

PyInstaller Manual

	Version

	PyInstaller 5.8.0

	Homepage

	https://pyinstaller.org/

	Contact

	pyinstaller@googlegroups.com

	Authors

	David Cortesi, based on structure by Giovanni Bajo & William Caban, based on Gordon McMillan’s manual

	Copyright

	This document has been placed in the public domain.

PyInstaller bundles a Python application and all its dependencies into a single package.
The user can run the packaged app without installing a Python interpreter or any modules.
PyInstaller supports Python 3.7 and newer, and correctly bundles many major Python packages
such as numpy, matplotlib, PyQt, wxPython, and others.

PyInstaller is tested against Windows, MacOS X, and Linux.
However, it is not a cross-compiler; to make a Windows app you run PyInstaller on Windows,
and to make a Linux app you run it on Linux, etc.
x
PyInstaller has been used successfully with AIX, Solaris, FreeBSD and OpenBSD but testing
against them is not part of our continuous integration tests, and the development team offers
no guarantee (all code for these platforms comes from external contributions)
that PyInstaller will work on these platforms or that they will continue to be supported.

Quickstart

Make sure you have the Requirements installed, and then install PyInstaller from PyPI:

pip install -U pyinstaller

Open a command prompt/shell window, and navigate to the directory where your .py file is
located, then build your app with the following command:

pyinstaller your_program.py

Your bundled application should now be available in the dist folder.

Contents:

	Requirements
	Windows

	macOS

	GNU/Linux

	AIX, Solaris, FreeBSD and OpenBSD

	License

	How To Contribute
	Some ideas how you can help

	How to Install PyInstaller
	Installing from the source archive

	Verifying the installation

	Installed commands

	What PyInstaller Does and How It Does It
	Analysis: Finding the Files Your Program Needs

	Bundling to One Folder

	How the One-Folder Program Works

	Bundling to One File

	How the One-File Program Works

	Using a Console Window

	Hiding the Source Code

	Using PyInstaller
	Options

	Shortening the Command

	Running PyInstaller from Python code

	Using UPX

	Splash Screen (Experimental)

	The pyi_splash Module

	Defining the Extraction Location

	Supporting Multiple Platforms

	Capturing Windows Version Data

	Building macOS App Bundles

	Platform-specific Notes

	Run-time Information
	Using __file__

	Using sys.executable and sys.argv[0]

	LD_LIBRARY_PATH / LIBPATH considerations

	Using Spec Files
	Spec File Operation

	Adding Files to the Bundle

	Giving Run-time Python Options

	Spec File Options for a macOS Bundle

	POSIX Specific Options

	The Splash Target

	Multipackage Bundles

	Globals Available to the Spec File

	Notes about specific Features
	Ctypes Dependencies

	SWIG support

	Cython support

	macOS multi-arch support

	macOS binary code signing

	macOS event forwarding and argv emulation in app bundles

	Signal handling in console Windows applications and onefile application cleanup

	When Things Go Wrong
	Recipes and Examples for Specific Problems

	Finding out What Went Wrong

	Helping PyInstaller Find Modules

	Getting the Latest Version

	Asking for Help

	Advanced Topics
	The Bootstrap Process in Detail

	pyi_splash Module (Detailed)

	The TOC and Tree Classes

	Inspecting Archives

	Inspecting Executables

	Creating a Reproducible Build

	Understanding PyInstaller Hooks
	How a Hook Is Loaded

	Providing PyInstaller Hooks with your Package

	Hook Global Variables

	Useful Items in PyInstaller.compat

	Useful Items in PyInstaller.utils.hooks

	Subprocess isolation with PyInstaller.isolated

	The hook(hook_api) Function

	The pre_find_module_path(pfmp_api) Method

	The pre_safe_import_module(psim_api) Method

	Hook Configuration Options
	Supported hooks and options

	Adding an option to the hook

	Building the Bootloader
	Building for GNU/Linux

	Building for macOS

	Building for Windows

	Building for AIX

	Building for FreeBSD

	Vagrantfile Virtual Machines

	Changelog for PyInstaller
	5.8.0 (2023-02-11)

	5.7.0 (2022-12-04)

	5.6.2 (2022-10-31)

	5.6.1 (2022-10-25)

	5.6 (2022-10-23)

	5.5 (2022-10-08)

	5.4.1 (2022-09-11)

	5.4 (2022-09-10)

	5.3 (2022-07-30)

	5.2 (2022-07-08)

	5.1 (2022-05-17)

	5.0.1 (2022-04-25)

	5.0 (2022-04-15)

	4.10 (2022-03-05)

	4.9 (2022-02-03)

	4.8 (2022-01-06)

	4.7 (2021-11-10)

	4.6 (2021-10-29)

	4.5.1 (2021-08-06)

	4.5 (2021-08-01)

	4.4 (2021-07-13)

	4.3 (2021-04-16)

	4.2 (2021-01-13)

	4.1 (2020-11-18)

	4.0 (2020-08-08)

	Older Versions

	Credits
	Contributions to PyInstaller 5.8.0

	Contributions to PyInstaller 5.7.0

	Contributions to PyInstaller 5.6.2

	Contributions to PyInstaller 5.6.1

	Contributions to PyInstaller 5.6

	Contributions to PyInstaller 5.5

	Contributions to PyInstaller 5.4.1

	Contributions to PyInstaller 5.4

	Contributions to PyInstaller 5.3

	Contributions to PyInstaller 5.2

	Contributions to PyInstaller 5.1

	Contributions to PyInstaller 5.0.1

	Contributions to PyInstaller 5.0

	Contributions to PyInstaller 4.10

	Contributions to PyInstaller 4.9

	Contributions to PyInstaller 4.8

	Contributions to PyInstaller 4.7

	Contributions to PyInstaller 4.6

	Contributions to PyInstaller 4.5.1

	Contributions to PyInstaller 4.5

	Contributions to PyInstaller 4.4

	Contributions to PyInstaller 4.3

	Contributions to PyInstaller 4.2

	Contributions to PyInstaller 4.1

	Contributions to PyInstaller 4.0

	Contributions to PyInstaller 3.6

	Contributions to PyInstaller 3.5

	Contributions to PyInstaller 3.4

	Contributions to PyInstaller 3.3.1

	Contributions to PyInstaller 3.3

	Contributions to PyInstaller 3.2.1

	Contributions to PyInstaller 3.2

	Contributions to PyInstaller 3.1.1

	Contributions to PyInstaller 3.1

	Contributions to PyInstaller 3.0

	Contributions to PyInstaller 2.1 and older

	Man Pages
	pyinstaller

	pyi-makespec

	Development Guide
	Quickstart

	New to GitHub or Git?

	Coding conventions

	Running the Test Suite

	Guidelines for Commits

	Improving and Building the Documentation

	Creating Pull-Requests

	Changelog Entries

	pyenv and PyInstaller

	PyInstaller’s Branch Model

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Windows

PyInstaller runs in Windows 8 and newer. It can create graphical windowed apps
(apps that do not need a command window).

macOS

PyInstaller runs on macOS 10.15 (Catalina) or newer.
It can build graphical windowed apps (apps that do not use a terminal window).
PyInstaller builds apps that are compatible with the macOS release in
which you run it, and following releases.
It can build x86_64, arm64 or hybrid universal2 binaries on macOS
machines of either architecture. See macOS multi-arch support for
details.

GNU/Linux

PyInstaller requires the ldd terminal application to discover
the shared libraries required by each program or shared library.
It is typically found in the distribution-package glibc or libc-bin.

It also requires the objdump terminal application to extract
information from object files
and the objcopy terminal application to append data to the
bootloader.
These are typically found in the distribution-package binutils.

AIX, Solaris, FreeBSD and OpenBSD

Users have reported success running PyInstaller on these platforms,
but it is not tested on them.
The ldd and objdump commands are needed.

Each bundled app contains a copy of a bootloader,
a program that sets up the application and starts it
(see The Bootstrap Process in Detail).

When you install PyInstaller using pip [http://www.pip-installer.org/], the setup will attempt
to build a bootloader for this platform.
If that succeeds, the installation continues and PyInstaller is ready to use.

If the pip [http://www.pip-installer.org/] setup fails to build a bootloader,
or if you do not use pip [http://www.pip-installer.org/] to install,
you must compile a bootloader manually.
The process is described under Building the Bootloader.

License

PyInstaller is distributed under a dual-licensing scheme using both the GPL 2.0 License, with
an exception that allows you to use it to build commercial products - listed below - and the
Apache License, version 2.0, which only applies to a certain few files. To see which files the Apache
license applies to, and to which the GPL applies, please see the COPYING.txt file which can be
found in the root of the PyInstaller source repository.

A quick summary of the GPL license exceptions:

	
	You may use PyInstaller to bundle commercial applications out of your
	source code.

	
	The executable bundles generated by PyInstaller from your source code
	can be shipped with whatever license you want, as long as it complies
with the licenses of your dependencies.

	
	You may modify PyInstaller for your own needs but changes to the
	PyInstaller source code fall under the terms of the GPL license.
That is, if you distribute your modifications you must distribute
them under GPL terms.

How To Contribute

You are very welcome to contribute!
PyInstaller is a maintained by a group of volunteers.
All contributions,
like community support, bug reports, bug fixes,
documentation improvements, enhancements and ideas are welcome.

PyInstaller is an free software project that is created and
maintained by volunteers.
It lives-and-dies based on the support it receives from others, and the fact
that you’re even considering contributing to PyInstaller is very
generous of you.

Since as of now all core-developers are working on PyInstaller in their
spare-time, you can help us (and the project) most if you are following some
simple guidelines. The higher the quality of your contribution, the less work
we have incorporating them and the earlier we will be able to incorporate them
:-)

If you get stuck at any point you can create a ticket on GitHub [https://github.com/pyinstaller/pyinstaller/issues/new].

For more about our development process and methods, see the
Development Guide.

Some ideas how you can help

Some ideas how you can help:

	Answer support tickets: [https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Akind%3Asupport] Often the user just needs to be pointed
to the fitting section in the manual.

	Triage open issues, [https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen] which means: read the report; ask the issue
requester to provide missing information and to try with the latest
development version; ensure there is a minimal example; ensure the
issue-reporter followed all steps in When Things Go Wrong.
If you are able reproduce the
problem and track down the bug, this would be a great help for the
core developers.

	Help improving the documentation: There is a list of documentation
issues [https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3Aarea%3Adocumentation] you can pick one from. Please provide a pull-request for your
changes. Read more »»

	Pick an issue requesting a pull-request [https://github.com/pyinstaller/pyinstaller/issues?q=is%3Aopen+is%3Aissue+label%3A%22pull-request+wanted%22] and provide one.

	Review pull requests: [https://github.com/pyinstaller/pyinstaller/pulls] Are the commit messages following the
guideline Please Write Good Commit Messages; do all new files have a
copyright-header (esp. for hooks this is often missing); is the code okay;
etc.

	Scan the list of open issues [https://github.com/pyinstaller/pyinstaller/issues] and pick some task :-)

Thank you very much!

If you plan to contribute frequently, just ask for write access to the main
git repository. We would be glad to welcome you in the team!

How to Install PyInstaller

PyInstaller is available as a regular Python package.
The source archives for released versions are available from PyPi [https://pypi.python.org/pypi/PyInstaller/],
but it is easier to install the latest version using pip [http://www.pip-installer.org/]:

pip install pyinstaller

To upgrade existing PyInstaller installation to the latest version, use:

pip install --upgrade pyinstaller

To install the current development version, use:

pip install https://github.com/pyinstaller/pyinstaller/tarball/develop

To install directly using pip’s built-in git checkout support, use:

pip install git+https://github.com/pyinstaller/pyinstaller

or to install specific branch (e.g., develop):

pip install git+https://github.com/pyinstaller/pyinstaller@develop

Installing from the source archive

The source code archive for released versions of PyInstaller are
available at PyPI [https://pypi.python.org/pypi/PyInstaller/] and on PyInstaller Downloads [https://github.com/pyinstaller/pyinstaller/releases] page.

Note

Even though the source archive provides the setup.py script,
installation via python setup.py install has been deprecated
and should not be used anymore. Instead, run pip install . from
the unpacked source directory, as described below.

	The installation procedure is:
	
	Unpack the source archive.

	Move into the unpacked source directory.

	Run pip install . from the unpacked source directory. If
installing into system-wide python installation, administrator
privilege is required.

The same procedure applies to installing from manual git checkout:

git clone https://github.com/pyinstaller/pyinstaller
cd pyinstaller
pip install .

If you intend to make changes to the source code and want them to take
effect immediately, without re-installing the package each time, you
can install it in editable mode:

pip install -e .

For platforms other than Windows, GNU/Linux and macOS, you must first
build the bootloader for your platform: see Building the Bootloader.
After the bootloader has been built, use the pip install . command
to complete the installation.

Verifying the installation

On all platforms, the command pyinstaller should now exist on the
execution path. To verify this, enter the command:

pyinstaller --version

The result should resemble 4.n for a released version,
and 4.n.dev0-xxxxxx for a development branch.

If the command is not found, make sure the execution path includes
the proper directory:

	Windows: C:\PythonXY\Scripts where XY stands for the
major and minor Python version number,
for example C:\Python38\Scripts for Python 3.8)

	GNU/Linux: /usr/bin/

	macOS (using the default Apple-supplied Python) /usr/bin

	macOS (using Python installed by homebrew) /usr/local/bin

	macOS (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path%
and in other systems, echo $PATH.

Note

If you cannot use the pyinstaller command due to the scripts
directory not being in PATH, you can instead invoke the
PyInstaller module, by running python -m PyInstaller
(pay attention to the module name, which is case sensitive).
This form of invocation is also useful when you have PyInstaller
installed in multiple python environments, and you cannot be sure
from which installation the pyinstaller command will be ran.

Installed commands

The complete installation places these commands on the execution path:

	pyinstaller is the main command to build a bundled application.
See Using PyInstaller.

	pyi-makespec is used to create a spec file. See Using Spec Files.

	pyi-archive_viewer is used to inspect a bundled application.
See Inspecting Archives.

	pyi-bindepend is used to display dependencies of an executable.
See Inspecting Executables.

	pyi-grab_version is used to extract a version resource from a Windows
executable. See Capturing Windows Version Data.

	pyi-set_version can be used to apply previously-extracted version
resource to an existing Windows executable.

What PyInstaller Does and How It Does It

This section covers the basic ideas of PyInstaller.
These ideas apply to all platforms.
Options and special cases are covered below, under Using PyInstaller.

PyInstaller reads a Python script written by you.
It analyzes your code to discover every other module and library
your script needs in order to execute.
Then it collects copies of all those files – including
the active Python interpreter! – and puts them with
your script in a single folder,
or optionally in a single executable file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application
as a single-file executable,

pyinstaller --onefile --windowed myscript.py

You distribute the bundle as a folder or file to other people,
and they can execute
your program.
To your users, the app is self-contained.
They do not need to install any particular version of Python or any modules.
They do not need to have Python installed at all.

Note

The output of PyInstaller is specific to the active operating system
and the active version of Python.
This means that to prepare a distribution for:

	a different OS

	a different version of Python

	a 32-bit or 64-bit OS

you run PyInstaller on that OS, under that version of Python.
The Python interpreter that executes PyInstaller is part of
the bundle, and it is specific to the OS and the word size.

Analysis: Finding the Files Your Program Needs

What other modules and libraries does your script need in order to run?
(These are sometimes called its “dependencies”.)

To find out, PyInstaller finds all the import statements
in your script.
It finds the imported modules and looks in them for import
statements, and so on recursively, until it has a complete list of
modules your script may use.

PyInstaller understands the “egg” distribution format often used
for Python packages.
If your script imports a module from an “egg”, PyInstaller adds
the egg and its dependencies to the set of needed files.

PyInstaller also knows about many major Python packages,
including the GUI packages
Qt [http://www.qt-project.org] (imported via PyQt [http://www.riverbankcomputing.co.uk/software/pyqt/intro] or PySide [http://qt-project.org/wiki/About-PySide]), WxPython [http://www.wxpython.org/], TkInter [http://wiki.python.org/moin/TkInter], matplotlib [https://matplotlib.org],
and other major packages.
For a complete list, see Supported Packages [https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages].

Some Python scripts import modules in ways that PyInstaller cannot detect:
for example, by using the __import__() [https://docs.python.org/3/library/functions.html#import__] function with variable data,
using importlib.import_module() [https://docs.python.org/3/library/importlib.html#importlib.import_module],
or manipulating the sys.path [https://docs.python.org/3/library/sys.html#sys.path] value at run time.
If your script requires files that PyInstaller does not know about,
you must help it:

	You can give additional files on the pyinstaller command line.

	You can give additional import paths on the command line.

	You can edit the myscript.spec file
that PyInstaller writes the first time you run it for your script.
In the spec file you can tell PyInstaller about code modules
that are unique to your script.

	You can write “hook” files that inform PyInstaller of hidden imports.
If you create a “hook” for a package that other users might also use,
you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files,
you can tell PyInstaller to include them in the bundle as well.
You do this by modifying the spec file, an advanced topic that is
covered under Using Spec Files.

In order to locate included files at run time,
your program needs to be able to learn its path at run time
in a way that works regardless of
whether or not it is running from a bundle.
This is covered under Run-time Information.

PyInstaller does not include libraries that should exist in
any installation of this OS.
For example in GNU/Linux, it does not bundle any file
from /lib or /usr/lib, assuming
these will be found in every system.

Bundling to One Folder

When you apply PyInstaller to myscript.py the default
result is a single folder named myscript.
This folder contains all your script’s dependencies,
and an executable file also named myscript
(myscript.exe in Windows).

You compress the folder
to myscript.zip and transmit it to your users.
They install the program simply by unzipping it.
A user runs your app by
opening the folder and launching the myscript executable inside it.

It is easy to debug problems that occur when building the app
when you use one-folder mode.
You can see exactly what files PyInstaller collected into the folder.

Another advantage of a one-folder bundle
is that when you change your code, as long
as it imports exactly the same set of dependencies, you could send out
only the updated myscript executable.
That is typically much smaller
than the entire folder.
(If you change the script so that it imports more
or different dependencies, or if the dependencies
are upgraded, you must redistribute the whole bundle.)

A small disadvantage of the one-folder format is that the one folder contains
a large number of files.
Your user must find the myscript executable
in a long list of names or among a big array of icons.
Also your user can create
a problem by accidentally dragging files out of the folder.

How the One-Folder Program Works

A bundled program always starts execution in the PyInstaller bootloader.
This is the heart of the myscript executable in the folder.

The PyInstaller bootloader is a binary
executable program for the active platform
(Windows, GNU/Linux, macOS, etc.).
When the user launches your program, it is the bootloader that runs.
The bootloader creates a temporary Python environment
such that the Python interpreter will find all imported modules and
libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter
to execute your script.
Everything follows normally from there, provided
that all the necessary support files were included.

(This is an overview.
For more detail, see The Bootstrap Process in Detail below.)

Bundling to One File

PyInstaller can bundle your script and all its dependencies into a single
executable named myscript (myscript.exe in Windows).

The advantage is that your users get something they understand,
a single executable to launch.
A disadvantage is that any related files
such as a README must be distributed separately.
Also, the single executable is a little slower to start up than
the one-folder bundle.

Before you attempt to bundle to one file, make sure your app
works correctly when bundled to one folder.
It is is much easier to diagnose problems in one-folder mode.

How the One-File Program Works

The bootloader is the heart of the one-file bundle also.
When started it creates a temporary folder
in the appropriate temp-folder location for this OS.
The folder is named _MEIxxxxxx, where xxxxxx is a random number.

The one executable file contains an embedded archive of all the Python
modules used by your script, as well as
compressed copies of any non-Python support files (e.g. .so files).
The bootloader uncompresses the support files and writes copies
into the the temporary folder.
This can take a little time.
That is why a one-file app is a little slower to start
than a one-folder app.

Note

PyInstaller currently does not preserve file attributes.
see #3926 [https://github.com/pyinstaller/pyinstaller/issues/3926].

After creating the temporary folder, the bootloader
proceeds exactly as for the one-folder bundle,
in the context of the temporary folder.
When the bundled code terminates,
the bootloader deletes the temporary folder.

(In GNU/Linux and related systems, it is possible
to mount the /tmp folder with a “no-execution” option.
That option is not compatible with a PyInstaller
one-file bundle. It needs to execute code out of /tmp.
If you know the target environment,
--runtime-tmpdir might be a workaround.)

Because the program makes a temporary folder with a unique name,
you can run multiple copies of the app;
they won’t interfere with each other.
However, running multiple copies is expensive in disk space because
nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes
or is killed (kill -9 on Unix, killed by the Task Manager on Windows,
“Force Quit” on macOS).
Thus if your app crashes frequently, your users will lose disk space to
multiple _MEIxxxxxx temporary folders.

It is possible to control the location of the _MEIxxxxxx folder by
using the --runtime-tmpdir command line option. The specified path is
stored in the executable, and the bootloader will create the
_MEIxxxxxx folder inside of the specified folder. Please see
Defining the Extraction Location for details.

Note

Do not give administrator privileges to a one-file executable on Windows
(“Run this program as an administrator”).
There is an unlikely but not impossible way in which a malicious attacker could
corrupt one of the shared libraries in the temp folder
while the bootloader is preparing it.
When distributing a privileged program in general, ensure that file
permissions prevent shared libraries or executables from being tampered with.
Otherwise, an unelevated process which has write access to these files may
escalate privileges by modifying them.

Note

Applications that use os.setuid() may encounter permissions errors.
The temporary folder where the bundled app runs may not being readable
after setuid is called. If your script needs to
call setuid, it may be better to use one-folder mode
so as to have more control over the permissions on its files.

Using a Console Window

By default the bootloader creates a command-line console
(a terminal window in GNU/Linux and macOS, a command window in Windows).
It gives this window to the Python interpreter for its standard input and output.
Your script’s use of print and input() are directed here.
Error messages from Python and default logging output
also appear in the console window.

An option for Windows and macOS is to tell PyInstaller to not provide a console window.
The bootloader starts Python with no target for standard output or input.
Do this when your script has a graphical interface for user input and can properly
report its own diagnostics.

As noted in the CPython tutorial Appendix [https://docs.python.org/3/tutorial/appendix.html#executable-python-scripts],
for Windows a file extension of .pyw suppresses the console window
that normally appears.
Likewise, a console window will not be provided when using
a myscript.pyw script with PyInstaller.

Hiding the Source Code

The bundled app does not include any source code.
However, PyInstaller bundles compiled Python scripts (.pyc files).
These could in principle be decompiled to reveal the logic of
your code.

If you want to hide your source code more thoroughly, one possible option
is to compile some of your modules with Cython [http://www.cython.org/].
Using Cython you can convert Python modules into C and compile
the C to machine language.
PyInstaller can follow import statements that refer to
Cython C object modules and bundle them.

Using PyInstaller

The syntax of the pyinstaller command is:

pyinstaller [options] script [script …] | specfile

In the most simple case,
set the current directory to the location of your program myscript.py
and execute:

pyinstaller myscript.py

PyInstaller analyzes myscript.py and:

	Writes myscript.spec in the same folder as the script.

	Creates a folder build in the same folder as the script if it does not exist.

	Writes some log files and working files in the build folder.

	Creates a folder dist in the same folder as the script if it does not exist.

	Writes the myscript executable folder in the dist folder.

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line.
If you name more, all are analyzed and included in the output.
However, the first script named supplies the name for the
spec file and for the executable folder or file.
Its code is the first to execute at run-time.

For certain uses you may edit the contents of myscript.spec
(described under Using Spec Files).
After you do this, you name the spec file to PyInstaller instead of the script:

pyinstaller myscript.spec

The myscript.spec file contains most of the information
provided by the options that were specified when
pyinstaller (or pyi-makespec)
was run with the script file as the argument.
You typically do not need to specify any options when running
pyinstaller with the spec file.
Only a few command-line options
have an effect when building from a spec file.

You may give a path to the script or spec file, for example

pyinstaller options… ~/myproject/source/myscript.py

or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

Options

A full list of the pyinstaller command’s options are as follows:

Positional Arguments

	
scriptname

	Name of scriptfiles to be processed or exactly one
.spec file. If a .spec file is specified, most options
are unnecessary and are ignored.

Optional Arguments

	
-h, --help

	show this help message and exit

	
-v, --version

	Show program version info and exit.

	
--distpath DIR

	Where to put the bundled app (default: ./dist)

	
--workpath WORKPATH

	Where to put all the temporary work files, .log, .pyz
and etc. (default: ./build)

	
-y, --noconfirm

	Replace output directory (default:
SPECPATH/dist/SPECNAME) without asking for
confirmation

	
--upx-dir UPX_DIR

	Path to UPX utility (default: search the execution
path)

	
-a, --ascii

	Do not include unicode encoding support (default:
included if available)

	
--clean

	Clean PyInstaller cache and remove temporary files
before building.

	
--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of TRACE, DEBUG, INFO, WARN, DEPRECATION,
ERROR, FATAL (default: INFO). Also settable via and
overrides the PYI_LOG_LEVEL environment variable.

What To Generate

	
-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	
-F, --onefile

	Create a one-file bundled executable.

	
--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	
-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What To Bundle, Where To Search

	
--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to the executable. The
path separator is platform specific, os.pathsep (which is ; on
Windows and : on most unix systems) is used. This option can be used
multiple times.

