14

228 Index

PyInstaller Documentation, Release 6.4.0

--hide-console {hide-early,minimize-late,minimize-early,hide-late},
15

--icon <FILE.ico or FILE.exe,ID or
FILE.icns or Image or "NONE">, 15

--log-level LEVEL, 13
--manifest <FILE or XML>, 16
--name NAME, 13
--noconfirm, 13
--noconsole, 15
--noupx, 15
--nowindowed, 15
--onedir, 13
--onefile, 13
--osx-bundle-identifier

BUNDLE_IDENTIFIER, 16
--osx-entitlements-file FILENAME, 16
--paths DIR, 14
--python-option PYTHON_OPTION, 15
--recursive-copy-metadata PACKAGENAME, 14
--resource RESOURCE, 16
--runtime-hook RUNTIME_HOOKS, 14
--runtime-tmpdir PATH, 16
--specpath DIR, 13
--splash IMAGE_FILE, 14
--strip, 15
--target-arch ARCH, 16
--target-architecture ARCH, 16
--uac-admin, 16
--uac-uiaccess, 16
--upx-dir UPX_DIR, 13
--upx-exclude FILE, 15
--version, 13
--version-file FILE, 16
--windowed, 15
--workpath WORKPATH, 13
-c, 15
-d {all,imports,bootloader,noarchive}, 15
-h, 13
-i <FILE.ico or FILE.exe,ID or

FILE.icns or Image or "NONE">, 15
-m <FILE or XML>, 16
-n NAME, 13
-p DIR, 14
-r RESOURCE, 16
-s, 15
-v, 13
-w, 15
-y, 13
scriptname, 13

commit (role), 220
copy_metadata() (in module PyInstaller.utils.hooks),

93

D
decorate() (in module PyInstaller.isolated), 99
Distribution (class in PyInstaller.utils.hooks.conda),

96
distribution() (in module PyIn-

staller.utils.hooks.conda), 96

E
environment variable

CC, 114
OBJECT_MODE, 25, 114
PYTHONDEVMODE, 126
PYTHONHASHSEED, 84
PYTHONMALLOC, 126
PYTHONPATH, 36, 122
PYTHONUTF8, 124
PYTHONWARNDEFAULTENCODING, 118

eval_statement() (in module PyInstaller.utils.hooks),
89

exec_statement() (in module PyInstaller.utils.hooks),
89

EXTENSION_SUFFIXES (in module PyInstaller.compat),
89

F
files() (in module PyInstaller.utils.hooks.conda), 96

G
get_homebrew_path() (in module PyIn-

staller.utils.hooks), 94
get_hook_config() (in module PyIn-

staller.utils.hooks), 100
get_module_attribute() (in module PyIn-

staller.utils.hooks), 93
get_module_file_attribute() (in module PyIn-

staller.utils.hooks), 93
get_package_paths() (in module PyIn-

staller.utils.hooks), 93

I
include_or_exclude_file() (in module PyIn-

staller.utils.hooks), 94
is_aix (in module PyInstaller.compat), 89
is_alive() (in module pyi_splash), 78
is_cygwin (in module PyInstaller.compat), 88
is_darwin (in module PyInstaller.compat), 88
is_freebsd (in module PyInstaller.compat), 89
is_linux (in module PyInstaller.compat), 88
is_module_or_submodule() (in module PyIn-

staller.utils.hooks), 91
is_module_satisfies() (in module PyIn-

staller.utils.hooks), 90
is_openbsd (in module PyInstaller.compat), 89

Index 229

PyInstaller Documentation, Release 6.4.0

is_package() (in module PyInstaller.utils.hooks), 92
is_solar (in module PyInstaller.compat), 89
is_venv (in module PyInstaller.compat), 89
is_win (in module PyInstaller.compat), 88
issue (role), 220

L
locate() (PackagePath method), 97

M
module

pyi_splash, 78
PyInstaller.compat, 88
PyInstaller.isolated, 98
PyInstaller.utils.hooks, 89
PyInstaller.utils.hooks.conda, 95

O
OBJECT_MODE, 25, 114

P
package_distribution() (in module PyIn-

staller.utils.hooks.conda), 96
PackagePath (class in PyInstaller.utils.hooks.conda), 97
pyi_splash

module, 78
PyInstaller.compat

module, 88
PyInstaller.isolated

module, 98
PyInstaller.utils.hooks

module, 89
PyInstaller.utils.hooks.conda

module, 95
Python (class in PyInstaller.isolated), 99
Python Enhancement Proposals

PEP 0508, 90
PEP 239, 145
PEP 263, 128
PEP 302, 77, 119
PEP 405, 20
PEP 451, 119
PEP 527, 173
PEP 552, 163
PEP 8, 215, 216

PYTHONDEVMODE, 126
PYTHONHASHSEED, 84
PYTHONMALLOC, 126
PYTHONPATH, 36, 122
PYTHONUTF8, 124
PYTHONWARNDEFAULTENCODING, 118

R
requires() (in module PyInstaller.utils.hooks.conda),

96

S
scriptname

command line option, 13

U
update_text() (in module pyi_splash), 78

W
walk_dependency_tree() (in module PyIn-

staller.utils.hooks.conda), 97

230 Index

	Quickstart
	Contents:
	Requirements
	Windows
	macOS
	GNU/Linux
	AIX, Solaris, FreeBSD and OpenBSD

	License
	How To Contribute
	Some ideas how you can help

	How to Install PyInstaller
	Installing from the source archive
	Verifying the installation
	Installed commands

	What PyInstaller Does and How It Does It
	Analysis: Finding the Files Your Program Needs
	Bundling to One Folder
	How the One-Folder Program Works
	Bundling to One File
	How the One-File Program Works
	Using a Console Window
	Hiding the Source Code

	Using PyInstaller
	Options
	Positional Arguments
	Options
	What To Generate
	What To Bundle, Where To Search
	How To Generate
	Windows And Mac Os X Specific Options
	Windows Specific Options
	Mac Os Specific Options
	Rarely Used Special Options

	Shortening the Command
	Running PyInstaller from Python code
	Using UPX
	Excluding problematic files from UPX processing

	Splash Screen (Experimental)
	The pyi_splash Module
	Defining the Extraction Location
	Supporting Multiple Platforms
	Supporting Multiple Python Environments
	Supporting Multiple Operating Systems

	Capturing Windows Version Data
	Building macOS App Bundles
	Platform-specific Notes
	GNU/Linux
	Making GNU/Linux Apps Forward-Compatible

	Windows
	macOS
	Making macOS apps Forward-Compatible
	Building 32-bit Apps in macOS
	Getting the Opened Document Names

	AIX

	Common Issues and Pitfalls
	Requirements Imposed by Symbolic Links in Frozen Application
	Launching External Programs from the Frozen Application
	Linux and Unix-like OSes
	Windows
	macOS

	Multi-processing
	Why is calling multiprocessing.freeze_support() required?
	When to call multiprocessing.freeze_support()?
	What about other multi-processing frameworks?

	sys.stdin, sys.stdout, and sys.stderr in noconsole/windowed Applications (Windows only)

	Run-time Information
	Using __file__
	Placing data files at expected locations inside the bundle

	Using sys.executable and sys.argv[0]
	LD_LIBRARY_PATH / LIBPATH considerations

	Using Spec Files
	Spec File Operation
	Adding Files to the Bundle
	Adding Data Files
	Using Data Files from a Module
	Adding Binary Files
	Advanced Methods of Adding Files

	Specifying Python Interpreter Options
	Spec File Options for a macOS Bundle
	POSIX Specific Options
	The Splash Target
	Multipackage Bundles
	Multipackaging with One-Folder Apps
	Multipackaging with One-File Apps
	Example MERGE spec file

	Globals Available to the Spec File
	Adding parameters to spec files

	Notes about specific Features
	Ctypes Dependencies
	Solution in PyInstaller
	Gotchas