	
--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable. See the
--add-data option for more details. This option can be used multiple
times.

	
-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ':', or
use this option multiple times. Equivalent to
supplying the pathex argument in the spec file.

	
--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the script(s). This option can be
used multiple times.

	
--collect-submodules MODULENAME

	Collect all submodules from the specified package or module. This option
can be used multiple times.

	
--collect-data MODULENAME, --collect-datas MODULENAME

	Collect all data from the specified package or module. This option can be
used multiple times.

	
--collect-binaries MODULENAME

	Collect all binaries from the specified package or module. This option can
be used multiple times.

	
--collect-all MODULENAME

	Collect all submodules, data files, and binaries from the specified package
or module. This option can be used multiple times.

	
--copy-metadata PACKAGENAME

	Copy metadata for the specified package. This option can be used multiple
times.

	
--recursive-copy-metadata PACKAGENAME

	Copy metadata for the specified package and all its dependencies. This
option can be used multiple times.

	
--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option can be used multiple
times.

	
--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is code that is bundled
with the executable and is executed before any other code or module to set
up special features of the runtime environment. This option can be used
multiple times.

	
--exclude-module EXCLUDES

	Optional module or package (the Python name, not the path name) that will
be ignored (as though it was not found). This option can be used multiple
times.

	
--splash IMAGE_FILE

	(EXPERIMENTAL) Add an splash screen with the image
IMAGE_FILE to the application. The splash screen can
display progress updates while unpacking.

How To Generate

	
-d {all,imports,bootloader,noarchive}, --debug {all,imports,bootloader,noarchive}

	Provide assistance with debugging a frozen application. This argument may
be provided multiple times to select several of the following options. -
all: All three of the following options. - imports: specify the -v option
to the underlying Python interpreter, causing it to print a message
each time a module is initialized, showing the place (filename or
built-in module) from which it is loaded. See
https://docs.python.org/3/using/cmdline.html#id4. - bootloader: tell the
bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports. -
noarchive: instead of storing all frozen Python source files as an
archive inside the resulting executable, store them as files in the
resulting output directory.

	
--python-option PYTHON_OPTION

	Specify a command-line option to pass to the Python interpreter at runtime.
Currently supports “v” (equivalent to “–debug imports”), “u”, and “W
<warning control>”.

	
-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	
--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

	
--upx-exclude FILE

	Prevent a binary from being compressed when using upx.
This is typically used if upx corrupts certain
binaries during compression. FILE is the filename of
the binary without path. This option can be used
multiple times.

Windows And Mac Os X Specific Options

	
-c, --console, --nowindowed

	Open a console window for standard i/o (default). On Windows this option
has no effect if the first script is a ‘.pyw’ file.

	
-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window for standard i/o. On
Mac OS this also triggers building a Mac OS .app bundle. On Windows this
option is automatically set if the first script is a ‘.pyw’ file. This
option is ignored on *NIX systems.

	
-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">, --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">

	FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on
Mac OS. If an image file is entered that isn’t in the platform format (ico
on Windows, icns on Mac), PyInstaller tries to use Pillow to translate the
icon into the correct format (if Pillow is installed). Use “NONE” to not
apply any icon, thereby making the OS show some default (default: apply
PyInstaller’s icon). This option can be used multiple times.

	
--disable-windowed-traceback

	Disable traceback dump of unhandled exception in windowed (noconsole) mode
(Windows and macOS only), and instead display a message that this feature
is disabled.

Windows Specific Options

	
--version-file FILE

	Add a version resource from FILE to the exe.

	
-m <FILE or XML>, --manifest <FILE or XML>

	Add manifest FILE or XML to the exe.

	
--no-embed-manifest

	Generate an external .exe.manifest file instead of
embedding the manifest into the exe. Applicable only
to onedir mode; in onefile mode, the manifest is
always embedded, regardless of this option.

	
-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The RESOURCE is one to
four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file or an
exe/dll. For data files, at least TYPE and NAME must be specified. LANGUAGE
defaults to 0 or may be specified as wildcard * to update all resources of
the given TYPE and NAME. For exe/dll files, all resources from FILE will be
added/updated to the final executable if TYPE, NAME and LANGUAGE are
omitted or specified as wildcard *. This option can be used multiple
times.

	
--uac-admin

	Using this option creates a Manifest that will request
elevation upon application start.

	
--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-By-Side Assembly Searching Options (Advanced)

	
--win-private-assemblies

	Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will
always be used, and any newer versions installed on user machines at the
system level will be ignored.

	
--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to bundle into the
application, PyInstaller will prefer not to follow policies that redirect
to newer versions, and will try to bundle the exact versions of the
assembly.

Mac Os Specific Options

	
--argv-emulation

	Enable argv emulation for macOS app bundles. If
enabled, the initial open document/URL event is
processed by the bootloader and the passed file paths
or URLs are appended to sys.argv.

	
--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS .app bundle identifier is used as the default unique program name
for code signing purposes. The usual form is a hierarchical name in reverse
DNS notation. For example: com.mycompany.department.appname (default: first
script’s basename)

	
--target-architecture ARCH, --target-arch ARCH

	Target architecture (macOS only; valid values: x86_64, arm64, universal2).
Enables switching between universal2 and single-arch version of frozen
application (provided python installation supports the target
architecture). If not target architecture is not specified, the current
running architecture is targeted.

	
--codesign-identity IDENTITY

	Code signing identity (macOS only). Use the provided identity to sign
collected binaries and generated executable. If signing identity is not
provided, ad- hoc signing is performed instead.

	
--osx-entitlements-file FILENAME

	Entitlements file to use when code-signing the collected binaries (macOS
only).

Rarely Used Special Options

	
--runtime-tmpdir PATH

	Where to extract libraries and support files in onefile-mode. If this
option is given, the bootloader will ignore any temp-folder location
defined by the run-time OS. The _MEIxxxxxx-folder will be created here.
Please use this option only if you know what you are doing.

	
--bootloader-ignore-signals

	Tell the bootloader to ignore signals rather than forwarding them to the
child process. Useful in situations where for example a supervisor process
signals both the bootloader and the child (e.g., via a process group) to
avoid signalling the child twice.

Shortening the Command

Because of its numerous options, a full pyinstaller command
can become very long.
You will run the same command again and again as you develop
your script.
You can put the command in a shell script or batch file,
using line continuations to make it readable.
For example, in GNU/Linux:

pyinstaller --noconfirm --log-level=WARN \
 --onefile --nowindow \
 --add-data="README:." \
 --add-data="image1.png:img" \
 --add-binary="libfoo.so:lib" \
 --hidden-import=secret1 \
 --hidden-import=secret2 \
 --upx-dir=/usr/local/share/ \
 myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN ^
 --onefile --nowindow ^
 --add-data="README;." ^
 --add-data="image1.png;img" ^
 --add-binary="libfoo.so;lib" ^
 --hidden-import=secret1 ^
 --hidden-import=secret2 ^
 --icon=..\MLNMFLCN.ICO ^
 myscript.spec

Running PyInstaller from Python code

If you want to run PyInstaller from Python code, you can use the run function
defined in PyInstaller.__main__. For instance, the following code:

import PyInstaller.__main__

PyInstaller.__main__.run([
 'my_script.py',
 '--onefile',
 '--windowed'
])

Is equivalent to:

pyinstaller my_script.py --onefile --windowed

Using UPX

UPX [https://upx.github.io/] is a free utility for compressing executable files and libraries.
It is available for most operating systems and can compress a large number
of executable file formats. See the UPX [https://upx.github.io/] home page for downloads, and for
the list of supported file formats.

When UPX is available, PyInstaller uses it to individually compress
each collected binary file (executable, shared library, or python
extension) in order to reduce the overall size of the frozen application
(the one-dir bundle directory, or the one-file executable). The frozen
application’s executable itself is not UPX-compressed (regardless of one-dir
or one-file mode), as most of its size comprises the embedded archive that
already contains individually compressed files.

PyInstaller looks for the UPX in the standard executable path(s) (defined
by PATH environment variable), or in the path specified via the
--upx-dir command-line option. If found, it is used automatically.
The use of UPX can be completely disabled using the --noupx
command-line option.

Note

UPX is currently used only on Windows. On other operating systems,
the collected binaries are not processed even if UPX is found. The
shared libraries (e.g., the Python shared library) built on modern
linux distributions seem to break when processed with UPX, resulting
in defunct application bundles. On macOS, UPX currently fails to
process .dylib shared libraries; furthermore the UPX-compressed files
fail the validation check of the codesign utility, and therefore
cannot be code-signed (which is a requirement on the Apple M1 platform).

Excluding problematic files from UPX processing

Using UPX may end up corrupting a collected shared library. Known examples
of such corruption are Windows DLLs with Control Flow Guard (CFG) enabled [https://github.com/upx/upx/issues/398], as well as Qt5 and Qt6
plugins [https://github.com/upx/upx/issues/107]. In such cases,
individual files may be need to be excluded from UPX processing, using
the --upx-exclude option (or using the upx_exclude argument
in the .spec file).

Changed in version 4.2: PyInstaller detects CFG-enabled DLLs and automatically excludes
them from UPX processing.

Changed in version 4.3: PyInstaller automatically excludes Qt5 and Qt6 plugins from
UPX processing.

Although PyInstaller attempts to automatically detect and exclude some of
the problematic files from UPX processing, there are cases where the
UPX excludes need to be specified manually. For example, 32-bit Windows
binaries from the PySide2 package (Qt5 DLLs and python extension modules)
have been reported [https://github.com/pyinstaller/pyinstaller/issues/4178#issuecomment-868985789]
to be corrupted by UPX.

Changed in version 5.0: Unlike earlier releases that compared the provided UPX-exclude names
against basenames of the collect binary files (and, due to incomplete
case normalization, required provided exclude names to be lowercase
on Windows), the UPX-exclude pattern matching now uses OS-default
case sensitivity and supports the wildcard (*) operator. It also
supports specifying (full or partial) parent path of the file.

The provided UPX exclude patterns are matched against source (origin)
paths of the collected binary files, and the matching is performed from
right to left.

For example, to exclude Qt5 DLLs from the PySide2 package, use
--upx-exclude "Qt*.dll", and to exclude the python extensions
from the PySide2 package, use --upx-exclude "PySide2*.pyd".

Splash Screen (Experimental)

Note

This feature is incompatible with macOS. In the current design, the
splash screen operates in a secondary thread, which is disallowed by
the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

Some applications may require a splash screen as soon as the application
(bootloader) has been started, because especially in onefile mode large
applications may have long extraction/startup times, while the bootloader
prepares everything, where the user cannot judge whether the application
was started successfully or not.

The bootloader is able to display a one-image (i.e. only an image) splash
screen, which is displayed before the actual main extraction process starts.
The splash screen supports non-transparent and hard-cut-transparent images as background
image, so non-rectangular splash screens can also be displayed.

This splash screen is based on Tcl/Tk [http://www.tcl.tk/], which is the same library used by the Python
module tkinter [http://wiki.python.org/moin/TkInter]. PyInstaller bundles the dynamic libraries of tcl and tk into the
application at compile time. These are loaded into the bootloader at startup of the
application after they have been extracted (if the program has been packaged as an
onefile archive). Since the file sizes of the necessary dynamic libraries are very small,
there is almost no delay between the start of the application and the splash screen.
The compressed size of the files necessary for the splash screen is about 1.5 MB.

As an additional feature, text can optionally be displayed on the splash screen. This
can be changed/updated from within Python. This offers the possibility to
display the splash screen during longer startup procedures of a Python program
(e.g. waiting for a network response or loading large files into memory). You
can also start a GUI behind the splash screen, and only after it is completely
initialized the splash screen can be closed. Optionally, the font, color and
size of the text can be set. However, the font must be installed on the user
system, as it is not bundled. If the font is not available, a fallback font is used.

If the splash screen is configured to show text, it will automatically (as onefile archive)
display the name of the file that is currently being unpacked, this acts as a progress bar.

The pyi_splash Module

The splash screen is controlled from within Python by the pyi_splash module, which can
be imported at runtime. This module cannot be installed by a package manager
because it is part of PyInstaller and is included as needed.
This module must be imported within the Python program. The usage is as follows:

import pyi_splash

Update the text on the splash screen
pyi_splash.update_text("PyInstaller is a great software!")
pyi_splash.update_text("Second time's a charm!")

Close the splash screen. It does not matter when the call
to this function is made, the splash screen remains open until
this function is called or the Python program is terminated.
pyi_splash.close()

Of course the import should be in a try ... except block, in case the program is
used externally as a normal Python script, without a bootloader.
For a detailed description see pyi_splash Module (Detailed).

Defining the Extraction Location

In rare cases, when you bundle to a single executable
(see Bundling to One File and How the One-File Program Works),
you may want to control the location of the temporary directory at compile
time. This can be done using the --runtime-tmpdir option. If this option is
given, the bootloader will ignore any temp-folder location defined by the
run-time OS. Please use this option only if you know what you are doing.

Supporting Multiple Platforms

If you distribute your application for only one combination of OS and Python,
just install PyInstaller like any other package and use it in your
normal development setup.

Supporting Multiple Python Environments

When you need to bundle your application within one OS
but for different versions of Python and support libraries – for example,
a Python 3.6 version and a Python 3.7 version;
or a supported version that uses Qt4 and a development version that uses Qt5 –
we recommend you use venv [https://docs.python.org/3/library/venv.html].
With venv you can maintain different combinations of Python
and installed packages, and switch from one combination to another easily.
These are called virtual environments or venvs in short.

	Use venv to create as many different development environments as you need,
each with its unique combination of Python and installed packages.

	Install PyInstaller in each virtual environment.

	Use PyInstaller to build your application in each virtual environment.

Note that when using venv, the path to the PyInstaller commands is:

	Windows: ENV_ROOT\Scripts

	Others: ENV_ROOT/bin

Under Windows, the pip-Win [https://sites.google.com/site/pydatalog/python/pip-for-windows] package makes it
especially easy to set up different environments and switch between them.
Under GNU/Linux and macOS, you switch environments at the command line.

See PEP 405 [https://www.python.org/dev/peps/pep-0405]
and the official Python Tutorial on Virtual Environments and Packages [https://docs.python.org/3/tutorial/venv.html]
for more information about Python virtual environments.

Supporting Multiple Operating Systems

If you need to distribute your application for more than one OS,
for example both Windows and macOS, you must install PyInstaller
on each platform and bundle your app separately on each.

You can do this from a single machine using virtualization.
The free virtualBox [https://www.virtualbox.org] or the paid VMWare [http://www.vmware.com/solutions/desktop/] and Parallels [http://www.parallels.com]
allow you to run another complete operating system as a “guest”.
You set up a virtual machine for each “guest” OS.
In it you install
Python, the support packages your application needs, and PyInstaller.

A File Sync & Share [https://en.wikipedia.org/wiki/Enterprise_file_synchronization_and_sharing] system like NextCloud [https://nextcloud.org] is useful with virtual machines.
Install the synchronization client in each virtual machine,
all linked to your synchronization account.
Keep a single copy of your script(s) in a synchronized folder.
Then on any virtual machine you can run PyInstaller thus:

cd ~/NextCloud/project_folder/src # GNU/Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \
 --distpath=path-to-local-dist-folder \
 ...other options as required... \
 ./myscript.py

PyInstaller reads scripts from the common synchronized folder,
but writes its work files and the bundled app in folders that
are local to the virtual machine.

If you share the same home directory on multiple platforms, for
example GNU/Linux and macOS, you will need to set the PYINSTALLER_CONFIG_DIR
environment variable to different values on each platform otherwise
PyInstaller may cache files for one platform and use them on the other
platform, as by default it uses a subdirectory of your home directory
as its cache location.

It is said to be possible to cross-develop for Windows under GNU/Linux
using the free Wine [http://www.winehq.org/] environment.
Further details are needed, see How to Contribute [https://pyinstaller.readthedocs.io/en/latest/contributing.html].

Capturing Windows Version Data

A Windows app may require a Version resource file.
A Version resource contains a group of data structures,
some containing binary integers and some containing strings,
that describe the properties of the executable.
For details see the Microsoft Version Information Structures [http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx] page.

Version resources are complex and
some elements are optional, others required.
When you view the version tab of a Properties dialog,
there’s no simple relationship between
the data displayed and the structure of the resource.
For this reason PyInstaller includes the pyi-grab_version command.
It is invoked with the full path name of any Windows executable
that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents
a Version resource in readable form to standard output.
You can copy it from the console window or redirect it to a file.
Then you can edit the version information to adapt it to your program.
Using pyi-grab_version you can find an executable that displays the kind of
information you want, copy its resource data, and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters.
(Unicode characters are allowed in Version resource string fields.)
Be sure to edit and save the text file in UTF-8 unless you are
certain it contains only ASCII string values.

Your edited version text file can be given with the --version-file
option to pyinstaller or pyi-makespec.
The text data is converted to a Version resource and
installed in the bundled app.

In a Version resource there are two 64-bit binary values,
FileVersion and ProductVersion.
In the version text file these are given as four-element tuples,
for example:

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

The elements of each tuple represent 16-bit values
from most-significant to least-significant.
For example the value (2, 0, 4, 0) resolves to
0002000000040000 in hex.

You can also install a Version resource from a text file after
the bundled app has been created, using the pyi-set_version command:

pyi-set_version version_text_file executable_file

The pyi-set_version utility reads a version text file as written
by pyi-grab_version, converts it to a Version resource,
and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version.
You find it is Python code that creates a VSVersionInfo object.
The class definition for VSVersionInfo is found in
utils/win32/versioninfo.py in the PyInstaller distribution folder.
You can write a program that imports versioninfo.
In that program you can eval
the contents of a version info text file to produce a
VSVersionInfo object.
You can use the .toRaw() method of that object to
produce a Version resource in binary form.
Or you can apply the unicode() function to the object
to reproduce the version text file.

Building macOS App Bundles

Under macOS, PyInstaller always builds a UNIX executable in
dist.
If you specify --onedir, the output is a folder named myscript
containing supporting files and an executable named myscript.
If you specify --onefile, the output is a single UNIX executable
named myscript.
Either executable can be started from a Terminal command line.
Standard input and output work as normal through that Terminal window.

If you specify --windowed with either option, the dist folder
also contains a macOS application named myscript.app.

As you probably know, an application is a special type of folder.
The one built by PyInstaller contains a folder always named
Contents which contains:

	A folder Frameworks which is empty.

	A folder Resources that contains an icon file.

	A file Info.plist that describes the app.

	A folder MacOS that contains the the executable and
supporting files, just as in the --onedir folder.

Use the --icon argument to specify a custom icon for the application.
It will be copied into the Resources folder.
(If you do not specify an icon file, PyInstaller supplies a
file icon-windowed.icns with the PyInstaller logo.)

Use the --osx-bundle-identifier argument to add a bundle identifier.
This becomes the CFBundleIdentifier used in code-signing
(see the PyInstaller code signing recipe [https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing]
and for more detail, the Apple code signing overview [https://developer.apple.com/library/mac/technotes/tn2206/_index.html] technical note).

You can add other items to the Info.plist by editing the spec file;
see Spec File Options for a macOS Bundle below.

Platform-specific Notes

GNU/Linux

Making GNU/Linux Apps Forward-Compatible

Under GNU/Linux, PyInstaller does not bundle libc
(the C standard library, usually glibc, the Gnu version) with the app.
Instead, the app expects to link dynamically to the libc from the
local OS where it runs.
The interface between any app and libc is forward compatible to
newer releases, but it is not backward compatible to older releases.

For this reason, if you bundle your app on the current version of GNU/Linux,
it may fail to execute (typically with a runtime dynamic link error) if
it is executed on an older version of GNU/Linux.

The solution is to always build your app on the oldest version of
GNU/Linux you mean to support.
It should continue to work with the libc found on newer versions.

The GNU/Linux standard libraries such as glibc are distributed in 64-bit
and 32-bit versions, and these are not compatible.
As a result you cannot bundle your app on a 32-bit system and run it
on a 64-bit installation, nor vice-versa.
You must make a unique version of the app for each word-length supported.

Note that PyInstaller does bundle other shared libraries that are discovered
via dependency analysis, such as libstdc++.so.6, libfontconfig.so.1,
libfreetype.so.6. These libraries may be required on systems where older
(and thus incompatible) versions of these libraries are available. On the
other hand, the bundled libraries may cause issues when trying to load a
system-provided shared library that is linked against a newer version of the
system-provided library.

For example, system-installed mesa DRI drivers (e.g., radeonsi_dri.so)
depend on the system-provided version of libstdc++.so.6. If the frozen
application bundles an older version of libstdc++.so.6 (as collected from
the build system), this will likely cause missing symbol errors and prevent
the DRI drivers from loading. In this case, the bundled libstdc++.so.6
should be removed. However, this may not work on a different distribution
that provides libstdc++.so.6 older than the one from the build system; in
that case, the bundled version should be kept, because the system-provided
version may lack the symbols required by other collected binaries that depend
on libstdc++.so.6.

Windows

The developer needs to take
special care to include the Visual C++ run-time .dlls:
Python 3.5+ uses Visual Studio 2015 run-time, which has been renamed into
“Universal CRT“ [https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt/]
and has become part of Windows 10.
For Windows Vista through Windows 8.1 there are Windows Update packages,
which may or may not be installed in the target-system.
So you have the following options:

	Build on Windows 7 which has been reported to work.

	Include one of the VCRedist packages (the redistributable package files)
into your application’s installer. This is Microsoft’s recommended way, see
“Distributing Software that uses the Universal CRT“ in the above-mentioned
link, numbers 2 and 3.

	Install the Windows Software Development Kit (SDK) for Windows 10 [https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk] and expand the
.spec-file to include the required DLLs, see “Distributing Software that
uses the Universal CRT“ in the above-mentioned link, number 6.

If you think, PyInstaller should do this by itself, please help
improving PyInstaller.

macOS

Making macOS apps Forward-Compatible

On macOS, system components from one version of the OS are usually compatible
with later versions, but they may not work with earlier versions. While
PyInstaller does not collect system components of the OS, the collected
3rd party binaries (e.g., python extension modules) are built against
specific version of the OS libraries, and may or may not support older
OS versions.

As such, the only way to ensure that your frozen application supports
an older version of the OS is to freeze it on the oldest version of the
OS that you wish to support. This applies especially when building with
Homebrew [http://brew.sh/] python, as its binaries usually explicitly target the
running OS.

For example, to ensure compatibility with “Mojave” (10.14) and later versions,
you should set up a full environment (i.e., install python, PyInstaller,
your application’s code, and all its dependencies) in a copy of macOS 10.14,
using a virtual machine if necessary. Then use PyInstaller to freeze
your application in that environment; the generated frozen application
should be compatible with that and later versions of macOS.

Building 32-bit Apps in macOS

Note

This section is largely obsolete, as support for 32-bit application
was removed in macOS 10.15 Catalina (for 64-bit multi-arch support
on modern versions of macOS, see here).
However, PyInstaller still supports building 32-bit bootloader,
and 32-bit/64-bit Python installers are still available from
python.org for (some) versions of Python 3.7.

Older versions of macOS supported both 32-bit and 64-bit executables.
PyInstaller builds an app using the the word-length of the Python used to execute it.
That will typically be a 64-bit version of Python,
resulting in a 64-bit executable.
To create a 32-bit executable, run PyInstaller under a 32-bit Python.

To verify that the installed python version supports execution in either
64- or 32-bit mode, use the file command on the Python executable:

$ file /usr/local/bin/python3
/usr/local/bin/python3: Mach-O universal binary with 2 architectures
/usr/local/bin/python3 (for architecture i386): Mach-O executable i386
/usr/local/bin/python3 (for architecture x86_64): Mach-O 64-bit executable x86_64

The OS chooses which architecture to run, and typically defaults to 64-bit.
You can force the use of either architecture by name using the arch command:

$ /usr/local/bin/python3
Python 3.7.6 (v3.7.6:43364a7ae0, Dec 18 2019, 14:12:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
9223372036854775807

$ arch -i386 /usr/local/bin/python3
Python 3.7.6 (v3.7.6:43364a7ae0, Dec 18 2019, 14:12:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
2147483647

Note

PyInstaller does not provide pre-built 32-bit bootloaders for
macOS anymore. In order to use PyInstaller with 32-bit python,
you need to build the bootloader
yourself, using an XCode
version that still supports compiling 32-bit. Depending on the
compiler/toolchain, you may also need to explicitly pass
--target-arch=32bit to the waf command.

Getting the Opened Document Names

When user double-clicks a document of a type that is registered with
your application, or when a user drags a document and drops it
on your application’s icon, macOS launches your application
and provides the name(s) of the opened document(s) in the
form of an OpenDocument AppleEvent.

These events are typically handled via installed event handlers in your
application (e.g., using Carbon API via ctypes, or using
facilities provided by UI toolkits, such as tkinter or PyQt5).

Alternatively, PyInstaller also supports conversion of open
document/URL events into arguments that are appended to sys.argv [https://docs.python.org/3/library/sys.html#sys.argv].
This applies only to events received during application launch, i.e.,
before your frozen code is started. To handle events that are dispatched
while your application is already running, you need to set up corresponding
event handlers.

For details, see this section.

AIX

Depending on whether Python was build as a 32-bit or a 64-bit executable
you may need to set or unset
the environment variable OBJECT_MODE.
To determine the size the following command can be used:

$ python -c "import sys; print(sys.maxsize <= 2**32)"
True

When the answer is True (as above) Python was build as a 32-bit
executable.

When working with a 32-bit Python executable proceed as follows:

$ unset OBJECT_MODE
$ pyinstaller <your arguments>

When working with a 64-bit Python executable proceed as follows:

$ export OBJECT_MODE=64
$ pyinstaller <your arguments>

Run-time Information

Your app should run in a bundle exactly as it does when run from source.
However, you may want to learn at run-time whether the app is running from
source or whether it is bundled (“frozen”). You can use the following code to
check “are we bundled?”:

import sys
if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):
 print('running in a PyInstaller bundle')
else:
 print('running in a normal Python process')

When a bundled app starts up, the bootloader sets the sys.frozen
attribute and stores the absolute path to the bundle folder in
sys._MEIPASS. For a one-folder bundle, this is the path to that folder. For
a one-file bundle, this is the path to the temporary folder created by the
bootloader (see How the One-File Program Works).

When your app is running, it may need to access data files in one of the
following locations:

	Files that were bundled with it (see Adding Data Files).

	Files the user has placed with the app bundle, say in the same folder.

	Files in the user’s current working directory.

The program has access to several variables for these uses.

Using __file__

When your program is not bundled, the Python variable __file__ refers to
the current path of the module it is contained in. When importing a module
from a bundled script, the PyInstaller bootloader will set the module’s
__file__ attribute to the correct path relative to the bundle folder.

For example, if you import mypackage.mymodule from a bundled script, then
the __file__ attribute of that module will be sys._MEIPASS +
'mypackage/mymodule.pyc'. So if you have a data file at
mypackage/file.dat that you added to the bundle at mypackage/file.dat,
the following code will get its path (in both the non-bundled and the bundled
case):

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file__), 'file.dat'))

In the main script (the __main__ module) itself, the __file__
variable contains path to the script file. In Python 3.8 and earlier,
this path is either absolute or relative (depending on how the script
was passed to the python interpreter), while in Python 3.9 and later,
it is always an absolute path. In the bundled script, the PyInstaller
bootloader always sets the __file__ variable inside the __main__
module to the absolute path inside the bundle directory, as if the
byte-compiled entry-point script existed there.

For example, if your entry-point script is called program.py, then
the __file__ attribute inside the bundled script will point to
sys._MEIPASS + 'program.py'. Therefore, locating a data file relative
to the main script can be either done directly using sys._MEIPASS or
via the parent path of the __file__ inside the main script.

The following example will get the path to a file other-file.dat
located next to the main script if not bundled and inside the bundle folder
if it is bundled:

from os import path
bundle_dir = path.abspath(path.dirname(__file__))
path_to_dat = path.join(bundle_dir, 'other-file.dat')

Or, if you’d rather use pathlib [https://docs.python.org/3/library/pathlib.html]:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("other-file.dat")

Changed in version 4.3: Formerly, the __file__ attribute of the entry-point script
(the __main__ module) was set to only its basename rather than
its full (absolute or relative) path within the bundle directory.
Therefore, PyInstaller documentation used to suggest sys._MEIPASS
as means for locating resources relative to the bundled entry-point
script. Now, __file__ is always set to the absolute full path,
and is the preferred way of locating such resources.

Placing data files at expected locations inside the bundle

To place the data-files where your code expects them to be (i.e., relative
to the main script or bundle directory), you can use the dest parameter
of the --add-data=source:dest command-line switches.
Assuming you normally
use the following code in a file named my_script.py to locate a file
file.dat in the same folder:

from os import path
path_to_dat = path.abspath(path.join(path.dirname(__file__), 'file.dat'))

Or the pathlib [https://docs.python.org/3/library/pathlib.html] equivalent:

from pathlib import Path
path_to_dat = Path(__file__).resolve().with_name("file.dat")

And my_script.py is not part of a package (not in a folder containing
an __init_.py), then __file__ will be [app root]/my_script.pyc
meaning that if you put file.dat in the root of your package, using:

PyInstaller --add-data=/path/to/file.dat:.

It will be found correctly at runtime without changing my_script.py.

Note

Windows users should use ; instead of : in the above line.

If __file__ is checked from inside a package or library (say
my_library.data) then __file__ will be
[app root]/my_library/data.pyc and --add-data should mirror that:

PyInstaller --add-data=/path/to/my_library/file.dat:./my_library

However, in this case it is much easier to switch to the spec file and use the
PyInstaller.utils.hooks.collect_data_files() helper function:

from PyInstaller.utils.hooks import collect_data_files

a = Analysis(...,
 datas=collect_data_files("my_library"),
 ...)

Using sys.executable and sys.argv[0]

When a normal Python script runs, sys.executable is the path to the
program that was executed, namely, the Python interpreter.
In a frozen app, sys.executable is also the path to the
program that was executed, but that is not Python;
it is the bootloader in either the one-file app
or the executable in the one-folder app.
This gives you a reliable way to locate the frozen executable the user
actually launched.

The value of sys.argv[0] is the name or relative path that was
used in the user’s command.
It may be a relative path or an absolute path depending
on the platform and how the app was launched.

If the user launches the app by way of a symbolic link,
sys.argv[0] uses that symbolic name,
while sys.executable is the actual path to the executable.
Sometimes the same app is linked under different names
and is expected to behave differently depending on the name that is
used to launch it.
For this case, you would test os.path.basename(sys.argv[0])

On the other hand, sometimes the user is told to store the executable
in the same folder as the files it will operate on,
for example a music player that should be stored in the same folder
as the audio files it will play.
For this case, you would use os.path.dirname(sys.executable).

The following small program explores some of these possibilities.
Save it as directories.py.
Execute it as a Python script,
then bundled as a one-folder app.
Then bundle it as a one-file app and launch it directly and also via a
symbolic link:

#!/usr/bin/env python3
import sys, os
frozen = 'not'
if getattr(sys, 'frozen', False):
 # we are running in a bundle
 frozen = 'ever so'
 bundle_dir = sys._MEIPASS
else:
 # we are running in a normal Python environment
 bundle_dir = os.path.dirname(os.path.abspath(__file__))
print('we are',frozen,'frozen')
print('bundle dir is', bundle_dir)
print('sys.argv[0] is', sys.argv[0])
print('sys.executable is', sys.executable)
print('os.getcwd is', os.getcwd())

LD_LIBRARY_PATH / LIBPATH considerations

This environment variable is used to discover libraries, it is the library
search path - on GNU/Linux and *BSD LD_LIBRARY_PATH is used, on AIX it is
LIBPATH.

If it exists,
PyInstaller saves the original value to *_ORIG, then modifies the search
path so that the bundled libraries are found first by the bundled code.

But if your code executes a system program, you often do not want that this
system program loads your bundled libraries (that are maybe not compatible
with your system program) - it rather should load the correct libraries from
the system locations like it usually does.

Thus you need to restore the original path before creating the subprocess
with the system program.

env = dict(os.environ) # make a copy of the environment
lp_key = 'LD_LIBRARY_PATH' # for GNU/Linux and *BSD.
lp_orig = env.get(lp_key + '_ORIG')
if lp_orig is not None:
 env[lp_key] = lp_orig # restore the original, unmodified value
else:
 # This happens when LD_LIBRARY_PATH was not set.
 # Remove the env var as a last resort:
 env.pop(lp_key, None)
p = Popen(system_cmd, ..., env=env) # create the process

Using Spec Files

When you execute

pyinstaller options.. myscript.py

the first thing PyInstaller does is to build a spec (specification) file
myscript.spec.
That file is stored in the --specpath directory,
by default the current directory.

The spec file tells PyInstaller how to process your script.
It encodes the script names and most of the options
you give to the pyinstaller command.
The spec file is actually executable Python code.
PyInstaller builds the app by executing the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file.
It is usually enough to
give all the needed information (such as hidden imports)
as options to the pyinstaller command and let it run.

There are four cases where it is useful to modify the spec file:

	When you want to bundle data files with the app.

	When you want to include run-time libraries (.dll or .so files) that
PyInstaller does not know about from any other source.

	When you want to add Python run-time options to the executable.

	When you want to create a multiprogram bundle with merged common modules.

These uses are covered in topics below.

You create a spec file using this command:

pyi-makespec options name.py [other scripts …]

The options are the same options documented above
for the pyinstaller command.
This command creates the name.spec file but does not
go on to build the executable.

After you have created a spec file and modified it as necessary,
you build the application by passing the spec file to the pyinstaller command:

pyinstaller options name.spec

When you create a spec file, most command options are encoded in the spec file.
When you build from a spec file, those options cannot be changed.
If they are given on the command line they are ignored and
replaced by the options in the spec file.

Only the following command-line options have an effect when building from a spec file:

	--upx-dir

	--distpath

	--workpath

	--noconfirm

	--ascii

	--clean

	--log-level

Spec File Operation

After PyInstaller creates a spec file,
or opens a spec file when one is given instead of a script,
the pyinstaller command executes the spec file as code.
Your bundled application is created by the execution of the spec file.
The following is a shortened example of a spec file for a minimal, one-folder app:

block_cipher = None
a = Analysis(['minimal.py'],
 pathex=['/Developer/PItests/minimal'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=None,
 runtime_hooks=None,
 excludes=None,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,...)
coll = COLLECT(...)

The statements in a spec file create instances of four classes,
Analysis, PYZ, EXE and COLLECT.

	A new instance of class Analysis takes a list of script names as input.
It analyzes all imports and other dependencies.
The resulting object (assigned to a) contains lists of dependencies
in class members named:

	scripts: the python scripts named on the command line;

	pure: pure python modules needed by the scripts;

	pathex: a list of paths to search for imports (like using
PYTHONPATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH]), including paths given by the --paths
option.

	binaries: non-python modules needed by the scripts, including names
given by the --add-binary option;

	datas: non-binary files included in the app, including names given
by the --add-data option.

	An instance of class PYZ is a .pyz archive (described
under Inspecting Archives below), which contains all the
Python modules from a.pure.

	An instance of EXE is built from the analyzed scripts and the PYZ
archive. This object creates the executable file.

	An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the
EXE instance receives all of the scripts, modules and binaries.

You modify the spec file to pass additional values to Analysis and
to EXE.

Adding Files to the Bundle

To add files to the bundle, you create a list that describes the files
and supply it to the Analysis call.
When you bundle to a single folder (see Bundling to One Folder),
the added data files are copied into the folder with the executable.
When you bundle to a single executable (see Bundling to One File),
copies of added files are compressed into the executable, and expanded to the
_MEIxxxxxx temporary folder before execution.
This means that any changes a one-file executable makes to an added file
will be lost when the application ends.

In either case, to find the data files at run-time, see Run-time Information.

Adding Data Files

You can add data files to the bundle by using the --add-data command option, or by
adding them as a list to the spec file.

When using the spec file, provide a list that
describes the files as the value of the datas= argument to Analysis.
The list of data files is a list of tuples.
Each tuple has two values, both of which must be strings:

	The first string specifies the file or files as they are in this system now.

	The second specifies the name of the folder to contain
the files at run-time.

For example, to add a single README file to the top level of a one-folder app,
you could modify the spec file as follows:

a = Analysis(...
 datas=[('src/README.txt', '.')],
 ...
)

And the command line equivalent (see
What To Bundle, Where To Search
for platform-specific details):

pyinstaller --add-data 'src/README.txt:.' myscript.py

You have made the datas= argument a one-item list.
The item is a tuple in which the first string says the existing file
is src/README.txt.
That file will be looked up (relative to the location of the spec file)
and copied into the top level of the bundled app.

The strings may use either / or \ as the path separator character.
You can specify input files using “glob” abbreviations.
For example to include all the .mp3 files from a certain folder:

a = Analysis(...
 datas= [('/mygame/sfx/*.mp3', 'sfx')],
 ...
)

All the .mp3 files in the folder /mygame/sfx will be copied
into a folder named sfx in the bundled app.

The spec file is more readable if you create the list of added files
in a separate statement:

added_files = [
 ('src/README.txt', '.'),
 ('/mygame/sfx/*.mp3', 'sfx')
]
a = Analysis(...
 datas = added_files,
 ...
)

You can also include the entire contents of a folder:

added_files = [
 ('src/README.txt', '.'),
 ('/mygame/data', 'data'),
 ('/mygame/sfx/*.mp3', 'sfx')
]

The folder /mygame/data will be reproduced under the name
data in the bundle.

Using Data Files from a Module

If the data files you are adding are contained within a Python module,
you can retrieve them using pkgutil.get_data().

For example, suppose that part of your application is a module named helpmod.
In the same folder as your script and its spec file you have this folder
arrangement:

helpmod
 __init__.py
 helpmod.py
 help_data.txt

Because your script includes the statement import helpmod,
PyInstaller will create this folder arrangement in your bundled app.
However, it will only include the .py files.
The data file help_data.txt will not be automatically included.
To cause it to be included also, you would add a datas tuple
to the spec file:

a = Analysis(...
 datas= [('helpmod/help_data.txt', 'helpmod')],
 ...
)

When your script executes, you could find help_data.txt by
using its base folder path, as described in the previous section.
However, this data file is part of a module, so you can also retrieve
its contents using the standard library function pkgutil.get_data():

import pkgutil
help_bin = pkgutil.get_data('helpmod', 'help_data.txt')

This returns the contents of the help_data.txt
file as a binary string.
If it is actually characters, you must decode it:

help_utf = help_bin.decode('UTF-8', 'ignore')

Adding Binary Files

Note

Binary files refers to DLLs, dynamic libraries, shared
object-files, and such, which PyInstaller is going to search for further
binary dependencies. Files like images and PDFs should go into the
datas.

You can add binary files to the bundle by using the --add-binary command option,
or by adding them as a list to the spec file.
In the spec file, make a list of tuples that describe the files needed.
Assign the list of tuples to the binaries= argument of Analysis.

Adding binary files works in a similar way as adding data files. As described in
Adding Binary Files, each tuple should have two values:

	The first string specifies the file or files as they are in this system now.

	The second specifies the name of the folder to contain
the files at run-time.

Normally PyInstaller learns about .so and .dll libraries by
analyzing the imported modules.
Sometimes it is not clear that a module is imported;
in that case you use a --hidden-import command option.
But even that might not find all dependencies.

Suppose you have a module special_ops.so that is written in C
and uses the Python C-API.
Your program imports special_ops, and PyInstaller finds and
includes special_ops.so.
But perhaps special_ops.so links to libiodbc.2.dylib.
PyInstaller does not find this dependency.
You could add it to the bundle this way:

a = Analysis(...
 binaries=[('/usr/lib/libiodbc.2.dylib', '.')],
 ...

Or via the command line (again, see
What To Bundle, Where To Search
for platform-specific details):

pyinstaller --add-binary '/usr/lib/libiodbc.2.dylib:.' myscript.py

If you wish to store libiodbc.2.dylib on a specific folder inside the bundle,
for example vendor, then you could specify it, using the second element of the tuple:

a = Analysis(...
 binaries=[('/usr/lib/libiodbc.2.dylib', 'vendor')],
 ...

As with data files, if you have multiple binary files to add,
to improve readability,
create the list in a separate statement and pass the list by name.

Advanced Methods of Adding Files

PyInstaller supports a more advanced (and complex) way of adding
files to the bundle that may be useful for special cases.
See The TOC and Tree Classes below.

Giving Run-time Python Options

You can pass command-line options to the Python interpreter.
The interpreter takes a number of command-line options but only the
following are supported for a bundled app:

	v to write a message to stdout each time a module is initialized.

	u for unbuffered stdio.

	W and an option to change warning behavior: W ignore or
W once or W error.

To pass one or more of these options,
create a list of tuples, one for each option, and pass the list as
an additional argument to the EXE call.
Each tuple has three elements:

	The option as a string, for example v or W ignore.

	None

	The string OPTION

For example modify the spec file this way:

options = [('v', None, 'OPTION'), ('W ignore', None, 'OPTION')]
a = Analysis(...
)
...
exe = EXE(pyz,
 a.scripts,
 options, <--- added line
 exclude_binaries=...
)

Note

The unbuffered stdio mode (the u option) enables unbuffered
binary layer of stdout and stderr streams on all supported Python
versions. The unbuffered text layer requires Python 3.7 or later.

Spec File Options for a macOS Bundle

When you build a windowed macOS app
(that is, running under macOS, you specify the --windowed option),
the spec file contains an additional statement to
create the macOS application bundle, or app folder:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None)

The icon= argument to BUNDLE will have the path to an icon file
that you specify using the --icon option.
The bundle_identifier will have the value you specify with the
--osx-bundle-identifier option.

An Info.plist file is an important part of a macOS app bundle.
(See the Apple bundle overview [https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html] for a discussion of the contents
of Info.plist.)

PyInstaller creates a minimal Info.plist.
The version option can be used to set the application version
using the CFBundleShortVersionString Core Foundation Key.

You can add or overwrite entries in the plist by passing an
info_plist= parameter to the BUNDLE call. Its argument should be a
Python dict with keys and values to be included in the Info.plist
file.
PyInstaller creates Info.plist from the info_plist dict
using the Python Standard Library module plistlib [https://docs.python.org/3/library/plistlib.html].
plistlib can handle nested Python objects (which are translated to nested
XML), and translates Python data types to the proper Info.plist
XML types. Here’s an example:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None,
 version='0.0.1',
 info_plist={
 'NSPrincipalClass': 'NSApplication',
 'NSAppleScriptEnabled': False,
 'CFBundleDocumentTypes': [
 {
 'CFBundleTypeName': 'My File Format',
 'CFBundleTypeIconFile': 'MyFileIcon.icns',
 'LSItemContentTypes': ['com.example.myformat'],
 'LSHandlerRank': 'Owner'
 }
]
 },
)

In the above example, the key/value 'NSPrincipalClass': 'NSApplication' is
necessary to allow macOS to render applications using retina resolution.
The key 'NSAppleScriptEnabled' is assigned the Python boolean
False, which will be output to Info.plist properly as <false/>.
Finally the key CFBundleDocumentTypes tells macOS what filetypes your
application supports (see Apple document types [https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685]).

POSIX Specific Options

By default all required system libraries are bundled.
To exclude all or most non-Python shared system libraries from the bundle,
you can add a call to the function exclude_system_libraries
from the Analysis class.
System libraries are defined as files that come from under /lib* or
/usr/lib*
as is the case on POSIX and related operating systems.
The function accepts an optional parameter
that is a list of file wildcards exceptions,
to not exclude library files that match those wildcards in the bundle.
For example to exclude all non-Python system libraries except “libexpat”
and anything containing “krb” use this:

a = Analysis(...)

a.exclude_system_libraries(list_of_exceptions=['libexpat*', '*krb*'])

The Splash Target

For a splash screen to be displayed by the bootloader, the Splash target must be called
at build time. This class can be added when the spec file is created with the command-line
option --splash IMAGE_FILE. By default, the option to
display the optional text is disabled
(text_pos=None). For more information about the splash screen, see Splash Screen (Experimental)
section. The Splash Target looks like this:

a = Analysis(...)

splash = Splash('image.png',
 binaries=a.binaries,
 datas=a.datas,
 text_pos=(10, 50),
 text_size=12,
 text_color='black')

Splash bundles the required resources for the splash screen into a file,
which will be included in the CArchive.

A Splash has two outputs, one is itself and one is stored in
splash.binaries. Both need to be passed on to other build targets in
order to enable the splash screen.
To use the splash screen in a onefile application, please follow this example:

a = Analysis(...)

splash = Splash(...)

onefile
exe = EXE(pyz,
 a.scripts,
 splash, # <-- both, splash target
 splash.binaries, # <-- and splash binaries
 ...)

In order to use the splash screen in a onedir application, only a small change needs
to be made. The splash.binaries attribute has to be moved into the COLLECT target,
since the splash binaries do not need to be included into the executable:

a = Analysis(...)

splash = Splash(...)

onedir
exe = EXE(pyz,
 splash, # <-- splash target
 a.scripts,
 ...)
coll = COLLECT(exe,
 splash.binaries, # <-- splash binaries
 ...)

On Windows/macOS images with per-pixel transparency are supported. This allows
non-rectangular splash screen images. On Windows the transparent borders of the image
are hard-cuted, meaning that fading transparent values are not supported. There is
no common implementation for non-rectangular windows on Linux, so images with per-
pixel transparency is not supported.

The splash target can be configured in various ways. The constructor of the Splash
target is as follows:

	
Splash.__init__(image_file, binaries, datas, **kwargs)

	
	Parameters

	
	image_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path-like object to the image to be used. Only the PNG file format is supported.

Note

If a different file format is supplied and PIL (Pillow) is installed, the file will be converted
automatically.

Note

Windows: Due to the implementation, the color Magenta/ RGB(255, 0, 255) must not be used in the
image or text.

Note

If PIL (Pillow) is installed and the image is bigger than max_img_size, the image will be resized
to fit into the specified area.

	binaries (TOC) – The TOC of binaries the Analysis build target found. This TOC includes all extensionmodules and their
dependencies. This is required to figure out, if the users program uses tkinter.

	datas (TOC) – The TOC of data the Analysis build target found. This TOC includes all data-file dependencies of the
modules. This is required to check if all splash screen requirements can be bundled.

	Keyword Arguments

	
	text_pos – An optional 2x integer tuple that represents the origin of the text on the splash screen image. The
origin of the text is its lower left corner. A unit in the respective coordinate system is a pixel of the
image, its origin lies in the top left corner of the image. This parameter also acts like a switch for
the text feature. If omitted, no text will be displayed on the splash screen. This text will be used to
show textual progress in onefile mode.

	text_size – The desired size of the font. If the size argument is a positive number, it is interpreted as a size in
points. If size is a negative number, its absolute value is interpreted as a size in pixels. Default: 12

	text_font – An optional name of a font for the text. This font must be installed on the user system, otherwise the
system default font is used. If this parameter is omitted, the default font is also used.

	text_color – An optional color for the text. Either RGB HTML notation or color names are supported. Default: black
(Windows: Due to a implementation issue the color magenta/ rgb(255, 0, 255) is forbidden)

	text_default – The default text which will be displayed before the extraction starts. Default: “Initializing”

	full_tk – By default Splash bundles only the necessary files for the splash screen (some tk components). This
options enables adding full tk and making it a requirement, meaning all tk files will be unpacked before
the splash screen can be started. This is useful during development of the splash screen script.
Default: False

	minify_script – The splash screen is created by executing an Tcl/Tk script. This option enables minimizing the script,
meaning removing all non essential parts from the script. Default: True

	rundir – The folder name in which tcl/tk will be extracted at runtime. There should be no matching folder in your
application to avoid conflicts. Default: __splash

	name – An optional alternative filename for the .res file. If not specified, a name is generated.

	script_name – An optional alternative filename for the Tcl script, that will be generated. If not specified, a name is
generated.

	max_img_size – Maximum size of the splash screen image as a tuple. If the supplied image exceeds this limit, it will be
resized to fit the maximum width (to keep the original aspect ratio). This option can be disabled by
setting it to None. Default: (760, 480)

	always_on_top – Force the splashscreen to be always on top of other windows. If disabled, other windows (e.g., from other
applications) can cover the splash screen by user bringing them to front. This might be useful for
frozen applications with long startup times. Default: True

Multipackage Bundles

Some products are made of several different apps,
each of which might
depend on a common set of third-party libraries, or share code in other ways.
When packaging such a product it
would be a pity to treat each app in isolation, bundling it with
all its dependencies, because that means storing duplicate copies
of code and libraries.

You can use the multipackage feature to bundle a set of executable apps
so that they share single copies of libraries.
You can do this with either one-file or one-folder apps.

Multipackaging with One-Folder Apps

For combining multiple one-folder applications, use a shared COLLECT statement [https://www.zacoding.com/en/post/pyinstaller-create-multiple-executables/].
This will collect the external resources for all of the one-folder apps into one directory.

Multipackaging with One-File Apps

Each dependency (a DLL, for example) is packaged only once, in one of the apps.
Any other apps in the set that depend on that DLL
have an “external reference” to it, telling them
to extract that dependency from the executable file of the app that contains it.

This saves disk space because each dependency is stored only once.
However, to follow an external reference takes extra time when an app is starting up.
All but one of the apps in the set will have slightly slower launch times.

The external references between binaries include hard-coded
paths to the output directory, and cannot be rearranged.
You must place all
the related applications in the same directory
when you install the application.

To build such a set of apps you must code a custom
spec file that contains a call to the MERGE function.
This function takes a list of analyzed scripts,
finds their common dependencies, and modifies the analyses
to minimize the storage cost.

The order of the analysis objects in the argument list matters.
The MERGE function packages each dependency into the
first script from left to right that needs that dependency.
A script that comes later in the list and needs the same file
will have an external reference to the prior script in the list.
You might sequence the scripts to place the most-used scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE(*args)

MERGE is used after the analysis phase and before EXE.
Its variable-length list of arguments consists of
a list of tuples, each tuple having three elements:

	The first element is an Analysis object, an instance of class Analysis,
as applied to one of the apps.

	The second element is the script name of the analyzed app (without the .py extension).

	The third element is the name for the executable (usually the same as the script).

MERGE examines the Analysis objects to learn the dependencies of each script.
It modifies these objects to avoid duplication of libraries and modules.
As a result the packages generated will be connected.

Example MERGE spec file

One way to construct a spec file for a multipackage bundle is to
first build a spec file for each app in the package.
Suppose you have a product that comprises three apps named
(because we have no imagination) foo, bar and zap:

pyi-makespec options as appropriate… foo.py

pyi-makespec options as appropriate… bar.py

pyi-makespec options as appropriate… zap.py

Check for warnings and test each of the apps individually.
Deal with any hidden imports and other problems.
When all three work correctly,
combine the statements from the three files foo.spec,
bar.spec and zap.spec
as follows.

First copy the Analysis statements from each,
changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
 pathex=['/the/path/to/foo'],
 hiddenimports=[],
 hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a, bar_a, and zap_a are modified
so that the latter two refer to the first for common dependencies.

Following this you can copy the PYZ, EXE and COLLECT statements from
the original three spec files,
substituting the unique names of the Analysis objects
where the original spec files have a.
Modify the EXE statements to pass in Analysis.dependencies, in addition
to all other arguments that are passed in the original EXE statements.
For example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.dependencies, foo_a.scripts, ... etc.

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.dependencies, bar_a.scripts, ... etc.

Save the combined spec file as foobarzap.spec and then build it:

pyinstaller foobarzap.spec

The output in the dist folder will be all three apps, but
the apps dist/bar and dist/zap will refer to
the contents of dist/foo for shared dependencies.

Remember that a spec file is executable Python.
You can use all the Python facilities (for and with
and the members of sys and io)
in creating the Analysis
objects and performing the PYZ, EXE and COLLECT statements.
You may also need to know and use The TOC and Tree Classes described below.

Globals Available to the Spec File

While a spec file is executing it has access to a limited set of global names.
These names include the classes defined by PyInstaller:
Analysis, BUNDLE, COLLECT, EXE, MERGE,
PYZ, TOC, Tree and Splash,
which are discussed in the preceding sections.

Other globals contain information about the build environment:

	DISTPATH
	The relative path to the dist folder where
the application will be stored.
The default path is relative to the current directory.
If the --distpath option is used, DISTPATH contains that value.

	HOMEPATH
	The absolute path to the PyInstaller
distribution, typically in the current Python site-packages folder.

	SPEC
	The complete spec file argument given to the
pyinstaller command, for example myscript.spec
or source/myscript.spec.

	SPECPATH
	The path prefix to the SPEC value as returned by os.path.split().

	specnm
	The name of the spec file, for example myscript.

	workpath
	The path to the build directory. The default is relative to
the current directory. If the workpath= option is used,
workpath contains that value.

	WARNFILE
	The full path to the warnings file in the build directory,
for example build/warn-myscript.txt.

Notes about specific Features

Ctypes Dependencies

Ctypes is a foreign function library for Python, that allows calling functions
present in shared libraries. Those libraries are not imported as Python
packages, because they are not picked up via Python imports: their path is
passed to ctypes instead, which deals with the shared library directly; this
caused <1.4 PyInstaller import detect machinery to miss those libraries,
failing the goal to build self-contained PyInstaller executables:

from ctypes import *
This will pass undetected under PyInstaller detect machinery,
because it's not a direct import.
handle = CDLL("/usr/lib/library.so")
handle.function_call()

Solution in PyInstaller

PyInstaller contains a pragmatic implementation of Ctypes dependencies: it
will search for simple standard usages of ctypes and automatically track
and bundle the referenced libraries. The following usages will be correctly
detected:

CDLL("library.so")
WinDLL("library.so")
ctypes.DLL("library.so")
cdll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
windll.library # Only valid under Windows - a limitation of ctypes, not PyInstaller's
cdll.LoadLibrary("library.so")
windll.LoadLibrary("library.so")

More in detail, the following restrictions apply:

	only libraries referenced by bare filenames (e.g. no leading paths) will
be handled; handling absolute paths would be impossible without modifying
the bytecode as well (remember that while running frozen, ctypes would keep
searching the library at that very absolute location, whose presence on the
host system nobody can guarantee), and relative paths handling would require
recreating in the frozen executable the same hierarchy of directories
leading to the library, in addition of keeping track of which the current
working directory is;

	only library paths represented by a literal string will be detected and
included in the final executable: PyInstaller import detection works by
inspecting raw Python bytecode, and since you can pass the library path to
ctypes using a string (that can be represented by a literal in the code, but
also by a variable, by the return value of an arbitrarily complex function,
etc…), it’s not reasonably possible to detect all ctypes dependencies;

	only libraries referenced in the same context of ctypes’ invocation will
be handled.

We feel that it should be enough to cover most ctypes’ usages, with little or
no modification required in your code.

If PyInstaller does not detect a library, you can add it to your
bundle by passing the respective information to --add-binary option or
listing it in the .spec-file. If your frozen
application will be able to pick up the library at run-time can not be
guaranteed as it depends on the detailed implementation.

Gotchas

The ctypes detection system at Analysis time
is based on ctypes.util.find_library() [https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library].
This means that you have to make sure
that while performing Analysis and running frozen,
all the environment values find_library() [https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library] uses to search libraries
are aligned to those when running un-frozen.
Examples include using LD_LIBRARY_PATH or DYLD_LIBRARY_PATH to
widen find_library() [https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library] scope.

SWIG support

PyInstaller tries to detect binary modules created by SWIG. This detection
requires:

	The Python wrapper module must be imported somewhere in your application
(or by any of the modules it uses).

	The wrapper module must be available as source-code and it’s first line must
contain the text automatically generated by SWIG.

	The C-module must have the same name as the wrapper module prefixed with an
underscore (_). (This is a SWIG restriction already.)

	The C-module must sit just beside the wrapper module (thus a relative import
would work).

Also some restrictions apply, due to the way the SWIG wrapper is
implemented:

	The C-module will become a global module. As a consequence, you can not
use two SWIG modules with the same basename (e.g. pkg1._cmod and
pkg2._cmod), as one would overwrite the other.

Cython support

PyInstaller can follow import statements that refer to Cython C object
modules and bundle them – like for any other module implemented in C.

But – again, as for any other module implemented in C – PyInstaller can not
determine if the Cython C object module is importing some Python module.
These will typically show up as in a traceback like this
(mind the .pyx extension):

Traceback (most recent call last):
[…]
File "myapp\cython_module.pyx", line 3, in init myapp.cython_module
ModuleNotFoundError: No module named 'csv'

So if you are using a Cython C object module, which imports Python modules,
you will have to list these as --hidden-import.

macOS multi-arch support

With the introduction of Apple Silicon M1, there are now several architecture
options available for python:

	single-arch x86_64 with thin binaries: older python.org builds,
Homebrew [http://brew.sh/] python running natively on Intel Macs or under rosetta2
on M1 Macs

	single-arch arm64 with thin binaries: Homebrew [http://brew.sh/] python running
natively on M1 macs

	multi-arch universal2 with fat binaries (i.e., containing both
x86_64 and arm64 slices): recent universal2 python.org
builds

PyInstaller aims to support all possible combinations stemming from
the above options:

	single-arch application created using corresponding single-arch python

	universal2 application created using universal2 python

	single-arch application created using universal2 python (i.e.,
reducing universal2 fat binaries into either x86_64 or arm64
thin binaries)

By default, PyInstaller targets the current running architecture
and produces a single-arch binary (x86_64 when running on Intel Mac
or under rosetta2 on M1 Mac, or arm64 when running on M1 Mac). The
reason for that is that even with a universal2 python environment,
some packages may end up providing only single-arch binaries, making it
impossible to create a functional universal2 frozen application.

The alternative options, such as creating a universal2 version
of frozen application, or creating a non-native single-arch version using
universal2 environment, must therefore be explicitly enabled. This
can be done either by specifying the target architecture in the .spec
file via the target_arch= argument to EXE(), or on command-line
via the --target-arch switch. Valid values are x86_64, arm64,
and universal2.

Architecture validation during binary collection

To prevent run-time issues caused by missing or mismatched architecture slices
in binaries, the binary collection process performs strict architecture validation.
It checks whether collected binary files contain required arch slice(s), and if
not, the build process is aborted with an error message about the problematic
binary.

In such cases, creating frozen application for the selected target
architecture will not be possible unless the problem of missing arch slices
is manually addressed (for example, by downloading the wheel corresponding to
the missing architecture, and stiching the offending binary files together
using the lipo utility).

Changed in version 4.10: In earlier PyInstaller versions, the architecture validation was performed
on all collected binaries, such as python extension modules and the
shared libraries referenced by those extensions. As of PyInstaller 4.10,
the architecture validation is limited to only python extension modules.

The individual architecture slices in a multi-arch universal2 extension
may be linked against (slices in) universal2 shared libraries, or
against distinct single-arch thin shared libraries. This latter case makes
it impossible to reliably validate architecture of the collected shared
libraries w.r.t. the target application architecture.

However, the extension modules do need to be fully compatible with the target
application architecture. Therefore, their continued validation should
hopefully suffice to detect attempts at using incompatible single-arch
python packages *.

	*

	Although nothing really prevents a package from having distinct,
architecture-specific extension modules…

Trimming fat binaries for single-arch targets

When targeting a single architecture, the build process extracts the
corresponding arch slice from any collected fat binaries, including the
bootloader. This results in a completely thin build even when building
in universal2 python environment.

macOS binary code signing

With Apple Silicon M1 architecture, macOS introduced mandatory code signing,
even if ad-hoc (i.e., without actual code-signing identity). This means
that arm64 arch slices (but possibly also x86_64 ones, especially
in universal2 binaries) in collected binaries always come with signature.

The processing of binaries done by PyInstaller (e.g., library path
rewriting in binaries’ headers) invalidates their signatures. Therefore,
the signatures need to be re-generated, otherwise the OS refuses to load
a binary.

By default, PyInstaller ad-hoc (re)signs all collected binaries and
the generated executable itself. Instead of ad-hoc signing, it is also
possible to use real code-signing identity. To do so, either specify your
identity in the .spec file via codesign_identity= argument to
EXE() , or on command-line via the --codesign-identity switch.

Being able to provide codesign identity allows user to ensure that all
collected binaries in either onefile or onedir build are signed
with their identity. This is useful because for onefile builds,
signing of embedded binaries cannot be performed in a post-processing step.

Note

When codesign identity is specified, PyInstaller also turns on
hardened runtime by passing --options=runtime to the codesign
command. This requires the codesign identity to be a valid Apple-issued
code signing certificate, and will not work with self-signed certificates.

Trying to use self-signed certificate as a codesign identity will result
in shared libraries failing to load, with the following reason reported:

[libname]: code signature in ([libname]) not valid for use in process
using Library Validation: mapped file has no Team ID and is not a
platform binary (signed with custom identity or adhoc?)

Furthermore, it is possible to specify entitlements file to be used
when signing the collected binaries and the executable. This can be
done in the .spec file via entitlements_file= argument to
EXE(), or on command-line via the --osx-entitlements-file switch.

App bundles

PyInstaller also automatically attempts to sign .app bundles, either
using ad-hoc identity or actual signing identity, if provided via
--codesign-identity switch. In addition to passing same options as
when signing collected binaries (identity, hardened runtime, entitlement),
deep signing is also enabled via by passing --deep option to the
codesign utility.

Should the signing of the bundle fail for whatever reason, the error
message from the codesign utility will be printed to the console,
along with a warning that manual intervention and manual signing of the
bundle are required.

macOS event forwarding and argv emulation in app bundles

The user interaction with macOS app bundles takes place via so called
Apple Events. When the user double clicks on the application’s icon, the
application is started and receives an Open Application ('oapp') event.
Dragging a document on the application’s icon or attempting to open
an application-registered file generates an Open Document ('odoc') event.
Similarly, launching an URL with application-registered schema generates
a Launch/Get URL ('GURL') event. Typically, a long-running UI application
installs Carbon or Cocoa event handlers (or their equivalents provided
by higher-level UI toolkit) to handle these requests during its runtime.

PyInstaller provides two aspects of support for macOS event handling;
automatic event forwarding, which enables frozen application to receive
events in onefile mode, and optional argv emulation for converting
initial opening event into sys.argv arguments. Both aspects apply only
to app bundles (i.e., the windowed bootloader variant) and not to
POSIX (command-line) frozen applications.

Changed in version 5.0: In earlier PyInstaller versions, argv emulation was always enabled
in onefile mode and was unavailable in onedir mode.
As PyInstaller 5.0, argv emulation must be explicitly opted-in,
and is available in both onefile and onedir mode.

Event forwarding

In PyInstaller onedir bundles, the application runs as a single
process, and therefore receives Apple Events normally, as other macOS
applications would.

In onefile bundles, the application has a parent launcher process and
the child process; the open document requests generated by user are
received by the parent process, and are automatically forwarded to
the child process, where the frozen python code is running.

Event forwarding is implemented for the following types of Apple Events:

	kAEOpenDocuments ('odoc'): open document request

	kAEGetURL ('GURL'): open/launch URL request

	kAEReopenApplication ('rapp'): reopen application

	kAEActivate ('actv'): activate application (bring to front)

Optional argv emulation

PyInstaller implements an optional feature called argv emulation,
which can be toggled via argv_emulation= argument to EXE()
in the .spec file, or enabled on command-line
via --argv-emulation flag.

If enabled, the bootloader performs initial Apple Event handling to
intercept events during the application’s start-up sequence, and appends
file paths or URLs received via Open Document/URL (‘odoc’ and ‘GURL’)
events to sys.argv [https://docs.python.org/3/library/sys.html#sys.argv], as if they were received via command-line.

This feature is intended for simple applications that do not implement
the event handling, but still wish to process initial open document
request. This applies only to initial open events; events that occur
after the frozen python code is started are dispatched via event queue
(in onedir mode directly, and forwarded to child process in onefile
mode.) and as such need to be handled via event handlers.

Note

This feature is not suitable for long-running applications that may need to
service multiple open requests during their lifetime. Such applications
will require proper event handling anyay, and therefore do not benefit from
having initial events processed by argv emulation.

Warning

The initial event processing performed by bootloader in onedir mode
may interfere with UI toolkit used by frozen python application, such
as Tcl/Tk via tkinter module. The symptoms may range from window
not being brought to front when the application startup to application
crash with segmentation fault.

While PyInstaller tries to mitigate the issue on its end, we recommend
against using argv emulation in combination with UI toolkits.

Practical examples

This section provides some practical examples on handling file and URL
open events in macOS application bundles, via argv emulation in a simple
one-shot program, or via installed event handlers in a GUI application.

Registering supported file types and custom URL schemas

In order for macOS application bundle to handle open operations
on files and custom URL schemas, the OS needs to be informed what
file types and what URL schemas the application supports. This
is done in the bundle’s Info.plist file, via CFBundleDocumentTypes
and CFBundleURLTypes entries:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 [...] <!-- preceding entries --->
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeName</key>
 <string>MyCustomFileType</string>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>mcf</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
 </array>
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>MyCustomUrlSchema</string>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>my-url</string>
 </array>
 </dict>
 </array>
</dict>
</plist>

In the above example, the application declares itself a viewer for
made-up .mcf files, and as a viewer for URLs beginning with
my-url://.

PyInstaller automatically generates an Info.plist file for your
application bundle; to have it include the entries shown above, add the
info_plist argument to the BUNDLE() directive in the
.spec file, and set its content as follows:

app = BUNDLE(
 # [...]
 info_plist={
 'CFBundleURLTypes': [{
 'CFBundleURLName': 'MyCustomUrlSchema',
 'CFBundleTypeRole': 'Viewer',
 'CFBundleURLSchemes': ['my-url',],
 }],
 'CFBundleDocumentTypes': [{
 'CFBundleTypeName': 'MyCustomFileType',
 'CFBundleTypeExtensions': ['mcf',],
 'CFBundleTypeRole': "Viewer",
 }],
 }
)

Open event handling with argv emulation

Consider the following python script that began its life as a command-line
utility, to be invoked from the terminal:

python3 img2gray.py image1.png image2.png ...

The script processes each passed image, converts it to grayscale, and
saves it next to the original, with -gray appended to the file name:

img2gray.py
import sys
import os

import PIL.Image

if len(sys.argv) < 2:
 print(f"Usage: {sys.argv[0]} <filename> [filenames...]")
 sys.exit(1)

Convert all given files
for input_filename in sys.argv[1:]:
 filename, ext = os.path.splitext(input_filename)
 output_filename = filename + '-gray' + ext

 img = PIL.Image.open(input_filename)
 img_g = img.convert('L')
 img_g.save(output_filename)

If you generate an application bundle (as opposed to a command-line
POSIX application), the most likely way of user interaction will be
dragging image files onto the bundle’s icon or using Open with...
entry from the image file’s context menu. Such interaction generates
open file events, and in general requires your application code to
implement event handling.

Enabling argv emulation in PyInstaller causes its bootloader to
process events during the application startup, and extend sys.argv
with any file paths or URLs that might have been received via open file
or URL requests. This allows your application to process the received
filenames as if they were passed via command-line, without any
modifications to the code itself.

The following .spec file provides
a complete example for a onedir application bundle that allows
conversion of .png and .jpg images:

img2gray.spec
a = Analysis(['img2gray.py'],)

pyz = PYZ(a.pure, a.zipped_data)

exe = EXE(
 pyz,
 a.scripts,
 exclude_binaries=True,
 name='img2gray',
 debug=False,
 bootloader_ignore_signals=False,
 strip=False,
 upx=False,
 console=False,
 argv_emulation=True, # enable argv emulation
)

coll = COLLECT(
 exe,
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=False,
 upx=False,
 upx_exclude=[],
 name='img2gray'
)

app = BUNDLE(
 coll,
 name='img2gray.app',
 # Register .png and .jpg as supported file types
 info_plist={
 'CFBundleDocumentTypes': [{
 'CFBundleTypeName': "Convertible image types",
 'CFBundleTypeExtensions': [
 'png', 'jpg',
],
 'CFBundleTypeRole': "Viewer",
 }],
 }
)

The user can now drag image file(s) onto the icon of the resulting img2gray
application bundle, or select img2gray under the Open with... entry
in the image file’s context menu.

Note

The argv emulation handles only initial open event, which is received
before your frozen python code is started. If you wish to handle
subsequent open requests while the application is still running,
you need to implement proper event handling in your python code.

Open event handling in a tkinter-based GUI application

The Tcl/Tk framework used by tkinter allows application to
provide event handlers for pre-defined types of Apple Events, by
registering macOS-specific commands [https://www.tcl.tk/man/tcl8.6/TkCmd/tk_mac.html].

The handler for open file events can be registered via
::tk::mac::OpenDocument command, while the handler for open URL
events can be registered via ::tk::mac::LaunchURL command. The
latter is available starting with Tcl/Tk 8.6.10 †.

	†

	At the time of writing, python.org builds use Tcl/Tk 8.6.5, except
for the Python 3.9.x macOS 64-bit universal2 installer builds, which
use Tcl/Tk 8.6.10. Homebrew Python requires tkinter to be explicitly
installed as python-tk, and uses latest version of Tcl/Tk, 8.6.11.
Registering ::tk::mac::LaunchURL command with versions of Tcl/Tk
older than 8.6.10 is essentially no-op.

The following application illustrates the event handling using tkinter,
by logging all received open file/URL events into a scrollable text
widget:

eventlogger_tk.py
import sys

import tkinter
import tkinter.scrolledtext

class Application:
 def __init__(self):
 # Create UI
 self.window = tkinter.Tk()
 self.window.geometry('800x600')
 self.window.title("Tk-based event logger")

 self.text_view = tkinter.scrolledtext.ScrolledText()
 self.text_view.pack(fill=tkinter.BOTH, expand=1)
 self.text_view.configure(state='disabled')

 # Register event handlers
 # See https://tcl.tk/man/tcl/TkCmd/tk_mac.html for list of
 # macOS-specific commands
 self.window.createcommand("::tk::mac::OpenDocument", self.open_document_handler)
 self.window.createcommand("::tk::mac::LaunchURL", self.open_url_handler) # works with Tcl/Tk >= 8.6.10

 def append_message(self, msg):
 """Append message to text view."""
 self.text_view.configure(state='normal')
 self.text_view.insert('end', msg + '\n')
 self.text_view.configure(state='disabled')

 def run(self):
 """Run the main loop."""
 app.append_message("Application started!")
 app.append_message(f"Args: {sys.argv[1:]}")
 self.window.mainloop()

 # Event handlers
 def open_document_handler(self, *args):
 app.append_message(f"Open document event: {args}")

 def open_url_handler(self, *args):
 app.append_message(f"Open URL event: {args}")

if __name__ == '__main__':
 app = Application()
 app.run()

The corresponding .spec file that builds
a onedir application bundle with a custom file association
(.pyi_tk) and a custom URL schema (pyi-tk://):

a = Analysis(['eventlogger_tk.py'])

pyz = PYZ(a.pure, a.zipped_data)

exe = EXE(
 pyz,
 a.scripts,
 exclude_binaries=True,
 name='eventlogger_tk',
 debug=False,
 bootloader_ignore_signals=False,
 strip=False,
 upx=False,
 console=False,
 argv_emulation=False, # unnecessary as app handles events
)

coll = COLLECT(
 exe,
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=False,
 upx=False,
 name='eventlogger_tk'
)

app = BUNDLE(
 coll,
 name='eventlogger_tk.app',
 # Register custom protocol handler and custom file extension
 info_plist={
 'CFBundleURLTypes': [{
 'CFBundleURLName': 'MyCustomUrlSchemaTk',
 'CFBundleTypeRole': 'Viewer',
 'CFBundleURLSchemes': ['pyi-tk'],
 }],
 'CFBundleDocumentTypes': [{
 'CFBundleTypeName': 'MyCustomFileTypeTk',
 'CFBundleTypeExtensions': [
 'pyi_tk',
],
 'CFBundleTypeRole': "Viewer",
 }],
 }
)

Once running, the application logs all received open file and open URL
requests. These are generated either by trying to open a file with
.pyi_tk extension using the UI, or using open command from
the terminal:

$ touch file1.pyi_tk file2.pyi_tk file3.pyi_tk file4.pyi_tk

$ open file1.pyi_tk
$ open file2.pyi_tk

$ open pyi-tk://test1
$ open pyi-tk://test2

$ open file3.pyi_tk file4.pyi_tk

Open event handling in a Qt-based GUI application

In Qt-based applications, open file and open URL requests are handled
by installing application-wide event filter for QFileOpenEvent [https://doc.qt.io/qt-5/qfileopenevent.html].

This event abstracts both open file and open URL request, with file
open requests having file:// URL schema. An event contains a
single file name or URL, so an open request containing multiple
targets generates corresponding number of QFileOpenEvent events.

Below is an example application and its corresponding .spec file:

eventlogger_qt.py
import sys
import signal

from PySide2 import QtCore, QtWidgets

class Application(QtWidgets.QApplication):
 """
 QtWidgets.QApplication with extra handling for macOS Open
 document/URL events.
 """
 openFileRequest = QtCore.Signal(QtCore.QUrl, name='openFileRequest')

 def event(self, event):
 if event.type() == QtCore.QEvent.FileOpen:
 # Emit signal so that main window can handle the given URL.
 # Or open a new application window for the file, or whatever
 # is appropriate action for your application.
 self.openFileRequest.emit(event.url())
 return True
 return super().event(event)

class MainWindow(QtWidgets.QMainWindow):
 """
 Main window.
 """
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.resize(800, 600)

 self.setWindowTitle("Qt-based event logger")

 # Construct the UI
 self.scroll_area = QtWidgets.QScrollArea()
 self.scroll_area.setWidgetResizable(True)
 self.setCentralWidget(self.scroll_area)

 self.text_edit = QtWidgets.QTextEdit()
 self.scroll_area.setWidget(self.text_edit)
 self.text_edit.setReadOnly(True)

 def append_message(self, msg):
 """
 Append message to text view.
 """
 self.text_edit.append(msg)

 def handle_open_file_request(self, url):
 self.append_message(f"Open request: {url.toString()}")

if __name__ == '__main__':
 # Make Ctrl+C work
 signal.signal(signal.SIGINT, signal.SIG_DFL)

 app = Application(list(sys.argv))

 window = MainWindow()
 window.show()

 window.append_message("Application started!")
 window.append_message(f"Args: {sys.argv[1:]}")

 app.openFileRequest.connect(window.handle_open_file_request)

 app.exec_()

eventlogger_qt.spec
a = Analysis(['eventlogger_qt.py'])

pyz = PYZ(a.pure, a.zipped_data)

exe = EXE(
 pyz,
 a.scripts,
 exclude_binaries=True,
 name='eventlogger_qt',
 debug=False,
 bootloader_ignore_signals=False,
 strip=False,
 upx=False,
 console=False,
 argv_emulation=False, # unnecessary as app handles events
)

coll = COLLECT(
 exe,
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=False,
 upx=False,
 name='eventlogger_qt'
)

app = BUNDLE(
 coll,
 name='eventlogger_qt.app',
 # Register custom protocol handler and custom file extension
 info_plist={
 'CFBundleURLTypes': [{
 'CFBundleURLName': 'MyCustomUrlSchemaQt',
 'CFBundleTypeRole': 'Viewer',
 'CFBundleURLSchemes': ['pyi-qt'],
 }],
 'CFBundleDocumentTypes': [{
 'CFBundleTypeName': 'MyCustomFileTypeQt',
 'CFBundleTypeExtensions': [
 'pyi_qt',
],
 'CFBundleTypeRole': "Viewer",
 }],
 }
)

The application behaves in the same way as its tkinter-based
counterpart, except that the associated file extension and URL
schema have been adjusted to prevent interference between the two
example applications.

Initial open event

This section contains notes about behavior of the initial open event
received by appliation, as seen by the frozen python code (or the
UI toolkit it uses).

When application is opened normally, this is done via Open Application
('oapp') event, which is the first event received by the application.
If application is opened in response to open document or open URL request
(i.e., it is not yet running when request is made), then the first
received event is 'odoc' or 'GURL', respectively.

In PyInstaller-frozen onefile bundles, the child process always
starts with 'oapp' event, regardless how the application was
started. This is because the child is always started “normally”, and
it is the parent who receives the actual opening event; if the parent
was opened with 'odoc' or 'GURL' event, then event is either
forwarded to child or converted to sys.argv that is passed to the
child, depending on whether argv emulation is enabled or not.

Therefore, in onefile mode, argv emulation has no direct effect
on the initial open event (as seen by the frozen python code), which is
always 'oapp'.

In onedir bundles, there application consists of single process,
which receives the events. Without argv emulation, the initial open
event (as seen by the frozen python code) may be either 'oapp',
'odoc', or 'GURL', depending on how application was started.

However, if argv emulation is enabled in a onedir bundle, its
processing of initial event leaves the event queue empty. The lack
of initial open event seems to cause segmentation fault with Tcl/Tk 8.6.11
and Homebrew [http://brew.sh/] Python 3.9.6 (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581]). As a work-around, the
bootloader attempts to submit an 'oapp' event to itself, so that
when the frozen python code inspects the event queue, it finds an
initial open event (i.e., 'oapp'). These potential side effects
of argv emulation on UI toolkits are the reason why we recommend
against using them together.

Signal handling in console Windows applications and onefile application cleanup

The signal handling in console applications on Windows differs
from POSIX-based operating systems, such as linux and macOS.
While signals generated by abnormal conditions, such as SIGABRT
(abnormal termination; for example due to C code calling abort [https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/abort]),
SIGFPE (floating-point error), and SIGSEGV (illegal storage access),
are generated and can be handled using handlers installed via the signal [https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal]
function, this is not the case for signals associated with program
interruption and termination.

Specifically, interrupting a console-enabled program by pressing Ctrl+C
does not generate the SIGINT signal, but rather a special console
control signal called CTRL_C_EVENT, which can be handled by a handler
installed via the SetConsoleCtrlHandler [https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler] win32 API function 1.
Similarly, as noted in MSDN documentation on signal [https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal], the SIGTERM
signal is not generated under Windows. Instead, there are several
console control signals [https://docs.microsoft.com/en-us/windows/console/handlerroutine]:

	CTRL_C_EVENT: interrupt via Ctrl+C key combination

	CTRL_BREAK_EVENT: interrupt via Ctrl+Break key combination

	CTRL_CLOSE_EVENT: closing the parent console window

	CTRL_LOGOFF_EVENT: a user logging off

	CTRL_SHUTDOWN_EVENT: system shutting down

When a console control signal is generated, the handler installed via
SetConsoleCtrlHandler [https://docs.microsoft.com/en-us/windows/console/setconsolectrlhandler] (if any) is executed in a separate thread,
spawned within the program process by the operating system. In other
words, the handler function is executed in parallel to the main program
thread, which is necessary as the latter might be waiting on a blocking
operation or performing an endless loop.

As noted here [https://docs.microsoft.com/en-us/windows/console/handlerroutine#remarks],
upon receiving CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or
CTRL_SHUTDOWN_EVENT, the handler function can perform any necessary
clean-up 2, and either:

	call ExitProcess [https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess] to terminate the process.

	return FALSE (0). Other registered handlers are called, and if
none returned TRUE, the default handler terminates the process
by calling ExitProcess [https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess].

	return TRUE (non-zero). The system terminates the process immediately,
without calling any other registered handler functions.

In other words, all options result in eventual program termination.

On the other hand, the default handler for CTRL_C_EVENT and
CTRL_BREAK_EVENT also terminates the process, but this behavior can
be modified by suppressing the default handler by returning TRUE
in the user-installed one.

Another important aspect of console control signals is that
handling CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT
is subject to system-imposed time-outs [https://docs.microsoft.com/en-us/windows/console/handlerroutine#timeouts]
(e.g., five seconds for the CTRL_CLOSE_EVENT); if the process does
not exit within the time-out limit, the operating system itself
unconditionally terminates the process.

The above effectively means that once the program receives such control
signal, its termination is inevitable (i.e., the signal cannot be ignored).
At best, the termination can be delayed to perform any necessary clean-up,
but even this must be done within system-imposed time limits.

	1

	The higher-level programming languages, such as
python, might emulate the standard signals; but under-the-hood mechanics
still involve console control signals discussed in this section.

	2

	Note that at this point, however, the program is
essentially a multi-threaded one, so usual multi-threading caveats
may apply.

Example of console control signal handling in python application

The following code demonstrates the basic implementation of a graceful
console application shutdown. If the application is interrupted
by user pressing Ctrl+C or Ctrl+Break, or closed due to user
closing the console window, the application’s state is stored to a
file, so it can be restored on a subsequent run.

console_counter.py
import sys
import time
import pathlib

import win32api # pip install pywin32

def console_handler(signal):
 print(f"Console handler (signal {signal})!")
 global keep_running
 keep_running = False
 # Sleep until process either finishes or is killed by the OS
 time.sleep(20)
 return True

if __name__ == '__main__':
 keep_running = True

 # Install console handler
 win32api.SetConsoleCtrlHandler(console_handler, 1)

 # Restore state, if available
 state_file = pathlib.Path.home() / 'counter_state.txt'
 if state_file.is_file():
 print(f"Restoring state from {state_file}...", file=sys.stderr)
 try:
 with open(state_file, 'r') as fp:
 counter = int(fp.readline())
 except Exception:
 print("Failed to restore state from file!", file=sys.stderr)
 counter = 0
 else:
 print("State file does not exist!", file=sys.stderr)
 counter = 0

 print(f"Initial counter value: {counter}", file=sys.stderr)

 # Main loop
 while keep_running:
 print(f"Counter value: {counter}")
 counter += 1
 time.sleep(1)

 # Clean-up
 print(f"Storing state to {state_file}...", file=sys.stderr)
 try:
 with open(state_file, 'w') as fp:
 print(f"{counter}", file=fp)
 except Exception:
 print(f"Failed to store state to {state_file}!", file=sys.stderr)

 print("Goodbye!")
 time.sleep(1) # Delay exit for another second

The console control signal handler in the above code handles all
console signals. This includes Ctrl+C event, which would otherwise
generate a KeyboardInterrupt exception in the program’s main
thread 3. After signalling the loop in the
main thread to exit via the global boolean variable, the handler sleeps
“forever”. This approach works because the handler is executed in a
separate thread, and this thread is terminated once the process ends -
either due to main thread reaching its end, or due to the operating
system terminating the process.

The above code should work as expected when executed as an unfrozen
python script, and also when frozen by PyInstaller as a
onedir application. However, onefile
applications frozen with PyInstaller versions prior to 5.3 exhibit a
problem; due to the lack of console control signals handling in the parent
application process, the latter is always terminated immediately and leaves
behind the unpacked temporary directory.

Changed in version 5.3: implemented handling of console control signals in the frozen
application’s parent process, which allows us to delay its termination
until after the child process is terminated, and clean up the unpacked
temporary directory. However, various caveats still apply, as
discussed in the following sub-sections.

	3

	The KeyboardInterrupt exception could have
been used to terminate the loop as well. However, that would not handle
the Ctrl+Break key combination nor console window being closed.

Onefile mode and temporary directory cleanup

The onefile mode in PyInstaller uses two processes.
When the application is launched, the parent process extracts the contents
of the embedded archive into a temporary directory, sets up the environment
and library search paths, and launches the child process. The child process
sets up the embedded python interpreter and runs the frozen python application.
Meanwhile, the parent process waits for the child process to exit; when
that happens, it cleans up the extracted temporary data, and exits.

From the perspective of the parent process, it does not matter whether
the child process exits cleanly (i.e., with success code), or exits with
an error code (for example, python code throws an exception that is not
handled), or exits abnormally (e.g., crashes due to abnormal operation
raising the SIGABRT signal), or is terminated by the OS (for example,
from the Task Manager). In all cases, after the child process exits or is
terminated, the parent process performs the cleanup, then exits with the
exit code that was returned from the child process.

Therefore, in order for the application’s temporary directory to be
cleaned up, the parent process must never be forcefully terminated
(for example, via the TerminateProcess [https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess] function). If that happens,
the clean-up code has no chance to run, and the temporary directory is
left behind. On the other hand, from the perspective of the temporary
directory clean-up, the child process can be terminated in any way,
even forcefully. For the proper clean-up during a graceful shutdown
triggered via console control signal (for example, due to Ctrl+C
being pressed, or due to console window being closed), the bootloader
in PyInstaller 5.3 and later attempts to delay the shut-down of the
parent process so that the child process has time to exit and the main
thread of the parent process has the chance to run the clean-up code.

The following sections provide additional details on this behavior for
different situations.

Interrupting via Ctrl+C or Ctrl+Break

When Ctrl+C or Ctrl+Break is pressed in the console window,
the CTRL_C_EVENT or CTRL_BREAK_EVENT is sent to all processes
attached to that console 4.

In a onefile frozen application, the parent process
ignores/suppresses the signal, so the outcome depends on how the frozen
python code in the child process handles the signal. If the python code
exits (for example, no handler is installed and KeyboardInterrupt
exception interrupts the program flow), the parent process performs the
clean-up and exits as well. If the python code in the child process
handles the signal without shutting the child process down, the
application keeps running.

This behavior is readily available in any PyInstaller version; in
versions prior to 5.3, the parent process explicitly ignores
SIGABRT and SIGBREAK signals, which achieves the same result
as handling the corresponding console control signals, which is
implemented from version 5.3 on.

	4(1,2)

	If a windowed/noconsole
application is started from a console, it is completely independent
from it as long as it has a window. If the application has no window
(i.e., a “hidden” application), its process does not receive
CTRL_C_EVENT and CTRL_BREAK_EVENT signals in response to Ctrl+C
and Ctrl+Break being pressed in the console, but is nevertheless
terminated when the console is closed. The termination seems to be
immediate and uncodnitional, i.e., without CTRL_CLOSE_EVENT signal
being received.

Closing the console window

When the console window is closed (by pressing X button on title bar),
the CTRL_CLOSE_EVENT is sent to all processes attached to that
console 4.

In a onefile frozen application, the parent process
receives the signal and suspends the handler’s execution thread for 20
seconds. This way, the termination of the parent process is delayed, in
order to give time to the child process (who also received the signal)
to exit, and to the main thread of the parent process to perform cleanup
and exit (which then also terminates the handler’s execution thread).
This behavior was implemented in PyInstaller 5.3 to ensure that closing
the console window cleans up the application’s temporary directory.

In versions prior to 5.3, the CTRL_CLOSE_EVENT is not handled; the
parent process is terminated immediately without having the chance
to perform the cleanup, leaving the application’s temporary directory
behind.

Note

The child process (i.e., the frozen python application code) might
install its own console control signal handler in order to perform
its own cleanup (for example, save the application’s state). If so,
it is important to keep in mind the system-imposed five-second timeout,
and the fact that the parent process can perform the temporary directory
cleanup only after the child process exits. In other words, if the
clean up in the child process takes close to five seconds, the parent
process may not have a chance to peform its own clean up before the
OS kills the process.

Terminating the application via the Task Manager

Terminating the application via the Task Manager is somewhat unpredictable
due to distinction between “Apps” and “Background processes”.

“Apps” are closed by sending a close request to the application.
Such applications may close gracefully if they close their window in
response to the request, of, if they have a console, they handle the
resulting CTRL_CLOSE_EVENT console control signal.

“Background processes” are terminated unconditionally using the
TerminateProcess [https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess], leaving no hope for graceful shut-down and clean
up.

The distinction between the two is based on whether the
program has a visible window or not [https://devblogs.microsoft.com/oldnewthing/20171219-00/?p=97606],
but in practice, there are additional nuances when it comes to
console-enabled applications and applications with multiple processes.

To see the detailed classification on per-process basis, right click on
the header of the process list view in the Task Manager, and enable
display of the Type column. The newly added column will show the
process classification for each process, and not just for the whole
process group.

In the following sub-sections, we detail the behavior when attempting
to shut down different processes involved with frozen applications.
Roughly, the behavior higly depends on the following factors:

	build type: onedir (single-process) vs.
onefile (two-process) PyInstaller build option.

	console enabled or not: console vs.
noconsole/windowed PyInstaller build option.

	application has a window or not: regardless of whether an application
has console enabled or not, it might have a window (window + console)
or not (pure console-based application; or a “hidden”, window-less and
console-less, application that runs as a background process).

	how the application is launched: by double-clicking on the executable
(“stand-alone”, with its own console window) or by running it in an
already-opened command prompt.

Windowed/noconsole onedir applications

Windowed/noconsole onedir
applications are single-process applications without console, so they are
the easiest to understand when it comes to the Task Manager and the shutdown
behavior.

If the application has a window (for example, a Qt-based GUI), it is
treated as an “App”. It is listed under “Apps”, and its process name is
listed next to the top-level entry in the list. Shutting it down via the
“End task” results in a window close event being posted, which allows
for graceful application shutdown.

If the application has no window (a window-less and console-less “hidden”
application), it is treated as a “Background process”, and is listed
under “Background processes”. Shutting it down via the “End task”
results in its unconditional termination, with no hope for graceful
application shutdown.

As noted in earlier sections, windowed/noconsole
applications are independent of the console even if they are launched
from one, as long as they have a window. On the other hand, if an
application has no window, the shutdown of the console process results
in the immediate and uncoditional termination of the application process
(background process within the console).

Because onedir applications do not need to unpack
their contents to the temporary directory, the termination mode does not
really affect the clean-up from PyInstaller’s perspective. But it may be
of concern if the application wishes to perform some clean-up on its own;
for example, saving the current state during the shutdown as was done in
the earlier example.

Console-enabled onedir applications

The shutdown behavior of Task Manager and console-enabled
onedir applications depends on whether the application
itself has a window (for example, a Qt-based GUI application with console
enabled) or not (a “pure” console application), and whether the application
owns the console window or not.

Pure console onedir application, ran via double-click

Running a pure-console application by double clicking on the executable
opens a new console with the application running in it. The top-level
entry in the process list is placed under “Apps”; however, it does not
have a process name listed next to it. Instead, it is a group consisting
of a “Console Window Host” (a “Windows process”) and the actual
application process, which is classified as an “App”.

Shutting down the whole group (i.e., the top-level entry) via the
“End task” results in everything being unconditionally terminated.

Shutting down the application process results in it receiving the
CTRL_CLOSE_EVENT for graceful shutdown.

Pure console onedir application, ran in existing console

Opening a new command prompt results in a new “Windows Command Processor”
group entry being added under “Apps”. It consists of a “Console Window Host”
(a “Windows process”) and a “Command Prompt” (an “App”). Running a
pure-console application from the opened command prompt results in a
new process being added to the existing “Windows Command Processor”
group, and the process is classified as a “Background process”.

Therefore, shutting down the whole group results in everything
being unconditionally terminated.

Shutting down the application process results in it being
unconditionally terminated.

Shutting down the “Command Prompt” process results in application
process receiving the CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onedir application with window, ran via double-click

Running a console-enabled application with a window via double-click
behaves similarly to the corresponding pure-console application case.
The resulting process list entry is placed under “Apps”, and is a group
consisting of a “Console Window Host” (a “Windows process”) and the
actual application process, which is classified as an “App”.

Shutting down the whole group results in everything being
unconditionally terminated.

Shutting down the application process results in it receiving the
CTRL_CLOSE_EVENT for graceful shutdown.

Console-enabled onedir application with window, ran in existing console

Running a console-enabled application with a window from an existing
command prompt does not place the application process under the existing
“Windows Command Processor” group, but rather results in a new “App”
top-level entry in the process list. This entry behaves similarly to
the windowed onedir case;
it has process name listed nex to it and shutting it down via the
“End task” results in a window close event being posted, which allows
for graceful application shutdown.

Shutting down the whole “Windows Command Processor” closes the console,
but the application itself keeps running (although its console handles
likely become invalid 5).

Shutting down the “Command Prompt” process within the “Windows
Command Processor” group results in the application process receiving
the CTRL_CLOSE_EVENT for graceful shutdown.

	5(1,2)

	Invalid console handles might, in turn, end up
causing an error when the application code tries to use them, for
example to print a message to the (now non-existent) console.

Console-enabled onefile applications

The shutdown behavior of onefile applications is
complicated by the fact that two processes are involved, and that
application contents need to be extracted to the temporary directory
that should, ideally, be cleaned up when the application is shut down.

Pure-console onefile application, ran via double-click

Running a pure-console application by double clicking on the executable
opens a new console with the application running in it. The top-level
entry in the process list is placed under “Apps”, and is a group
consisting of:

	a “Console Window Host” (a “Windows process”)

	the parent process, classified as an “App”

	the child process, classified as a “Background process”

Shutting down the whole group results in everything
being unconditionally terminated. The temporary directory is left behind.

Shutting down the child process results in its immediate and
unconditional termination. After the child process is terminated, the
parent process performs temporary directory cleanup and exits, which
also closes the console. The only potential drawback of this situation
is that the application code cannot perform its own clean up.

Shutting down the parent process results in the CTRL_CLOSE_EVENT
received by both parent and child process. After the child performs
its cleanup (if any) and exits, the parent performs temporary directory
cleanup and exits as well. This is the ideal situation 6.

	6(1,2,3)

	Assuming the potential cleanup in the application code
does not delay the shutdown to the point where the OS ends up killing
the parent process before it has the chance to perform the temporary
directory cleanup…

Pure console onefile application, ran in existing console

Running a pure-console application from the opened command prompt results
in two new processes being added to the existing “Windows Command Processor”
group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results
in everything being unconditionally terminated, and the temporary
directory being left behind.

Shutting down the parent process results in its immediate and
unconditional termination. The console accepts input again, while the
child process (the actual application) keeps running in the background
(i.e., still writing its output to the console). Since the parent process
was terminated before it could perform clean-up, the temporary directory
is left behind.

Shutting down the child process similarly results in its immediate and
unconditional termination. After the child process is terminated, the
parent process performs temporary directory cleanup and exits. The only
potential drawback of this situation is that the application code
cannot perform its own clean up.

Shutting down the “Command Prompt” process is the best choice,
as it results in both the parent and the child process receiving
the CTRL_CLOSE_EVENT for graceful shutdown.

But perhaps the most surefire way of closing the application in this
case would be using Ctrl+C or Ctrl+Break, or even closing the
console window.

Console-enabled onefile application with window, ran via double-click

Running a console-enabled application with a window via double-click
results in two top-level entries in the process list.

The first entry is a group that belongs to the parent process; it contains
a “Console Window Host” (a “Windows process”) and the parent process,
which is classified as an “App”.

The child process is listed as a separate top-level entry that is also
classified as an “App” and has process name listed next to it.

Shutting down the whole parent process group results in everything
in that group being unconditionally terminated, while the child process
(the actual application) keeps running. The temporary directory is
left behind.

Shutting down the parent process results in the CTRL_CLOSE_EVENT
received by both the parent and the child process. After the child
performs its cleanup (if any) and exits, the parent performs temporary
directory cleanup and exits as well. This is the ideal situation 6.

Shutting down the child process results in it receiving the
CTRL_CLOSE_EVENT for graceful shutdown. After the child performs
its cleanup (if any) and exits, the parent performs temporary directory
cleanup and exits as well. This is the ideal situation; in this case,
the parent process performs temporary directory cleanup even if the
child process exceeds the signal handling timeout and is forcefully
terminated by the operating system.

Console-enabled onefile application with window, ran in existing console

Running a console-enabled application with a window from the opened
command prompt results in parent process being added to the existing
“Windows Command Processor” group, as a “Background process”.

The child process is listed as a separate top-level entry that is
classified as an “App” and has process name listed next to it.

Shutting down the whole “Windows Command Processor” closes the
console and results in immediate and unconditional termination of
the parent process. The child process (the application itself) keeps
running (although its console handles likely become invalid 5).
The temporary directory is left behind.

Shutting down the parent process results in its immediate and
unconditional termination. The console is left open and accepts input
again, while the child process (the actual application) keeps running
in the background (i.e., still writing its output to the console).
Since the parent process was terminated before it could perform clean-up,
the temporary directory is left behind.

Shutting down the child process results in it receiving the
CTRL_CLOSE_EVENT for graceful shutdown. After the child performs
its cleanup (if any) and exits, the parent performs temporary directory
cleanup and exits as well. This is the ideal situation; in this case,
the parent process performs temporary directory cleanup even if the
child process exceeds the signal handling timeout and is forcefully
terminated by the operating system.

Shutting down the “Command Prompt” process results in both the parent
and the child application process receiving the CTRL_CLOSE_EVENT
for graceful shutdown. This is the ideal situation 6.

Windowed/noconsole onefile applications

In case of windowed/noconsole onefile
applications, the application’s parent process is usually classified as
a “Background process”. The classification of the child process depends
on whether the application has a window or not.

Noconsole onefile application without window, ran via double-click

Running a “hidden” application (noconsole/windowed
application without a window) by double clicking on the executable results
in parent and child process being added to the process list as two distinct
top-level entries, under “Background processes”.

Shutting down the parent process results in its immediate and
unconditional termination. The child process (the actual application)
keeps running. Since the parent process was terminated before it could
perform clean-up, the temporary directory is left behind.

Shutting down the child process also results in its immediate and
unconditional termination. After the child process is terminated, the
parent process performs temporary directory cleanup and exits. The only
potential drawback of this situation is that the application code
cannot perform its own clean up.

Noconsole onefile application without window, ran in existing console

Running a “hidden” application from the opened command prompt results
in two new processes being added to the existing “Windows Command Processor”
group, and both of them are classified as a “Background process”.

Shutting down the whole “Windows Command Processor” group results
in everything being unconditionally terminated, and the temporary
directory being left behind.

Shutting down the parent process results in its immediate and
unconditional termination. The child process (the actual application)
keeps running as a background process. Since the parent process
was terminated before it could perform clean-up, the temporary directory
is left behind.

Shutting down the child process similarly results in its immediate and
unconditional termination. After the child process is terminated, the
parent process performs temporary directory cleanup and exits. The only
potential drawback of this situation is that the application code
cannot perform its own clean up.

Shutting down the “Command Prompt” process closes the console, but both
parent and child process keep on running as background processes. Their
entries are moved from the removed “Windows Command Processor” group
into a new group entry under “Background processes”.

Noconsole onefile application with window, ran via double-click

Running a regular GUI noconsole application via
double click results in the parent process being classified as a
“Background process” and the child process being classified as an “App”.
Each of them get their own top-level entry in the process list (under
“Background processes” and under “Apps”, respectively), and both have
their process name listed next to them.

Shutting down the parent process results in its immediate and
unconditional termination. The child process (the actual application)
keeps running. Since the parent process was terminated before it could
perform clean-up, the temporary directory is left behind.

Shutting down the child process results in a window close request (and
the CTRL_CLOSE_EVENT signal) being sent to the child process for
a graceful shutdown. After the child performs its cleanup (if any) and
exits, the parent performs temporary directory cleanup and exits as
well. This is the ideal situation; in this case, the parent process
performs temporary directory cleanup even if the child process exceeds
the signal handling timeout and is forcefully terminated by the
operating system.

Noconsole onefile application with window, ran in existing console

Running a regular GUI noconsole application
from an existing console is similar to running it via double-click,
except that the parent process (classified as a “Background process”)
is listed under the “Windows Command Processor” group under “Apps”
instead of a stand-alone entry under “Background processes”.

Shutting down the whole “Windows Command Processor” closes the
console and results in immediate and unconditional termination of
the parent process. The child process (the application itself) keeps
running. The temporary directory is left behind.

Shutting down the parent process results in its immediate and
unconditional termination. This affects neither console nor the
child process, both of which keep running. Since the parent process
was terminated before it could perform clean-up, the temporary directory
is left behind.

Shutting down the child process results in it receiving the
CTRL_CLOSE_EVENT for graceful shutdown. After the child performs
its cleanup (if any) and exits, the parent performs temporary directory
cleanup and exits as well. This is the ideal situation; in this case,
the parent process performs temporary directory cleanup even if the
child process exceeds the signal handling timeout and is forcefully
terminated by the operating system.

Shutting down the “Command Prompt” process results in console being
closed and the parent process being immediately and unconditionally
terminated. The child process keeps running. Since the parent process
was terminated before it could perform clean-up, the temporary directory
is left behind.

When Things Go Wrong

The information above covers most normal uses of PyInstaller.
However, the variations of Python and third-party libraries are
endless and unpredictable.
It may happen that when you attempt to bundle your app either
PyInstaller itself, or your bundled app, terminates with a Python traceback.
Then please consider the following actions in sequence, before
asking for technical help.

Recipes and Examples for Specific Problems

The PyInstaller FAQ [https://github.com/pyinstaller/pyinstaller/wiki/FAQ] page has work-arounds for some common problems.
Code examples for some advanced uses and some common
problems are available on our PyInstaller Recipes [https://github.com/pyinstaller/pyinstaller/wiki/Recipes] page.
Some of the recipes there include:

	A more sophisticated way of collecting data files
than the one shown above (Adding Files to the Bundle).

	Bundling a typical Django app.

	A use of a run-time hook to set the PyQt5 API level.

	A workaround for a multiprocessing constraint under Windows.

and others.
Many of these Recipes were contributed by users.
Please feel free to contribute more recipes!

Finding out What Went Wrong

Build-time Messages

When the Analysis step runs, it produces error and warning messages.
These display after the command line if the --log-level option allows it.
Analysis also puts messages in a warnings file
named build/name/warn-name.txt in the
work-path= directory.

Analysis creates a message when it detects an import
and the module it names cannot be found.
A message may also be produced when a class or function is declared in
a package (an __init__.py module), and the import specifies
package.name. In this case, the analysis can’t tell if name is supposed to
refer to a submodule or package.

The “module not found” messages are not classed as errors because
typically there are many of them.
For example, many standard modules
conditionally import modules for different platforms that may or may
not be present.

All “module not found” messages are written to the
build/name/warn-name.txt file.
They are not displayed to standard output because there are many of them.
Examine the warning file; often there will be dozens of modules not found,
but their absence has no effect.

When you run the bundled app and it terminates with an ImportError,
that is the time to examine the warning file.
Then see Helping PyInstaller Find Modules below for how to proceed.

Build-Time Dependency Graph

On each run PyInstaller writes a cross-referencing file about dependencies
into the build folder:
build/name/xref-name.html in the
work-path= directory is an HTML file that lists the full
contents of the import graph, showing which modules are imported
by which ones.
You can open it in any web browser.
Find a module name, then keep clicking the “imported by” links
until you find the top-level import that causes that module to be included.

If you specify --log-level=DEBUG to the pyinstaller command,
PyInstaller additionally generates a GraphViz [https://graphviz.org/] input file representing the
dependency graph.
The file is build/name/graph-name.dot in the
work-path= directory.
You can process it with any GraphViz [https://graphviz.org/] command, e.g. dot,
to produce
a graphical display of the import dependencies.

These files are very large because even the simplest “hello world”
Python program ends up including a large number of standard modules.
For this reason the graph file is not very useful in this release.

Build-Time Python Errors

PyInstaller sometimes terminates by raising a Python exception.
In most cases the reason is clear from the exception message,
for example “Your system is not supported”, or “Pyinstaller
requires at least Python 3.7”.
Others clearly indicate a bug that should be reported.

One of these errors can be puzzling, however:
IOError("Python library not found!")
PyInstaller needs to bundle the Python library, which is the
main part of the Python interpreter, linked as a dynamic load library.
The name and location of this file varies depending on the platform in use.
Some Python installations do not include a dynamic Python library
by default (a static-linked one may be present but cannot be used).
You may need to install a development package of some kind.
Or, the library may exist but is not in a folder where PyInstaller
is searching.

The places where PyInstaller looks for the python library are
different in different operating systems, but /lib and /usr/lib
are checked in most systems.
If you cannot put the python library there,
try setting the correct path in the environment variable
LD_LIBRARY_PATH in GNU/Linux or
DYLD_LIBRARY_PATH in macOS.

Getting Debug Messages

The --debug=all option (and its choices) provides a significant amount of diagnostic information.
This can be useful during development of a complex package,
or when your app doesn’t seem to be starting,
or just to learn how the runtime works.

Normally the debug progress messages go to standard output.
If the --windowed option is used when bundling a Windows app,
they are sent to any attached debugger. If you are not using a debugger
(or don’t have one), the DebugView [https://docs.microsoft.com/en-us/sysinternals/downloads/debugview] the free (beer) tool can be used to
display such messages. It has to be started before running the bundled
application.

For a --windowed macOS app they are not displayed.

Consider bundling without --debug for your production version.
Debugging messages require system calls and have an impact on performance.

Getting Python’s Verbose Imports

You can build the app with the --debug=imports option
(see Getting Debug Messages above),
which will pass the -v (verbose imports) flag
to the embedded Python interpreter.
This can be extremely useful.
It can be informative even with apps that are apparently working,
to make sure that they are getting all imports from the bundle,
and not leaking out to the local installed Python.

Python verbose and warning messages always go to standard output
and are not visible when the --windowed option is used.
Remember to not use this for your production version.

Figuring Out Why Your GUI Application Won’t Start

If you are using the --windowed option,
your bundled application may fail to start with an error message like
Failed to execute script my_gui.
In this case, you will want to get more verbose output to find out
what is going on.

	For macOS, you can run your application on the command line,
i.e. ./dist/my_gui
in Terminal instead of clicking on my_gui.app.

	For Windows, you will need to re-bundle your application without the
--windowed option.
Then you can run the resulting executable from the command line,
i.e. my_gui.exe.

	For Unix and GNU/Linux there in no --windowed option.
Anyway, if a your GUI application fails,
you can run your application on the command line,
i.e. ./dist/my_gui.

This should give you the relevant error that is preventing your
application from initializing, and you can then move on to other
debugging steps.

Operation not permitted error

If you use the –onefile and it fails to run you program with error like:

./hello: error while loading shared libraries: libz.so.1:
failed to map segment from shared object: Operation not permitted

This can be caused by wrong permissions for the /tmp directory
(e.g. the filesystem is mounted with noexec flags).

A simple way to solve this issue is to set,
in the environment variable TMPDIR,
a path to a directory in a filesystem mounted without noexec flags, e.g.:

export TMPDIR=/var/tmp/

Helping PyInstaller Find Modules

Extending the Path

If Analysis recognizes that a module is needed, but cannot find that module,
it is often because the script is manipulating sys.path [https://docs.python.org/3/library/sys.html#sys.path].
The easiest thing to do in this case is to use the --paths option
to list all the other places that the script might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
 --paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file in the pathex argument.
They will be added to the current sys.path [https://docs.python.org/3/library/sys.html#sys.path] during analysis.

Listing Hidden Imports

If Analysis thinks it has found all the imports,
but the app fails with an import error,
the problem is a hidden import; that is, an import that is not
visible to the analysis phase.

Hidden imports can occur when the code is using __import__() [https://docs.python.org/3/library/functions.html#import__],
importlib.import_module() [https://docs.python.org/3/library/importlib.html#importlib.import_module]
or perhaps exec() [https://docs.python.org/3/library/functions.html#exec] or eval() [https://docs.python.org/3/library/functions.html#eval].
Hidden imports can also occur when an extension module uses the
Python/C API to do an import.
When this occurs, Analysis can detect nothing.
There will be no warnings, only an ImportError at run-time.

To find these hidden imports,
build the app with the --debug=imports flag
(see Getting Python’s Verbose Imports above)
and run it.

Once you know what modules are needed, you add the needed modules
to the bundle using the --hidden-import command option,
or by editing the spec file,
or with a hook file (see Understanding PyInstaller Hooks below).

Extending a Package’s __path__ [https://docs.python.org/3/reference/import.html#path__]

Python allows a script to extend the search path used for imports
through the __path__ [https://docs.python.org/3/reference/import.html#path__] mechanism.
Normally, the __path__ [https://docs.python.org/3/reference/import.html#path__] of an imported module has only one entry,
the directory in which the __init__.py was found.
But __init__.py is free to extend its __path__ [https://docs.python.org/3/reference/import.html#path__] to include other directories.
For example, the win32com.shell.shell module actually resolves to
win32com/win32comext/shell/shell.pyd.
This is because win32com/__init__.py appends ../win32comext to its __path__ [https://docs.python.org/3/reference/import.html#path__].

Because the __init__.py of an imported module
is not actually executed during analysis,
changes it makes to __path__ [https://docs.python.org/3/reference/import.html#path__] are not seen by PyInstaller.
We fix the problem with the same hook mechanism we use for hidden imports,
with some additional logic; see Understanding PyInstaller Hooks below.

Note that manipulations of __path__ hooked in this way apply only
to the Analysis.
At runtime all imports are intercepted and satisfied from within the
bundle. win32com.shell is resolved the same
way as win32com.anythingelse, and win32com.__path__
knows nothing of ../win32comext.

Once in a while, that’s not enough.

Changing Runtime Behavior

More bizarre situations can be accommodated with runtime hooks.
These are small scripts that manipulate the environment before your main script runs,
effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks.
You can name them with the option --runtime-hook=path-to-script.

Second, some runtime hooks are provided.
At the end of an analysis,
the names in the module list produced by the Analysis phase are looked up in
loader/rthooks.dat in the PyInstaller install folder.
This text file is the string representation of a
Python dictionary. The key is the module name, and the value is a list
of hook-script pathnames.
If there is a match, those scripts are included in the bundled app
and will be called before your main script starts.

Hooks you name with the option are executed
in the order given, and before any installed runtime hooks.
If you specify --runtime-hook=file1.py --runtime-hook=file2.py then the execution order at runtime will be:

	Code of file1.py.

	Code of file2.py.

	Any hook specified for an included module that is found
in rthooks/rthooks.dat.

	Your main script.

Hooks called in this way, while they need to be careful of what they import,
are free to do almost anything.
One reason to write a run-time hook is to
override some functions or variables from some modules.
A good example of this is the Django runtime
hook (see loader/rthooks/pyi_rth_django.py in the
PyInstaller folder).
Django imports some modules dynamically and it is looking
for some .py files.
However .py files are not available in the one-file bundle.
We need to override the function
django.core.management.find_commands
in a way that will just return a list of values.
The runtime hook does this as follows:

import django.core.management
def _find_commands(_):
 return """cleanup shell runfcgi runserver""".split()
django.core.management.find_commands = _find_commands

Getting the Latest Version

If you have some reason to think you have found a bug in PyInstaller
you can try downloading the latest development version.
This version might have fixes or features that are not yet at PyPI [https://pypi.python.org/pypi/PyInstaller/].
You can download the latest stable version and the latest development
version from the PyInstaller Downloads [https://github.com/pyinstaller/pyinstaller/releases] page.

You can also install the latest version of PyInstaller directly
using pip [http://www.pip-installer.org/]:

pip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip

Asking for Help

When none of the above suggestions help,
do ask for assistance on the PyInstaller Email List [https://groups.google.com/forum/#!forum/pyinstaller].

Then, if you think it likely that you see a bug in PyInstaller,
refer to the How to Report Bugs [https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs] page.

Advanced Topics

The following discussions cover details of PyInstaller internal methods.
You should not need this level of detail for normal use,
but such details are helpful if you want to investigate
the PyInstaller code and possibly contribute to it,
as described in How to Contribute [https://pyinstaller.readthedocs.io/en/latest/contributing.html].

The Bootstrap Process in Detail

There are many steps that must take place before the bundled
script can begin execution.
A summary of these steps was given in the Overview
(How the One-Folder Program Works and
How the One-File Program Works).
Here is more detail to help you understand what the bootloader
does and how to figure out problems.

Bootloader

The bootloader prepares everything for running Python code.
It begins the setup and then returns itself in another process.
This approach of using two processes allows a lot of flexibility
and is used in all bundles except one-folder mode in Windows.
So do not be surprised if you will see your bundled app
as two processes in your system task manager.

What happens during execution of bootloader:

	First process: bootloader starts.

	If one-file mode, extract bundled files to
temppath/_MEIxxxxxx.

	Modify various environment variables:

	GNU/Linux: If set, save the original value of LD_LIBRARY_PATH
into LD_LIBRARY_PATH_ORIG.
Prepend our path to LD_LIBRARY_PATH.

	AIX: same thing, but using LIBPATH and LIBPATH_ORIG.

	OSX: unset DYLD_LIBRARY_PATH.

	Set up to handle signals for both processes.

	Run the child process.

	Wait for the child process to finish.

	If one-file mode, delete temppath/_MEIxxxxxx.

	Second process: bootloader itself started as a child process.

	On Windows set the activation context [http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx].

	Load the Python dynamic library.
The name of the dynamic library is embedded in the
executable file.

	Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.

	Run python code.

Running Python code requires several steps:

	Run the Python initialization code which
prepares everything for running the user’s main script.
The initialization code can use only the Python built-in modules
because the general import mechanism is not yet available.
It sets up the Python import mechanism to load modules
only from archives embedded in the executable.
It also adds the attributes frozen
and _MEIPASS to the sys [https://docs.python.org/3/library/sys.html#module-sys] built-in module.

	Execute any run-time hooks: first those specified by the
user, then any standard ones.

	Install python “egg” files.
When a module is part of a zip file (.egg),
it has been bundled into the ./eggs directory.
Installing means appending .egg file names to sys.path [https://docs.python.org/3/library/sys.html#sys.path].
Python automatically detects whether an
item in sys.path [https://docs.python.org/3/library/sys.html#sys.path] is a zip file or a directory.

	Run the main script.

Python imports in a bundled app

PyInstaller embeds compiled python code
(.pyc files) within the executable.
PyInstaller injects its code into the
normal Python import mechanism.
Python allows this;
the support is described in PEP 302 [https://www.python.org/dev/peps/pep-0302] “New Import Hooks”.

PyInstaller implements the PEP 302 specification for
importing built-in modules,
importing “frozen” modules (compiled python code
bundled with the app) and for C-extensions.
The code can be read in ./PyInstaller/loader/pyi_mod03_importers.py.

At runtime the PyInstaller PEP 302 [https://www.python.org/dev/peps/pep-0302] hooks are appended
to the variable sys.meta_path [https://docs.python.org/3/library/sys.html#sys.meta_path].
When trying to import modules the interpreter will
first try PEP 302 hooks in sys.meta_path [https://docs.python.org/3/library/sys.html#sys.meta_path]
before searching in sys.path [https://docs.python.org/3/library/sys.html#sys.path].
As a result, the Python interpreter
loads imported python modules from the archive embedded
in the bundled executable.

This is the resolution order of import statements
in a bundled app:

	Is it a built-in module?
A list of built-in modules is in variable
sys.builtin_module_names [https://docs.python.org/3/library/sys.html#sys.builtin_module_names].

	Is it a module embedded in the executable?
Then load it from embedded archive.

	Is it a C-extension?
The app will try to find a file with name
package.subpackage.module.pyd or
package.subpackage.module.so.

	Next examine paths in the sys.path [https://docs.python.org/3/library/sys.html#sys.path].
There could be any additional location with python modules
or .egg filenames.

	If the module was not found then
raise ImportError [https://docs.python.org/3/library/exceptions.html#ImportError].

Splash screen startup

Note

This feature is incompatible with macOS. In the current design, the
splash screen operates in a secondary thread, which is disallowed by
the Tcl/Tk (or rather, the underlying GUI toolkit) on macOS.

If a splash screen is bundled with the application the
bootloaders startup procedure and threading model is a little
more complex. The following describes the order of operation if
a splash screen is bundled:

	The bootloader checks if it runs as the outermost application
(Not the child process which was spawned by the bootloader).

	If splash screen resources are bundled, try to extract them
(onefile mode). The extraction path is inside
temppath/_MEIxxxxxx/__splashx. If in onedir mode,
the application assumes the resources are relative to the
executable.

	Load the tcl and tk shared libraries into the bootloader.

	Windows: tcl86t.dll/tk86t.dll

	Linux: libtcl.so/libtk.so

	Prepare a minimal environment for the Tcl/Tk [http://www.tcl.tk/] interpreter
by replacing/modifying the following functions:

	::tclInit: This command is called to find the
standard library of tcl. We replace this command to
force tcl to load/execute only the bundled modules.

	::tcl_findLibrary: Tk uses this function to source
all its components. The overwritten function sets the
required environment variable and evaluates the requested
file.

	::exit: This function is modified to ensure a
proper exit of the splash screen thread.

	::source: This command executes the contents of a
passed file. Since we run in a minimal environment we
mock the execution of not bundled files and execute
those who are.

	Start the tcl interpreter and execute the splash screen
script which was generated by PyInstaller’s build target
Splash at build time. This script creates the
environment variable _PYIBoot_SPLASH, which is also
available to the python interpreter. It also initializes a
tcp server socket to receive commands from python.

Note

The tcl interpreter is started in a separate thread. Only
after the tcl interpreter has executed the splash
screen script, the bootloader thread, which is responsible
for extraction/starting the python interpreter, is
resumed.

pyi_splash Module (Detailed)

This module connects to the bootloader to send messages to the splash screen.

It is intended to act as an RPC interface for the functions provided by the
bootloader, such as displaying text or closing. This makes the users python
program independent of how the communication with the bootloader is
implemented, since a consistent API is provided.

To connect to the bootloader, it connects to a local tcp server socket whose port
is passed through the environment variable _PYIBoot_SPLASH. The bootloader
connects to the socket via the python module _socket. Although this socket
is bidirectional, the module is only configured to send data.
Since the os-module, which is needed to request the environment variable,
is not available at boot time, the module does not establish the connection
until initialization.

This module does not support reloads while the splash screen is displayed, i.e.
it cannot be reloaded (such as by importlib.reload() [https://docs.python.org/3/library/importlib.html#importlib.reload]), because the splash
screen closes automatically when the connection to this instance of the
module is lost.

Functions

Note

Note that if the _PYIBoot_SPLASH environment variable does not exist or an
error occurs during the connection, the module will not raise an error, but simply
not initialize itself (i.e. pyi_splash.is_alive() will return False). Before
sending commands to the splash screen, one should check if the module was initialized
correctly, otherwise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] will be raised.

	
is_alive()

	Indicates whether the module can be used.

Returns False if the module is either not initialized or was disabled
by closing the splash screen. Otherwise, the module should be usable.

	
update_text(msg)

	Updates the text on the splash screen window.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the text to be displayed

	Raises

	
	ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] – If the OS fails to write to the socket

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the module is not initialized

	
close()

	Close the connection to the ipc tcp server socket

This will close the splash screen and renders this module unusable.
After this function is called, no connection can be opened to the splash
screen again and all functions if this module become unusable

The TOC and Tree Classes

PyInstaller manages lists of files using the TOC
(Table Of Contents) class.
It provides the Tree class as a convenient way to build a TOC
from a folder path.

TOC Class (Table of Contents)

Objects of the TOC class are used as input to the classes created in
a spec file.
For example, the scripts member of an Analysis object is a TOC
containing a list of scripts.
The pure member is a TOC with a list of modules, and so on.

Basically a TOC object contains a list of tuples of the form

(name,path,typecode)

In fact, it acts as an ordered set of tuples;
that is, it contains no duplicates
(where uniqueness is based on the name element of each tuple).
Within this constraint, a TOC preserves the order of tuples added to it.

A TOC behaves like a list and supports the same methods
such as appending, indexing, etc.
A TOC also behaves like a set, and supports taking differences and intersections.
In all of these operations a list of tuples can be used as one argument.
For example, the following expressions are equivalent ways to
add a file to the a.datas member:

a.datas.append([('README', 'src/README.txt', 'DATA')])
a.datas += [('README', 'src/README.txt', 'DATA')]

Set-difference makes excluding modules quite easy. For example:

a.binaries - [('badmodule', None, None)]

is an expression that produces a new TOC that is a copy of
a.binaries from which any tuple named badmodule has been removed.
The right-hand argument to the subtraction operator
is a list that contains one tuple
in which name is badmodule and the path and typecode elements
are None.
Because set membership is based on the name element of a tuple only,
it is not necessary to give accurate path and typecode elements when subtracting.

In order to add files to a TOC, you need to know the typecode values
and their related path values.
A typecode is a one-word string.
PyInstaller uses a number of typecode values internally,
but for the normal case you need to know only these:

	typecode

	description

	name

	path

	‘DATA’

	Arbitrary files.

	Run-time name.

	Full path name in build.

	‘BINARY’

	A shared library.

	Run-time name.

	Full path name in build.

	‘EXTENSION’

	A binary extension to Python.

	Run-time name.

	Full path name in build.

	‘OPTION’

	A Python run-time option.

	Option code

	ignored.

The run-time name of a file will be used in the final bundle.
It may include path elements, for example extras/mydata.txt.

A BINARY file or an EXTENSION file is assumed to be loadable, executable code,
for example a dynamic library.
The types are treated the same.
EXTENSION is generally used for a Python extension module,
for example a module compiled by Cython [http://www.cython.org/].
PyInstaller will examine either type of file for dependencies,
and if any are found, they are also included.

The Tree Class

The Tree class is a way of creating a TOC that describes some or all of the
files within a directory:

Tree(root, prefix=run-time-folder, excludes=string_list, typecode=code | 'DATA')

	The root argument is a path string to a directory.
It may be absolute or relative to the spec file directory.

	The prefix argument, if given, is a name for a subfolder
within the run-time folder to contain the tree files.
If you omit prefix or give None,
the tree files will be at
the top level of the run-time folder.

	The excludes argument, if given, is a list of one or more
strings that match files in the root that should be omitted from the Tree.
An item in the list can be either:

	a name, which causes files or folders with this basename to be excluded

	*.ext, which causes files with this extension to be excluded

	The typecode argument, if given, specifies the TOC typecode string
that applies to all items in the Tree.
If omitted, the default is DATA, which is appropriate for most cases.

For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=['tmp','*.pyc'])

This creates extras_toc as a TOC object that lists
all files from the relative path ../src/extras,
omitting those that have the basename (or are in a folder named) tmp
or that have the type .pyc.
Each tuple in this TOC has:

	A name composed of extras/filename.

	A path consisting of a complete, absolute path to that file in the
../src/extras folder (relative to the location of the spec file).

	A typecode of DATA (by default).

An example of creating a TOC listing some binary modules:

cython_mods = Tree('..src/cy_mods', excludes=['*.pyx','*.py','*.pyc'], typecode='EXTENSION')

This creates a TOC with a tuple for every file in the cy_mods folder,
excluding any with the .pyx, .py or .pyc suffixes
(so presumably collecting the .pyd or .so modules created by Cython).
Each tuple in this TOC has:

	Its own filename as name (no prefix; the file will be at the top level of the bundle).

	A path as an absolute path to that file in ../src/cy_mods
relative to the spec file.

	A typecode of EXTENSION (BINARY could be used as well).

Inspecting Archives

An archive is a file that contains other files,
for example a .tar file, a .jar file, or a .zip file.
Two kinds of archives are used in PyInstaller.
One is a ZlibArchive, which
allows Python modules to be stored efficiently and,
with some import hooks, imported directly.
The other, a CArchive, is similar to a .zip file,
a general way of packing up (and optionally compressing) arbitrary blobs of data.
It gets its name from the fact that it can be manipulated easily from C
as well as from Python.
Both of these derive from a common base class, making it fairly easy to
create new kinds of archives.

ZlibArchive

A ZlibArchive contains compressed .pyc or .pyo files.
The PYZ class invocation in a spec file creates a ZlibArchive.

The table of contents in a ZlibArchive
is a Python dictionary that associates a key,
which is a member’s name as given in an import statement,
with a seek position and a length in the ZlibArchive.
All parts of a ZlibArchive are stored in the
marshalled [http://docs.python.org/library/marshal] format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules.
Even with maximum compression this works faster than the normal import.
Instead of searching sys.path [https://docs.python.org/3/library/sys.html#sys.path], there’s a lookup in the dictionary.
There are no directory operations and no
file to open (the file is already open).
There’s just a seek, a read and a decompress.

A Python error trace will point to the source file from which the archive
entry was created (the __file__ attribute from the time the
.pyc was compiled, captured and saved in the archive).
This will not tell your user anything useful,
but if they send you a Python error trace,
you can make sense of it.

[image: Structure of the ZlibArchive]
Structure of the ZlibArchive

CArchive

A CArchive can contain any kind of file.
It’s very much like a .zip file.
They are easy to create in Python and easy to unpack from C code.
A CArchive can be appended to another file, such as
an ELF and COFF executable.
To allow this, the archive is made with its table of contents at the
end of the file, followed only by a cookie that tells where the
table of contents starts and
where the archive itself starts.

A CArchive can be embedded within another CArchive.
An inner archive can be opened and used in place,
without having to extract it.

Each table of contents entry has variable length.
The first field in the entry gives the length of the entry.
The last field is the name of the corresponding packed file.
The name is null terminated.
Compression is optional for each member.

There is also a type code associated with each member.
The type codes are used by the self-extracting executables.
If you’re using a CArchive as a .zip file, you don’t need to worry about the code.

The ELF executable format (Windows, GNU/Linux and some others) allows arbitrary
data to be concatenated to the end of the executable without disturbing its
functionality. For this reason, a CArchive’s Table of Contents is
at the end of the archive. The executable can open itself as a binary
file, seek to the end and ‘open’ the CArchive.

[image: CArchive]
Structure of the CArchive

[image: Structure of the Self Extracting Executable]
Structure of the Self Extracting Executable

Using pyi-archive_viewer

Use the pyi-archive_viewer command to inspect any type of archive:

pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with
PyInstaller (a PYZ or PKG), or any executable (.exe file
or an ELF or COFF binary).
The archive can be navigated using these commands:

	O name
	Open the embedded archive name (will prompt if omitted).
For example when looking in a one-file executable, you
can open the PYZ-00.pyz archive inside it.

	U
	Go up one level (back to viewing the containing archive).

	X name
	Extract name (will prompt if omitted).
Prompts for an output filename.
If none given, the member is extracted to stdout.

	Q
	Quit.

The pyi-archive_viewer command has these options:

	-h, --help

	Show help.

	-l, --log

	Quick contents log.

	-b, --brief

	Print a python evaluable list of contents filenames.