	SWIG support
	Cython support
	macOS multi-arch support
	Architecture validation during binary collection
	Trimming fat binaries for single-arch targets

	macOS binary code signing
	App bundles

	macOS event forwarding and argv emulation in app bundles
	Event forwarding
	Optional argv emulation
	Practical examples
	Registering supported file types and custom URL schemas
	Open event handling with argv emulation
	Open event handling in a tkinter-based GUI application
	Open event handling in a Qt-based GUI application

	Initial open event

	Signal handling in console Windows applications and onefile application cleanup
	Example of console control signal handling in python application
	Onefile mode and temporary directory cleanup
	Interrupting via Ctrl+C or Ctrl+Break
	Closing the console window
	Terminating the application via the Task Manager
	Windowed/noconsole onedir applications
	Console-enabled onedir applications
	Pure console onedir application, ran via double-click
	Pure console onedir application, ran in existing console
	Console-enabled onedir application with window, ran via double-click
	Console-enabled onedir application with window, ran in existing console

	Console-enabled onefile applications
	Pure-console onefile application, ran via double-click
	Pure console onefile application, ran in existing console
	Console-enabled onefile application with window, ran via double-click
	Console-enabled onefile application with window, ran in existing console

	Windowed/noconsole onefile applications
	Noconsole onefile application without window, ran via double-click
	Noconsole onefile application without window, ran in existing console
	Noconsole onefile application with window, ran via double-click
	Noconsole onefile application with window, ran in existing console

	Automatic hiding and minimization of console window under Windows

	When Things Go Wrong
	Recipes and Examples for Specific Problems
	Finding out What Went Wrong
	Build-time Messages
	Build-Time Dependency Graph
	Build-Time Python Errors
	Getting Debug Messages
	Getting Python’s Verbose Imports
	Figuring Out Why Your GUI Application Won’t Start
	Operation not permitted error

	Helping PyInstaller Find Modules
	Extending the Path
	Listing Hidden Imports
	Extending a Package’s __path__
	Changing Runtime Behavior

	Getting the Latest Version
	Asking for Help

	Advanced Topics
	The Bootstrap Process in Detail
	Bootloader
	Python imports in a bundled app
	Splash screen startup

	pyi_splash Module (Detailed)
	Functions

	The Table of Contents (TOC) lists and the Tree Class
	Table of Contents (TOC) lists
	The Tree Class

	Inspecting Archives
	ZlibArchive
	CArchive
	Using pyi-archive_viewer

	Inspecting Executables
	Creating a Reproducible Build

	Understanding PyInstaller Hooks
	How a Hook Is Loaded
	Providing PyInstaller Hooks with your Package
	Hook Global Variables
	Useful Items in PyInstaller.compat
	Useful Items in PyInstaller.utils.hooks
	Support for Conda

	Subprocess isolation with PyInstaller.isolated
	The hook(hook_api) Function
	The pre_find_module_path(pfmp_api) Method
	The pre_safe_import_module(psim_api) Method

	Hook Configuration Options
	Supported hooks and options
	GObject introspection (gi) hooks
	GStreamer (gi.repository.Gst) hook
	Matplotlib hooks

	Adding an option to the hook

	Building the Bootloader
	Building for GNU/Linux
	Development Tools
	Cross Building for Different Architectures

	Building for macOS
	Cross-Building for macOS
	Preparation: Get SDK and Build-tools
	Building the Bootloader

	Building for Windows
	Build using Visual Studio C++
	Build using MinGW-w64
	Build using cygwin and MinGW

	Building for AIX
	Building for FreeBSD
	Vagrantfile Virtual Machines

	Changelog for PyInstaller
	6.4.0 (2024-02-10)
	Features
	Bugfix
	Hooks
	Bootloader
	Documentation

	6.3.0 (2023-12-10)
	Bugfix
	Hooks
	Bootloader

	6.2.0 (2023-11-11)
	Features
	Bugfix
	Hooks

	6.1.0 (2023-10-13)
	Features
	Bugfix
	Hooks
	PyInstaller Core

	6.0.0 (2023-09-22)
	Features
	Bugfix
	Incompatible Changes
	Bootloader
	PyInstaller Core
	Bootloader build

	5.13.2 (2023-08-29)
	Bugfix
	Hooks
	PyInstaller Core

	5.13.1 (2023-08-26)
	Security
	Bugfix
	Hooks
	Bootloader

	5.13.0 (2023-06-24)
	Features
	Bugfix

	5.12.0 (2023-06-08)
	Features
	Bugfix
	PyInstaller Core

	5.11.0 (2023-05-13)
	Features
	Bugfix
	Deprecations
	Bootloader
	Documentation
	PyInstaller Core

	5.10.1 (2023-04-14)
	Bugfix

	5.10.0 (2023-04-11)
	Bugfix
	Incompatible Changes
	Hooks
	Documentation

	5.9.0 (2023-03-13)
	Features
	Bugfix

	5.8.0 (2023-02-11)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Module Loader

	5.7.0 (2022-12-04)
	Features
	Bugfix
	Incompatible Changes
	Deprecations
	Hooks
	Bootloader
	Bootloader build

	5.6.2 (2022-10-31)
	Bugfix

	5.6.1 (2022-10-25)
	Bugfix

	5.6 (2022-10-23)
	Features
	Bugfix
	Incompatible Changes
	Bootloader

	5.5 (2022-10-08)
	Features
	Bugfix
	Hooks

	5.4.1 (2022-09-11)
	Bugfix

	5.4 (2022-09-10)
	Features
	Bugfix
	Incompatible Changes
	Hooks

	5.3 (2022-07-30)
	Features
	Bugfix
	Hooks
	Documentation

	5.2 (2022-07-08)
	Features
	Bugfix
	Hooks

	5.1 (2022-05-17)
	Bugfix
	Hooks
	Bootloader
	Bootloader build

	5.0.1 (2022-04-25)
	Bugfix
	Hooks

	5.0 (2022-04-15)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Bootloader
	Documentation
	PyInstaller Core
	Bootloader build

	4.10 (2022-03-05)
	Features
	Bugfix
	Hooks
	Bootloader

	4.9 (2022-02-03)
	Bugfix
	Hooks

	4.8 (2022-01-06)
	Features
	Bugfix
	Hooks
	Bootloader
	Bootloader build

	4.7 (2021-11-10)
	Bugfix
	Hooks
	Bootloader

	4.6 (2021-10-29)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Bootloader

	4.5.1 (2021-08-06)
	Bugfix

	4.5 (2021-08-01)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Documentation
	PyInstaller Core
	Bootloader build

	4.4 (2021-07-13)
	Features
	Bugfix
	Hooks
	Bootloader
	Documentation
	Bootloader build

	4.3 (2021-04-16)
	Features
	Bugfix
	Hooks
	Bootloader
	Documentation
	PyInstaller Core
	Breaking

	4.2 (2021-01-13)
	Features
	Bugfix
	Hooks
	Bootloader
	PyInstaller Core

	4.1 (2020-11-18)
	Features
	Bugfix
	Hooks
	Bootloader
	Documentation
	PyInstaller Core
	Test-suite and Continuous Integration
	Bootloader build

	4.0 (2020-08-08)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Bootloader
	Documentation
	PyInstaller Core
	Bootloader build

	Older Versions
	Changelog for PyInstaller 3.0 – 3.6
	3.6 (2020-01-09)
	Security
	Features
	Bugfix
	Hooks
	Bootloader
	PyInstaller Core
	Bootloader build

	3.5 (2019-07-09)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Bootloader
	Documentation
	Project & Process
	PyInstaller Core
	Test-suite and Continuous Integration

	3.4 (2018-09-09)
	Features
	Bugfix
	Incompatible Changes
	Hooks
	Bootloader
	Module Loader
	Documentation
	Project & Process
	PyInstaller Core
	Test-suite and Continuous Integration
	Bootloader build
	Known Issues

	3.3.1 (2017-12-13)
	Hooks
	Bootloader
	Bootloader build
	PyInstaller Core
	Test-suite and Continuous Integration
	Documentation
	Known Issues

	3.3 (2017-09-21)
	Incompatible changes
	Hooks
	Bootloader
	Bootloader build
	Module loader
	PyInstaller Core
	Utilities
	Test-suite and Continuous Integration
	Documentation
	Known Issues