	-r, --recursive

	Used with -l or -b, applies recursive behaviour.

Inspecting Executables

You can inspect any executable file with pyi-bindepend:

pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name
and writes to stdout all its binary dependencies.
This is handy to find out which DLLs are required by
an executable or by another DLL.

pyi-bindepend is used by PyInstaller to
follow the chain of dependencies of binary extensions
during Analysis.

Creating a Reproducible Build

In certain cases it is important that when you build the same application twice,
using exactly the same set of dependencies,
the two bundles should be exactly, bit-for-bit identical.

That is not the case normally.
Python uses a random hash to make dicts and other hashed types,
and this affects compiled byte-code as well as PyInstaller
internal data structures.
As a result, two builds may not produce bit-for-bit identical results
even when all the components of the application bundle are the same
and the two applications execute in identical ways.

You can ensure that a build will produce the same bits
by setting the PYTHONHASHSEED [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED] environment variable to a known
integer value before running PyInstaller.
This forces Python to use the same random hash sequence until
PYTHONHASHSEED [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED] is unset or set to 'random'.
For example, execute PyInstaller in a script such as
the following (for GNU/Linux and macOS):

set seed to a known repeatable integer value
PYTHONHASHSEED=1
export PYTHONHASHSEED
create one-file build as myscript
pyinstaller myscript.spec
make checksum
cksum dist/myscript/myscript | awk '{print $1}' > dist/myscript/checksum.txt
let Python be unpredictable again
unset PYTHONHASHSEED

Changed in version 4.8: The build timestamp in the PE headers of the generated Windows
executables is set to the current time during the assembly process.
A custom timestamp value can be specified via the SOURCE_DATE_EPOCH
environment variable to achieve reproducible builds [https://reproducible-builds.org/docs/source-date-epoch].

Understanding PyInstaller Hooks

Note

We strongly encourage package developers
to provide hooks with their packages.
See section Providing PyInstaller Hooks with your Package for how easy this is.

In summary, a “hook” file extends PyInstaller to adapt it to
the special needs and methods used by a Python package.
The word “hook” is used for two kinds of files.
A runtime hook helps the bootloader to launch an app.
For more on runtime hooks, see Changing Runtime Behavior.
Other hooks run while an app is being analyzed.
They help the Analysis phase find needed files.

The majority of Python packages use normal methods of importing
their dependencies, and PyInstaller locates all their files without difficulty.
But some packages make unusual uses of the Python import mechanism,
or make clever changes to the import system at runtime.
For this or other reasons, PyInstaller cannot reliably find
all the needed files, or may include too many files.
A hook can tell about additional source files or data files to import,
or files not to import.

A hook file is a Python script, and can use all Python features.
It can also import helper methods from PyInstaller.utils.hooks
and useful variables from PyInstaller.compat.
These helpers are documented below.

The name of a hook file is hook-full.import.name.py,
where full.import.name is
the fully-qualified name of an imported script or module.
You can browse through the existing hooks in the
hooks folder of the PyInstaller distribution folder
and see the names of the packages for which hooks have been written.
For example hook-PyQt5.QtCore.py is a hook file telling
about hidden imports needed by the module PyQt5.QtCore.
When your script contains import PyQt5.QtCore
(or from PyQt5 import QtCore),
Analysis notes that hook-PyQt5.QtCore.py exists, and will call it.

Many hooks consist of only one statement, an assignment to hiddenimports.
For example, the hook for the dnspython [http://www.dnspython.org/] package, called
hook-dns.rdata.py, has only this statement:

hiddenimports = [
 "dns.rdtypes.*",
 "dns.rdtypes.ANY.*"
]

When Analysis sees import dns.rdata or from dns import rdata
it calls hook-dns.rdata.py and examines its value
of hiddenimports.
As a result, it is as if your source script also contained:

import dns.rdtypes.*
import dsn.rdtypes.ANY.*

A hook can also cause the addition of data files,
and it can cause certain files to not be imported.
Examples of these actions are shown below.

When the module that needs these hidden imports is useful only to your project,
store the hook file(s) somewhere near your source file.
Then specify their location to the pyinstaller or pyi-makespec
command with the --additional-hooks-dir option.
If the hook file(s) are at the same level as the script,
the command could be simply:

pyinstaller --additional-hooks-dir=. myscript.py

If you write a hook for a module used by others,
please ask the package developer to
include the hook with her/his package
or send us the hook file so we can make it available.

How a Hook Is Loaded

A hook is a module named hook-full.import.name.py
in a folder where the Analysis object looks for hooks.
Each time Analysis detects an import, it looks for a hook file with
a matching name.
When one is found, Analysis imports the hook’s code into a Python namespace.
This results in the execution of all top-level statements in the hook source,
for example import statements, assignments to global names, and
function definitions.
The names defined by these statements are visible to Analysis
as attributes of the namespace.

Thus a hook is a normal Python script and can use all normal Python facilities.
For example it could test sys.version [https://docs.python.org/3/library/sys.html#sys.version] and adjust its
assignment to hiddenimports based on that.
There are many hooks in the PyInstaller installation,
but a much larger collection can be found in the
community hooks package [https://github.com/pyinstaller/pyinstaller-hooks-contrib].
Please browse through them for examples.

Providing PyInstaller Hooks with your Package

As a package developer you can provide hooks for PyInstaller
within your package.
This has the major benefit
that you can easily adopt the hooks
when your package changes.
Thus your package’s users don’t need to wait until PyInstaller
might catch up with these changes.
If both PyInstaller and your package provide hooks for some module,
your package’s hooks take precedence,
but can still be overridden by the command line option
--additional-hooks-dir.

You can tell PyInstaller about the additional hooks
by defining some simple setuptools entry-points [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins]
in your package.
Therefore add entries like these to your setup.cfg:

[options.entry_points]
pyinstaller40 =
 hook-dirs = pyi_hooksample.__pyinstaller:get_hook_dirs
 tests = pyi_hooksample.__pyinstaller:get_PyInstaller_tests

This defines two entry-points:

	pyinstaller40.hook-dirs for hook registration

	This entry point refers to a function
that will be invoked with no parameters.
It must return a sequence of strings,
each element of which provides an additional absolute path
to search for hooks.
This is equivalent to passing the --additional-hooks-dir
command-line option to PyInstaller for each string in the sequence.

In this example, the function is get_hook_dirs() -> List[str].

	pyinstaller40.tests for test registration

	This entry point refers to a function
that will be invoked with no parameters.
It must return a sequence of strings,
each element of which provides an additional absolute path
to a directory tree or to a Python source file.
These paths are then passed to pytest for test discovery.
This allows both testing by this package and by PyInstaller.

In this project, the function is get_PyInstaller_tests() -> List[str].

A sample project providing a guide for
integrating PyInstaller hooks and tests into a package
is available at
https://github.com/pyinstaller/hooksample.
This project demonstrates defining a library
which includes PyInstaller hooks along with tests for those hooks
and sample file for integration into CD/CI testing.
Detailed documentation about this sample project
is available at
https://pyinstaller-sample-hook.readthedocs.io/en/latest/.

Hook Global Variables

A majority of the existing hooks consist entirely of assignments of
values to one or more of the following global variables.
If any of these are defined by the hook, Analysis takes their values and
applies them to the bundle being created.

	hiddenimports
	A list of module names (relative or absolute) that should
be part of the bundled app.
This has the same effect as the --hidden-import command line option,
but it can contain a list of names and is applied automatically
only when the hooked module is imported.
Example:

hiddenimports = ['_gdbm', 'socket', 'h5py.defs']

	excludedimports
	A list of absolute module names that should
not be part of the bundled app.
If an excluded module is imported only by the hooked module or one
of its sub-modules, the excluded name and its sub-modules
will not be part of the bundle.
(If an excluded name is explicitly imported in the
source file or some other module, it will be kept.)
Several hooks use this to prevent automatic inclusion of
the tkinter module. Example:

excludedimports = ['tkinter']

	datas
	A list of files to bundle with the app as data.
Each entry in the list is a tuple containing two strings.
The first string specifies a file (or file “glob”) in this system,
and the second specifies the name(s) the file(s) are to have in
the bundle.
(This is the same format as used for the datas= argument,
see Adding Data Files.)
Example:

datas = [('/usr/share/icons/education_*.png', 'icons')]

If you need to collect multiple directories or nested directories,
you can use helper functions from the PyInstaller.utils.hooks module
(see below) to create this list, for example:

datas = collect_data_files('submodule1')
datas += collect_data_files('submodule2')

In rare cases you may need to apply logic to locate
particular files within the file system,
for example because the files are
in different places on different platforms or under different versions.
Then you can write a hook() function as described
below under The hook(hook_api) Function.

	binaries
	A list of files or directories to bundle as binaries.
The format is the same as datas (tuples with strings that
specify the source and the destination).
Binaries is a special case of datas, in that PyInstaller will
check each file to see if it depends on other dynamic libraries.
Example:

binaries = [('C:\\Windows\\System32*.dll', 'dlls')]

Many hooks use helpers from the PyInstaller.utils.hooks module
to create this list (see below):

binaries = collect_dynamic_libs('zmq')

	warn_on_missing_hiddenimports
	A boolean flag indicating whether missing hidden imports from the
hook (set via hiddenimports) should generate warnings or not.
By default, missing hidden imports generate warnings, but individual
hooks can opt out of this behavior by setting this variable to False.
Example:

warn_on_missing_hiddenimports = False

	module_collection_mode
	A setting controlling the collection mode for module(s). The value
can be either a string or a dictionary.

When set to a string, the variable controls the collection mode for
the hooked package/module. Valid values are:

	'pyz': collect byte-compiled modules into the embedded PYZ
archive. This is the default behavior when no collection mode is
specified. If the noarchive flag is used with Analysis,
the PYZ archive is not used, and pyz collection mode is
automatically turned into pyc one.

	'pyc': collect byte-compiled modules as external data files
(as opposed to collecting them into the PYZ archive).

	'py': collect source .py files as external data files. Do not
collect byte-compiled modules.

	'pyz+py' or 'py+pyz': collect byte-compiled modules into
the embedded PYZ archive and collect corresponding source .py files
as external data files.

If noarchive flag is in effect, the byte-compiled modules are
collected as external data files, which causes python to ignore
them due to the source files being placed next to them.

The setting is applied to all child modules and subpackages, unless
overridden by the setting in their corresponding hook.

Alternatively, the variable can be set to a dictionary comprising
module/package names and corresponding collection mode strings.
This allows a hook to specify different settings for its main package
and subpackages, but also settings for other packages. When multiple
hooks provide a setting for the same module name, the end result
depends on the hook execution order.

Example:

hook-mypackage.py

This package must be collected in source form, due to its code
searching for .py files on the filesystem...
module_collection_mode = 'py'

Example:

hook-mypackage.py

Collect only a sub-package / module as source
(without creating a hook for the sub-package).
module_collection_mode = {
 'mypackage.src_subpackage': 'py'
}

Example:

hook-mypackage.py

Collect whole package as source except for a single sub-package
(without creating a hook for the sub-package).
module_collection_mode = {
 'mypackage': 'py',
 'mypackage.bin_subpackage': 'pyz'
}

Example:

hook-mypackage.py

Force collection of other packages in source form.
module_collection_mode = {
 'myotherpackage1': 'py',
 'myotherpackage2': 'py',
}

The ability to control collection mode for other modules/packages
from a given hook is intended for cases when the hooked module
provides functionality for other modules that requires those other
modules to be collected in the source form (for example, JIT compilation
available in some deep learning frameworks). However, detection of
specific function imports and calls via bytecode scanning requires
an access to the modulegraph, and consequently the use of the
the hook(hook_api) function. In such cases, the collection mode
can be modified using the set_module_collection_mode method from
the hook_api object instead of setting the global hook variable.

Useful Items in PyInstaller.compat

Various classes and functions to provide some backwards-compatibility with previous versions of Python onward.

A hook may import the following names from PyInstaller.compat,
for example:

from PyInstaller.compat import base_prefix, is_win

	
is_py36, is_py37, is_py38, is_py39, is_py310 is_py311

	True when the current version of Python is at least 3.6, 3.7, 3.8, 3.9,
or 3.10, 3.11 respectively.

	
is_win

	True in a Windows system.

	
is_cygwin

	True when sys.platform == 'cygwin'.

	
is_darwin

	True in macOS.

	
is_linux

	True in any GNU/Linux system.

	
is_solar

	True in Solaris.

	
is_aix

	True in AIX.

	
is_freebsd

	True in FreeBSD.

	
is_openbsd

	True in OpenBSD.

	
is_venv

	True in any virtual environment (either virtualenv or venv).

	
base_prefix

	String, the correct path to the base Python installation,
whether the installation is native or a virtual environment.

	
EXTENSION_SUFFIXES

	List of Python C-extension file suffixes. Used for finding all
binary dependencies in a folder; see hook-cryptography.py
for an example.

Useful Items in PyInstaller.utils.hooks

A hook may import useful functions from PyInstaller.utils.hooks.
Use a fully-qualified import statement, for example:

from PyInstaller.utils.hooks import collect_data_files, eval_statement

The functions listed here are generally useful and used in a number of existing
hooks.

	
exec_statement(statement)

	Execute a single Python statement in an externally-spawned interpreter, and return the resulting standard output
as a string.

Examples:

tk_version = exec_statement("from _tkinter import TK_VERSION; print(TK_VERSION)")

mpl_data_dir = exec_statement("import matplotlib; print(matplotlib.get_data_path())")
datas = [(mpl_data_dir, "")]

Notes

As of v5.0, usage of this function is discouraged in favour of the
new PyInstaller.isolated module.

	
eval_statement(statement)

	Execute a single Python statement in an externally-spawned interpreter, and eval() [https://docs.python.org/3/library/functions.html#eval] its output (if any).

Example:

databases = eval_statement('''
 import sqlalchemy.databases
 print(sqlalchemy.databases.__all__)
 ''')
for db in databases:
 hiddenimports.append("sqlalchemy.databases." + db)

Notes

As of v5.0, usage of this function is discouraged in favour of the
new PyInstaller.isolated module.

	
is_module_satisfies(requirements, version=None, version_attr='__version__')

	Test if a PEP 0440 [https://www.python.org/dev/peps/pep-0440] requirement is installed.

	Parameters

	
	requirements (str [https://docs.python.org/3/library/stdtypes.html#str]) – Requirements in pkg_resources.Requirements.parse() format.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional PEP 0440-compliant version (e.g., 3.14-rc5) to be used _instead_ of the current version of this
module. If non-None, this function ignores all setuptools distributions for this module and instead
compares this version against the version embedded in the passed requirements. This ignores the module name
embedded in the passed requirements, permitting arbitrary versions to be compared in a robust manner.
See examples below.

	version_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name of the version attribute defined by this module, defaulting to __version__. If a
setuptools distribution exists for this module (it usually does) _and_ the version parameter is None
(it usually is), this parameter is ignored.

	Returns

	Boolean result of the desired validation.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no setuptools distribution exists for this module _and_ this module defines no attribute whose name is the
 passed version_attr parameter.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the passed specification does _not_ comply with pkg_resources.Requirements [https://pythonhosted.org/setuptools/pkg_resources.html#id12] syntax.

Examples

Assume PIL 2.9.0, Sphinx 1.3.1, and SQLAlchemy 0.6 are all installed.
>>> from PyInstaller.utils.hooks import is_module_satisfies
>>> is_module_satisfies('sphinx >= 1.3.1')
True
>>> is_module_satisfies('sqlalchemy != 0.6')
False

>>> is_module_satisfies('sphinx >= 1.3.1; sqlalchemy != 0.6')
False

Compare two arbitrary versions. In this case, the module name "sqlalchemy" is simply ignored.
>>> is_module_satisfies('sqlalchemy != 0.6', version='0.5')
True

Since the "pillow" project providing PIL publishes its version via the custom "PILLOW_VERSION" attribute
(rather than the standard "__version__" attribute), an attribute name is passed as a fallback to validate PIL
when not installed by setuptools. As PIL is usually installed by setuptools, this optional parameter is
usually ignored.
>>> is_module_satisfies('PIL == 2.9.0', version_attr='PILLOW_VERSION')
True

See also

pkg_resources.Requirements [https://pythonhosted.org/setuptools/pkg_resources.html#id12] for the syntax details.

	
collect_all(package_name, include_py_files=True, filter_submodules=None, exclude_datas=None, include_datas=None, on_error='warn once')

	Collect everything for a given package name.

	Parameters

	
	package_name – An import-able package name.

	include_py_files – Forwarded to collect_data_files().

	filter_submodules – Forwarded to collect_submodules().

	exclude_datas – Forwarded to collect_data_files().

	include_datas – Forwarded to collect_data_files().

	on_error – Forwarded onto collect_submodules().

	Returns

	A (datas, binaries, hiddenimports) triplet containing:

	All data files, raw Python files (if include_py_files), and package metadata folders.

	All dynamic libraries as returned by collect_dynamic_libs().

	All submodules of packagename and its dependencies.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Typical use:

datas, binaries, hiddenimports = collect_all('my_module_name')

	
collect_submodules(package, filter=<function <lambda>>, on_error='warn once')

	List all submodules of a given package.

	Parameters

	
	package (str [https://docs.python.org/3/library/stdtypes.html#str]) – An import-able package.

	filter (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]) – Filter the submodules found: A callable that takes a submodule name and returns True if it should be
included.

	on_error (str [https://docs.python.org/3/library/stdtypes.html#str]) – The action to take when a submodule fails to import. May be any of:

	raise: Errors are reraised and terminate the build.

	warn: Errors are downgraded to warnings.

	warn once: The first error issues a warning but all
subsequent errors are ignored to minimise stderr pollution. This
is the default.

	ignore: Skip all errors. Don’t warn about anything.

	Returns

	All submodules to be assigned to hiddenimports in a hook.

This function is intended to be used by hook scripts, not by main PyInstaller code.

Examples:

Collect all submodules of Sphinx don't contain the word ``test``.
hiddenimports = collect_submodules(
 "Sphinx", ``filter=lambda name: 'test' not in name)

Changed in version 4.5: Add the on_error parameter.

	
is_module_or_submodule(name, mod_or_submod)

	This helper function is designed for use in the filter argument of collect_submodules(), by returning
True if the given name is a module or a submodule of mod_or_submod.

Examples

The following excludes foo.test and foo.test.one but not foo.testifier.

collect_submodules('foo', lambda name: not is_module_or_submodule(name, 'foo.test'))``

	
is_package(module_name)

	Check if a Python module is really a module or is a package containing other modules, without importing anything
in the main process.

	Parameters

	module_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Module name to check.

	Returns

	True if module is a package else otherwise.

	
collect_data_files(package, include_py_files=False, subdir=None, excludes=None, includes=None)

	This function produces a list of (source, dest) non-Python (i.e., data) files that reside in package.
Its output can be directly assigned to datas in a hook script; for example, see hook-sphinx.py.
Parameters:

	The package parameter is a string which names the package.

	By default, all Python executable files (those ending in .py, .pyc, and so on) will NOT be collected;
setting the include_py_files argument to True collects these files as well. This is typically used with
Python functions (such as those in pkgutil) that search a given directory for Python executable files and
load them as extensions or plugins.

	The subdir argument gives a subdirectory relative to package to search, which is helpful when submodules
are imported at run-time from a directory lacking __init__.py.

	The excludes argument contains a sequence of strings or Paths. These provide a list of
globs [https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob]
to exclude from the collected data files; if a directory matches the provided glob, all files it contains will
be excluded as well. All elements must be relative paths, which are relative to the provided package’s path
(/ subdir if provided).

Therefore, *.txt will exclude only .txt files in package‘s path, while **/*.txt will exclude
all .txt files in package‘s path and all its subdirectories. Likewise, **/__pycache__ will exclude
all files contained in any subdirectory named __pycache__.

	The includes function like excludes, but only include matching paths. excludes override
includes: a file or directory in both lists will be excluded.

This function does not work on zipped Python eggs.

This function is intended to be used by hook scripts, not by main PyInstaller code.

	
collect_dynamic_libs(package, destdir=None, search_patterns=['*.dll', '*.dylib', 'lib*.so'])

	This function produces a list of (source, dest) of dynamic library files that reside in package. Its output can be
directly assigned to binaries in a hook script. The package parameter must be a string which names the package.

	Parameters

	
	destdir – Relative path to ./dist/APPNAME where the libraries should be put.

	search_patterns – List of dynamic library filename patterns to collect.

	
get_module_file_attribute(package)

	Get the absolute path to the specified module or package.

Modules and packages must not be directly imported in the main process during the analysis. Therefore, to
avoid leaking the imports, this function uses an isolated subprocess when it needs to import the module and
obtain its __file__ attribute.

	Parameters

	package (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully-qualified name of module or package.

	Returns

	Absolute path of this module.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_module_attribute(module_name, attr_name)

	Get the string value of the passed attribute from the passed module if this attribute is defined by this module
or raise AttributeError otherwise.

Since modules cannot be directly imported during analysis, this function spawns a subprocess importing this module
and returning the string value of this attribute in this module.

	Parameters

	
	module_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully-qualified name of this module.

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the attribute in this module to be retrieved.

	Returns

	String value of this attribute.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If this attribute is undefined.

	
get_package_paths(package)

	Given a package, return the path to packages stored on this machine and also returns the path to this particular
package. For example, if pkg.subpkg lives in /abs/path/to/python/libs, then this function returns
(/abs/path/to/python/libs, /abs/path/to/python/libs/pkg/subpkg).

NOTE: due to backwards compatibility, this function returns only one package path along with its base directory.
In case of PEP 420 namespace package with multiple location, only first location is returned. To obtain all
package paths, use the get_all_package_paths function and obtain corresponding base directories using the
package_base_path helper.

	
copy_metadata(package_name, recursive=False)

	Collect distribution metadata so that pkg_resources.get_distribution() can find it.

This function returns a list to be assigned to the datas global variable. This list instructs PyInstaller to
copy the metadata for the given package to the frozen application’s data directory.

	Parameters

	
	package_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name of the package for which metadata should be copied.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, collect metadata for the package’s dependencies too. This enables use of
pkg_resources.require('package') inside the frozen application.

	Returns

	This should be assigned to datas.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Examples

>>> from PyInstaller.utils.hooks import copy_metadata
>>> copy_metadata('sphinx')
[('c:\python27\lib\site-packages\Sphinx-1.3.2.dist-info',
 'Sphinx-1.3.2.dist-info')]

Some packages rely on metadata files accessed through the pkg_resources module. Normally PyInstaller does not
include these metadata files. If a package fails without them, you can use this function in a hook file to easily
add them to the frozen bundle. The tuples in the returned list have two strings. The first is the full pathname to a
folder in this system. The second is the folder name only. When these tuples are added to datas, the folder
will be bundled at the top level.

Changed in version 4.3.1: Prevent dist-info metadata folders being renamed to egg-info which broke pkg_resources.require with
extras (see #3033 [https://github.com/pyinstaller/pyinstaller/issues/#3033]).

Changed in version 4.4.0: Add the recursive option.

	
collect_entry_point(name)

	Collect modules and metadata for all exporters of a given entry point.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the entry point. Check the documentation for the library that uses the entry point to find
its name.

	Returns

	A (datas, hiddenimports) pair that should be assigned to the datas and hiddenimports, respectively.

For libraries, such as pytest or keyring, that rely on plugins to extend their behaviour.

Examples

Pytest uses an entry point called 'pytest11' for its extensions.
To collect all those extensions use:

datas, hiddenimports = collect_entry_point("pytest11")

These values may be used in a hook or added to the datas and hiddenimports arguments in the .spec
file. See Using Spec Files.

New in version 4.3.

	
get_homebrew_path(formula='')

	Return the homebrew path to the requested formula, or the global prefix when called with no argument.

Returns the path as a string or None if not found.

	
include_or_exclude_file(filename, include_list=None, exclude_list=None)

	Generic inclusion/exclusion decision function based on filename and list of include and exclude patterns.

	Parameters

	
	filename – Filename considered for inclusion.

	include_list – List of inclusion file patterns.

	exclude_list – List of exclusion file patterns.

	Returns

	A boolean indicating whether the file should be included or not.

If include_list is provided, True is returned only if the filename matches one of include patterns (and does not
match any patterns in exclude_list, if provided). If include_list is not provided, True is returned if
filename does not match any patterns in exclude list, if provided. If neither list is provided, True is
returned for any filename.

	
collect_delvewheel_libs_directory(package_name, libdir_name=None, datas=None, binaries=None)

	Collect data files and binaries from the .libs directory of a delvewheel-enabled python wheel. Such wheels ship
their shared libraries in a .libs directory that is located next to the package directory, and therefore falls
outside the purview of the collect_dynamic_libs() utility function.

	Parameters

	
	package_name – Name of the package (e.g., scipy).

	libdir_name – Optional name of the .libs directory (e.g., scipy.libs). If not provided, “.libs” is added to
package_name.

	datas – Optional list of datas to which collected data file entries are added. The combined result is retuned
as part of the output tuple.

	binaries – Optional list of binaries to which collected binaries entries are added. The combined result is retuned
as part of the output tuple.

	Returns

	A (datas, binaries) pair that should be assigned to the datas and binaries, respectively.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

Collect the scipy.libs delvewheel directory belonging to the Windows scipy wheel:

datas, binaries = collect_delvewheel_libs_directory("scipy")

When the collected entries should be added to existing datas and binaries listst, the following form
can be used to avoid using intermediate temporary variables and merging those into existing lists:

datas, binaries = collect_delvewheel_libs_directory("scipy", datas=datas, binaries=binaries)

New in version 5.6.

Support for Conda

Additional helper methods for working specifically with Anaconda distributions are found at
PyInstaller.utils.hooks.conda_support
which is designed to mimic (albeit loosely) the importlib.metadata [https://docs.python.org/3/library/importlib.metadata.html] package. These functions find and parse the
distribution metadata from json files located in the conda-meta directory.

New in version 4.2.0.

This module is available only if run inside a Conda environment. Usage of this module should therefore be wrapped in
a conditional clause:

from PyInstaller.compat import is_pure_conda

if is_pure_conda:
 from PyInstaller.utils.hooks import conda_support

 # Code goes here. e.g.
 binaries = conda_support.collect_dynamic_libs("numpy")
 ...

Packages are all referenced by the distribution name you use to install it, rather than the package name you import
it with. I.e., use distribution("pillow") instead of distribution("PIL") or use package_distribution("PIL").

	
distribution(name)

	Get distribution information for a given distribution name (i.e., something you would conda install).

	Return type

	Distribution

	
package_distribution(name)

	Get distribution information for a package (i.e., something you would import).

	Return type

	Distribution

For example, the package pkg_resources belongs to the distribution setuptools, which contains three
packages.

>>> package_distribution("pkg_resources")
Distribution(name="setuptools",
 packages=['easy_install', 'pkg_resources', 'setuptools'])

	
files(name, dependencies=False, excludes=None)

	List all files belonging to a distribution.

	Parameters

	
	name – The name of the distribution.

	dependencies – Recursively collect files of dependencies too.

	excludes – Distributions to ignore if dependencies is true.

	Returns

	All filenames belonging to the given distribution.

With dependencies=False, this is just a shortcut for:

conda_support.distribution(name).files

	
requires(name, strip_versions=False)

	List requirements of a distribution.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the distribution.

	strip_versions (bool [https://docs.python.org/3/library/functions.html#bool]) – List only their names, not their version constraints.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A list of distribution names.

	
class Distribution(json_path)

	A bucket class representation of a Conda distribution.

This bucket exports the following attributes:

	Variables

	
	name – The distribution’s name.

	version – Its version.

	files – All filenames as PackagePath()s included with this distribution.

	dependencies – Names of other distributions that this distribution depends on (with version constraints
removed).

	packages – Names of importable packages included in this distribution.

This class is not intended to be constructed directly by users. Rather use distribution() or
package_distribution() to provide one for you.

	
class PackagePath(*args)

	A filename relative to Conda’s root (sys.prefix).

This class inherits from pathlib.PurePosixPath [https://docs.python.org/3/library/pathlib.html#pathlib.PurePosixPath] even on non-Posix OSs. To convert to a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
pointing to the real file, use the locate() method.

	
locate()

	Return a path-like object for this path pointing to the file’s true location.

	
walk_dependency_tree(initial, excludes=None)

	Collect a Distribution and all direct and indirect dependencies of that distribution.

	Parameters

	
	initial – Distribution name to collect from.

	excludes – Distributions to exclude.

	Returns

	A {name: distribution} mapping where distribution is the output of
conda_support.distribution(name).

	
collect_dynamic_libs(name, dest='.', dependencies=True, excludes=None)

	Collect DLLs for distribution name.

	Parameters

	
	name – The distribution’s project-name.

	dest – Target destination, defaults to '.'.

	dependencies – Recursively collect libs for dependent distributions (recommended).

	excludes – Dependent distributions to skip, defaults to None.

	Returns

	List of DLLs in PyInstaller’s (source, dest) format.

This collects libraries only from Conda’s shared lib (Unix) or Library/bin (Windows) folders. To collect
from inside a distribution’s installation use the regular PyInstaller.utils.hooks.collect_dynamic_libs().

Subprocess isolation with PyInstaller.isolated

PyInstaller hooks typically will need to import the package which they are written for but doing so may manipulate
globals such as sys.path [https://docs.python.org/3/library/sys.html#sys.path] or os.environ [https://docs.python.org/3/library/os.html#os.environ] in ways that affect the build. For example, on Windows,
Qt’s binaries are added to then loaded via PATH in such a way that if you import multiple Qt variants in one
session then there is no guarantee which variant’s binaries each variant will get!

To get around this, PyInstaller does any such tasks in an isolated Python subprocess and ships a
PyInstaller.isolated submodule to do so in hooks.

from PyInstaller import isolated

This submodule provides:

	isolated.call() to evaluate functions in isolation.

	@isolated.decorate to mark a function as always called in isolation.

	isolated.Python() to efficiently call many functions in a single child instance of Python.

	
call(function, *args, **kwargs)

	Call a function with arguments in a separate child Python. Retrieve its return value.

	Parameters

	
	function – The function to send and invoke.

	*args –

	**kwargs – Positional and keyword arguments to send to the function. These must be simple builtin types - not custom
classes.

	Returns

	The return value of the function. Again, these must be basic types serialisable by marshal.dumps() [https://docs.python.org/3/library/marshal.html#marshal.dumps].

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – Any exception which happens inside an isolated process is caught and reraised in the parent process.

To use, define a function which returns the information you’re looking for. Any imports it requires must happen in
the body of the function. For example, to safely check the output of matplotlib.get_data_path() use:

Define a function to be ran in isolation.
def get_matplotlib_data_path():
 import matplotlib
 return matplotlib.get_data_path()

Call it with isolated.call().
get_matplotlib_data_path = isolated.call(matplotlib_data_path)

For single use functions taking no arguments like the above you can abuse the decorator syntax slightly to define
and execute a function in one go.

>>> @isolated.call
... def matplotlib_data_dir():
... import matplotlib
... return matplotlib.get_data_path()
>>> matplotlib_data_dir
'/home/brenainn/.pyenv/versions/3.9.6/lib/python3.9/site-packages/matplotlib/mpl-data'

Functions may take positional and keyword arguments and return most generic Python data types.

>>> def echo_parameters(*args, **kwargs):
... return args, kwargs
>>> isolated.call(echo_parameters, 1, 2, 3)
(1, 2, 3), {}
>>> isolated.call(echo_parameters, foo=["bar"])
(), {'foo': ['bar']}

Notes

To make a function behave differently if it’s isolated, check for the __isolated__ global.

if globals().get("__isolated__", False):
 # We're inside a child process.
 ...
else:
 # This is the master process.
 ...

	
decorate(function)

	Decorate a function so that it is always called in an isolated subprocess.

Examples

To use, write a function then prepend @isolated.decorate.

@isolated.decorate
def add_1(x):
 '''Add 1 to ``x``, displaying the current process ID.'''
 import os
 print(f"Process {os.getpid()}: Adding 1 to {x}.")
 return x + 1

The resultant add_1() function can now be called as you would a
normal function and it’ll automatically use a subprocess.

>>> add_1(4)
Process 4920: Adding 1 to 4.
5
>>> add_1(13.2)
Process 4928: Adding 1 to 13.2.
14.2

	
class Python(strict_mode=None)

	Start and connect to a separate Python subprocess.

This is the lowest level of public API provided by this module. The advantage of using this class directly is
that it allows multiple functions to be evaluated in a single subprocess, making it faster than multiple calls to
call().

The strict_mode argument controls behavior when the child process fails to shut down; if strict mode is enabled,
an error is raised, otherwise only warning is logged. If the value of strict_mode is None, the value of
PyInstaller.compat.strict_collect_mode is used (which in turn is controlled by the
PYINSTALLER_STRICT_COLLECT_MODE environment variable.

Examples

To call some predefined functions x = foo(), y = bar("numpy") and z = bazz(some_flag=True) all using
the same isolated subprocess use:

with isolated.Python() as child:
 x = child.call(foo)
 y = child.call(bar, "numpy")
 z = child.call(bazz, some_flag=True)

	
call(function, *args, **kwargs)

	Call a function in the child Python. Retrieve its return value. Usage of this method is identical to that
of the call() function.

The hook(hook_api) Function

In addition to, or instead of, setting global values,
a hook may define a function hook(hook_api).
A hook() function should only be needed if the hook
needs to apply sophisticated logic or to make a complex
search of the source machine.

The Analysis object calls the function and passes it a hook_api object
which has the following immutable properties:

	__name__:
	The fully-qualified name of the module that caused the
hook to be called, e.g., six.moves.tkinter.

	__file__:
	The absolute path of the module. If it is:

	A standard (rather than namespace) package, this is the absolute path
of this package’s directory.

	A namespace (rather than standard) package, this is the abstract
placeholder -.

	A non-package module or C extension, this is the absolute path of the
corresponding file.

	__path__ [https://docs.python.org/3/reference/import.html#path__]:
	A list of the absolute paths of all directories comprising the module
if it is a package, or None. Typically the list contains only the
absolute path of the package’s directory.

	co:
	Code object compiled from the contents of __file__ (e.g., via the
compile() [https://docs.python.org/3/library/functions.html#compile] builtin).

	analysis:
	The Analysis object that loads the hook.

The hook_api object also offers the following methods:

	add_imports(*names):
	The names argument may be a single string or a list of strings
giving the fully-qualified name(s) of modules to be imported.
This has the same effect as adding the names to the hiddenimports global.

	add_datas(tuple_list):
	The tuple_list argument has the format used with the datas global
variable. This call has the effect of adding items to that list.

	add_binaries(tuple_list):
	The tuple_list argument has the format used with the binaries
global variable. This call has the effect of adding items to that list.

	set_module_collection_mode (name, mode):
	Set the package collection mode for the specified package/module name.
Valid values for mode are: 'pyz', 'pyc', 'py',
'pyz+py', 'py+pyz' and None. None clears/resets the
setting for the given package/module name - but only within the
current hook’s context! The collection mode may be set for the hooked
package, its sub-module or sub-package, or for other packages. If name
is None, it is substituted with the hooked package/module name.

The hook() function can add, remove or change included files using the
above methods of hook_api.
Or, it can simply set values in the four global variables, because
these will be examined after hook() returns.

Hooks may access the user parameters, given in the hooksconfig argument in
the spec file, by calling get_hook_config()
inside a hook() function.

	
get_hook_config(hook_api, module_name, key)

	Get user settings for hooks.

	Parameters

	
	module_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module/package for which the key setting belong to.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A key for the config.

	Returns

	The value for the config. None if not set.

The get_hook_config function will lookup settings in the Analysis.hooksconfig dict.

The hook settings can be added to .spec file in the form of:

a = Analysis(["my-app.py"],
 ...
 hooksconfig = {
 "gi": {
 "icons": ["Adwaita"],
 "themes": ["Adwaita"],
 "languages": ["en_GB", "zh_CN"],
 },
 },
 ...
)

The pre_find_module_path(pfmp_api) Method

You may write a hook with the special function pre_find_module_path(pfmp_api).
This method is called when the hooked module name is first seen
by Analysis, before it has located the path to that module or package
(hence the name “pre-find-module-path”).

Hooks of this type are only recognized if they are stored in
a sub-folder named pre_find_module_path in a hooks folder,
either in the distributed hooks folder or an --additional-hooks-dir folder.
You may have normal hooks as well as hooks of this type for the same module.
For example PyInstaller includes both a hooks/hook-distutils.py
and also a hooks/pre_find_module_path/hook-distutils.py.

The pfmp_api object that is passed has the following immutable attribute:

	module_name:
	A string, the fully-qualified name of the hooked module.

The pfmp_api object has one mutable attribute, search_dirs.
This is a list of strings that specify the absolute path, or paths,
that will be searched for the hooked module.
The paths in the list will be searched in sequence.
The pre_find_module_path() function may replace or change
the contents of pfmp_api.search_dirs.

Immediately after return from pre_find_module_path(), the contents
of search_dirs will be used to find and analyze the module.

For an example of use,
see the file hooks/pre_find_module_path/hook-distutils.py.
It uses this method to redirect a search for distutils when
PyInstaller is executing in a virtual environment.

The pre_safe_import_module(psim_api) Method

You may write a hook with the special function pre_safe_import_module(psim_api).
This method is called after the hooked module has been found,
but before it and everything it recursively imports is added
to the “graph” of imported modules.
Use a pre-safe-import hook in the unusual case where:

	The script imports package.dynamic-name

	The package exists

	however, no module dynamic-name exists at compile time (it will be defined somehow at run time)

You use this type of hook to make dynamically-generated names known to PyInstaller.
PyInstaller will not try to locate the dynamic names, fail, and report them as missing.
However, if there are normal hooks for these names, they will be called.

Hooks of this type are only recognized if they are stored in a sub-folder
named pre_safe_import_module in a hooks folder,
either in the distributed hooks folder or an --additional-hooks-dir folder.
(See the distributed hooks/pre_safe_import_module folder for examples.)

You may have normal hooks as well as hooks of this type for the same module.
For example the distributed system has both a hooks/hook-gi.repository.GLib.py
and also a hooks/pre_safe_import_module/hook-gi.repository.GLib.py.

The psim_api object offers the following attributes,
all of which are immutable (an attempt to change one raises an exception):

	module_basename:
	String, the unqualified name of the hooked module, for example text.

	module_name:
	String, the fully-qualified name of the hooked module, for example
email.mime.text.

	module_graph:
	The module graph representing all imports processed so far.

	parent_package:
	If this module is a top-level module of its package, None.
Otherwise, the graph node that represents the import of the
top-level module.

The last two items, module_graph and parent_package,
are related to the module-graph, the internal data structure used by
PyInstaller to document all imports.
Normally you do not need to know about the module-graph.

The psim_api object also offers the following methods:

	add_runtime_module(fully_qualified_name):
	Use this method to add an imported module whose name may not
appear in the source because it is dynamically defined at run-time.
This is useful to make the module known to PyInstaller and avoid misleading warnings.
A typical use applies the name from the psim_api:

psim_api.add_runtime_module(psim_api.module_name)

	add_alias_module(real_module_name, alias_module_name):
	real_module_name is the fully-qualifed name of an existing
module, one that has been or could be imported by name
(it will be added to the graph if it has not already been imported).
alias_module_name is a name that might be referenced in the
source file but should be treated as if it were real_module_name.
This method ensures that if PyInstaller processes an import of
alias_module_name it will use real_module_name.

	append_package_path(directory):
	The hook can use this method to add a package path
to be searched by PyInstaller, typically an import
path that the imported module would add dynamically to
the path if the module was executed normally.
directory is a string, a pathname to add to the
__path__ [https://docs.python.org/3/reference/import.html#path__] attribute.

Hook Configuration Options

As of version 4.4, PyInstaller implements a mechanism for passing
configuration options to the hooks. At the time of writing, this
feature is supported only in .spec files and
has no command-line interface equivalent.

The hook configuration options consist of a dictionary that is passed
to the Analysis object via the hooksconfig argument. The keys
of the dictionary represent hook identifiers while the values are
dictionaries of hook-specific keys and values that correspond to
hook settings:

a = Analysis(
 ["program.py"],
 ...,
 hooksconfig={
 "some_hook_id": {
 "foo": ["entry1", "entry2"],
 "bar": 42,
 "enable_x": True,
 },
 "another_hook_id": {
 "baz": "value",
 },
 },
 ...,
)

Supported hooks and options

This section lists hooks that implement support for configuration
options. For each hook (or group of hooks), we provide the hook
identifier and the list of supported options.

GObject introspection (gi) hooks

The options passed under gi hook identifier control the collection
of GLib/Gtk resources (themes, icons, translations) in various
hooks related to GObject introspection (i.e., hook-gi.*).

They are especially useful when freezing Gtk3-based applications on
linux, as they allow one to limit the amount of themes and icons collected
from the system /usr/share directory.

Hook identifier: gi

Options

	languages [list of strings]: list of locales (e.g., ˙en_US˙) for
which translations should be collected. By default, gi hooks
collect all available translations.

	icons [list of strings]: list of icon themes (e.g., Adwaita)
that should be collected. By default, gi hooks collect all available
icon themes.

	themes [list of strings]: list of Gtk themes (e.g., Adwaita)
that should be collected. By default, gi hooks collect all available
icon themes.

	module-versions [dict of version strings]: versions of gi modules to
use. For example, a key of ‘GtkSource’ and value to ‘4’ will use
gtksourceview4.

Example

Collect only Adwaita theme and icons, limit the collected
translations to British English and Simplified Chinese, and use
version 3.0 of Gtk and version 4 of GtkSource:

a = Analysis(
 ["my-gtk-app.py"],
 ...,
 hooksconfig={
 "gi": {
 "icons": ["Adwaita"],
 "themes": ["Adwaita"],
 "languages": ["en_GB", "zh_CN"],
 "module-versions": {
 "Gtk": "3.0",
 "GtkSource": "4",
 },
 },
 },
 ...,
)

Note

Currently the module-versions configuration is available only for GtkSource, Gtk, and Gdk.

GStreamer (gi.repository.Gst) hook

The collection of GStreamer is subject to both the general gi hook
configuration (for example, collection of translations file as controlled
by the languages option) and by special hook configuration named
gstreamer 1 that controls collection of GStreamer plugins.

The GStreamer framework comes with a multitude of plugins that are
typically installed as separate packages (gstreamer-plugins-base,
gstreamer-plugins-good, gstreamer-plugins-bad, and
gstreamer-plugins-ugly; the naming varies between packaging systems).
By default, PyInstaller collects all available plugins as well as their
binary dependencies; therefore, having all GStreamer plugins installed
in the build environment will likely result in collection of many
unnecessary plugins and increased frozen application size due to
potential complex dependency chains of individual plugins and the
underlying shared libraries.

Hook identifier: gstreamer 1

Options

	include_plugins [list of strings]: list of plugin names to
include in the frozen application. Specifying the include list
implicitly excludes all plugins that do not appear in the list.

	exclude_plugins [list of strings]: list of plugin names to
exclude from the frozen application. If include list is also available,
the exclude list is applied after it; if not, the exclude list is
applied to all available plugins.

Both include and exclude list expect base plugin names (e.g., audioparsers,
matroska , x264, flac). Internally, each name is converted into
a pattern (e.g., '**/*flac.*'), and matched using fnmatch against
actual plugin file names. Therefore, it is also possible to include the
wildcard (*) in the plugin name 2.

Basic example: excluding an unwanted plugin

Exclude the opencv GStreamer plugin to prevent pulling OpenCV shared
libraries into the frozen application.

a = Analysis(
 ["my-gstreamer-app.py"],
 ...,
 hooksconfig={
 "gstreamer": {
 "exclude_plugins": [
 "opencv",
],
 },
 },
 ...,
)

Advanced example: including only specific plugins

When optimizing the frozen application size, it is often more efficient
to explicitly include only the subset of the plugins that are actually
required for the application to function.

Consider the following simple player application:

audio_player.py
import sys
import os

import gi
gi.require_version('Gst', '1.0')
from gi.repository import GLib, Gst

if len(sys.argv) != 2:
 print(f"Usage: {sys.argv[0]} <filename>")
 sys.exit(-1)

filename = os.path.abspath(sys.argv[1])
if not os.path.isfile(filename):
 print(f"Input file {filename} does not exist!")
 sys.exit(-1)

Gst.init(sys.argv)
mainloop = GLib.MainLoop()

playbin = Gst.ElementFactory.make("playbin", "player")
playbin.set_property('uri', Gst.filename_to_uri(filename))
playbin.set_property('volume', 0.2)
playbin.set_state(Gst.State.PLAYING)

mainloop.run()

Suppose that, although the application is using the generic playbin
and player elements, we intend for the frozen application to play
only audio files. In that case, we can limit the collected plugins
as follows:

The not-completely-optimized list of gstreamer plugins for playing a FLAC
(and possibly some other) audio files on linux and Windows.
gst_include_plugins = [
 # gstreamer
 "coreelements",
 # gstreamer-plugins-base
 "alsa", # Linux audio output
 "audioconvert",
 "audiomixer",
 "audiorate",
 "audioresample",
 "ogg",
 "playback",
 "rawparse",
 "typefindfunctions",
 "volume",
 "vorbis",
 # gstreamer-plugins-good
 "audioparsers",
 "auparse",
 "autodetect",
 "directsound", # Windows audio output
 "flac",
 "id3demux",
 "lame",
 "mpg123",
 "osxaudio", # macOS audio output
 "pulseaudio", # Linux audio output
 "replaygain",
 "speex",
 "taglib",
 "twolame",
 "wavparse",
 # gstreamer-plugins-bad
 "wasapi", # Windows audio output
]

a = Analysis(
 ["audio_player.py"],
 ...,
 hooksconfig={
 "gstreamer": {
 "include_plugins": gst_include_plugins,
 },
 },
 ...,
)

Determining which plugins need to be collected may require good knowledge
of GStreamer pipelines and their plugin system, and may result in several
test iterations to see if the required multimedia functionality works as
expected. Unfortunately, there is no free lunch when it comes to optimizing
the size of application that uses a plugin system like that. Keep in mind
that in addition to obviously-named plugins (such as flac for
FLAC-related functionality), you will likely need to collect at least some
plugins that come from gstreamer itself (e.g., the coreelements
one) and at least some that are part of gstreamer-plugins-base.

	1(1,2)

	While the hook is called gi.repository.Gst, the
identifier for Gstreamer-related options was chosen to be simply
gstreamer.

	2

	And it is also possible to get away with
accidentally specifying the plugin prefix, which is typically libgst,
but can also be gst, depending on the toolchain that was used to
build GStreamer.

Matplotlib hooks

The hooks for the matplotlib package allow user to control the backend
collection behavior via backends option under the matplotlib
identifier, as described below.

Hook identifier: matplotlib

Options

	backends [string or list of strings]: backend selection method
or name(s) of backend(s) to collect. Valid string values: 'auto',
'all', or a human-readable backend name (e.g., 'TkAgg'). To
specify multiple backends to be collected, use a list of strings
(e.g., ['TkAgg', 'Qt5Agg']).

Backend selection process

If backends option is set to 'auto' (or not specified), the hook
performs auto-detection of used backends, by scanning the code for
matplotlib.use() [https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use] function calls with literal arguments. For example,
matplotlib.use('TkAgg') being used in the code results in the
TkAgg backend being collected. If no such calls are found, the default
backend is determined as the first importable GUI-based backend, using the
same priority list as internally used by the matplotlib.get_backend() [https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.get_backend]
and matplotlib.pyplot.switch_backend() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.switch_backend.html#matplotlib.pyplot.switch_backend] functions: ['MacOSX',
'Qt5Agg', 'Gtk3Agg', 'TkAgg', 'WxAgg']. If no GUI-based backend is
importable, the headless 'Agg' is collected instead.

Note

Due to limitations of the bytecode-scanning approach, only specific
forms of matplotlib.use() [https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use] invocation can be automatically detected.
The backend must be specified as string literal (as opposed to being
passed via a variable). The second optional argument, force, can
also be specified, but it must also be a literal and must not be
specified as a keyword argument:

import matplotlib

matplotlib.use('TkAgg') # detected
matplotlib.use('TkAgg', False) # detected

backend = 'TkAgg'
matplotlib.use(backend) # not detected

matplotlib.use('TkAgg', force=False) # not detected

In addition to matplotlib module name, its common alias, mpl
is also recognized:

import matplotlib as mpl
mpl.use('TkAgg') # detected

Importing the function from the module should also work:

from matplotlib import use
use('TkAgg') # detected

If backends option is set to 'all', all (importable) backends are
selected, which corresponds to the behavior of PyInstaller 4.x and earlier.
The list of importable backends depends on the packages installed in the
environment; for example, the Qt5Agg backend becomes importable if
either the PyQt5 or the PySide2 package is installed.

Otherwise, the value of the backends option is treated as a backend
name (if it is a string) or a list of backend names (if it is a list).
In the case of user-provided backend names, no additional validation
is performed; the backends are collected regardless of whether they are
importable or not.

Example

a = Analysis(
 ["my-matplotlib-app.py"],
 ...,
 hooksconfig={
 "matplotlib": {
 "backends": "auto", # auto-detect; the default behavior
 # "backends": "all", # collect all backends
 # "backends": "TkAgg", # collect a specific backend
 # "backends": ["TkAgg", "Qt5Agg"], # collect multiple backends
 },
 },
 ...,
)

Note

The Qt5Agg backend conditionally imports both the PyQt5 and
the PySide2 package. Therefore, if both are installed in your
environment, PyInstaller will end up collecting both. In addition
to increasing the frozen application’s size, this might also cause
conflicts between the collected versions of the shared libraries.
To prevent that, use the --exclude-module option to exclude
one of the two packages (i.e., --exclude-module PyQt5 or
--exclude-module PySide2).

Adding an option to the hook

Implementing support for hook options requires access to hook_api
object, which is available only when hook implements the hook(hook_api)
function (as described here).

The value of a hook’s configuration option can be obtained using the
get_hook_config() function:

hook-mypackage.py
from PyInstaller.utils.hooks import get_hook_config

Processing unrelated to hook options, using global hook values
binaries, datas, hiddenimports = ...

Collect extra data
def hook(hook_api):
 # Boolean option 'collect_extra_data'
 if get_hook_config(hook_api, 'mypackage', 'collect_extra_data'):
 extra_datas = ... # Collect extra data
 hook_api.add_datas(extra_datas)

After implementing option handling in the hook, please add a section
documenting it under