	3.2.1 (2017-01-15)
	3.2 (2016-05-03)
	3.1.1 (2016-01-31)
	3.1 (2016-01-09)
	3.0 (2015-10-04)

	Changelog for PyInstaller 2.x
	2.1 (2013-09-27)
	2.0 (2012-08-08)

	Changelog for PyInstaller 1.x
	1.5.1 (2011-08-01)
	1.5 (2011-05-05)
	1.4 (2010-03-22)
	1.3 (2006-12-20)
	1.2 (2006-06-29)
	1.1 (2006-02-13)
	1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

	Credits
	Contributions to PyInstaller 6.4.0
	Contributions to PyInstaller 6.3.0
	Contributions to PyInstaller 6.2.0
	Contributions to PyInstaller 6.1.0
	Contributions to PyInstaller 6.0.0
	Contributions to PyInstaller 5.13.2
	Contributions to PyInstaller 5.13.1
	Contributions to PyInstaller 5.13.0
	Contributions to PyInstaller 5.12.0
	Contributions to PyInstaller 5.11.0
	Contributions to PyInstaller 5.10.1
	Contributions to PyInstaller 5.10.0
	Contributions to PyInstaller 5.9.0
	Contributions to PyInstaller 5.8.0
	Contributions to PyInstaller 5.7.0
	Contributions to PyInstaller 5.6.2
	Contributions to PyInstaller 5.6.1
	Contributions to PyInstaller 5.6
	Contributions to PyInstaller 5.5
	Contributions to PyInstaller 5.4.1
	Contributions to PyInstaller 5.4
	Contributions to PyInstaller 5.3
	Contributions to PyInstaller 5.2
	Contributions to PyInstaller 5.1
	Contributions to PyInstaller 5.0.1
	Contributions to PyInstaller 5.0
	Contributions to PyInstaller 4.10
	Contributions to PyInstaller 4.9
	Contributions to PyInstaller 4.8
	Contributions to PyInstaller 4.7
	Contributions to PyInstaller 4.6
	Contributions to PyInstaller 4.5.1
	Contributions to PyInstaller 4.5
	Contributions to PyInstaller 4.4
	Contributions to PyInstaller 4.3
	Contributions to PyInstaller 4.2
	Contributions to PyInstaller 4.1
	Contributions to PyInstaller 4.0
	Contributions to PyInstaller 3.6
	Contributions to PyInstaller 3.5
	Contributions to PyInstaller 3.4
	Contributions to PyInstaller 3.3.1
	Contributions to PyInstaller 3.3
	Contributions to PyInstaller 3.2.1
	Contributions to PyInstaller 3.2
	Contributions to PyInstaller 3.1.1
	Contributions to PyInstaller 3.1
	Contributions to PyInstaller 3.0
	Contributions to PyInstaller 2.1 and older

	Man Pages
	pyinstaller
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Positional Arguments
	Options
	What To Generate
	What To Bundle, Where To Search
	How To Generate
	Windows And Mac Os X Specific Options
	Windows Specific Options
	Mac Os Specific Options
	Rarely Used Special Options

	ENVIRONMENT VARIABLES
	SEE ALSO

	pyi-makespec
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Positional Arguments
	Options
	What To Generate
	What To Bundle, Where To Search
	How To Generate
	Windows And Mac Os X Specific Options
	Windows Specific Options
	Mac Os Specific Options
	Rarely Used Special Options

	ENVIRONMENT VARIABLES
	SEE ALSO

	Development Guide
	Quickstart
	New to GitHub or Git?
	Coding conventions
	Running the Test Suite
	Guidelines for Commits
	In Detail
	Please Write Good Commit Messages
	Content of the commit message
	The first Line
	The Commit-Message Body
	Standard prefixes
	Please set the correct Author
	Further Reading
	Credits

	Improving and Building the Documentation
	PyInstaller extensions
	reStructuredText Cheat-sheet

	Creating Pull-Requests
	Example
	Updating a Pull-Request

	Changelog Entries
	pyenv and PyInstaller
	PyInstaller’s Branch Model

	Indices and tables

	Python Module Index
	Index

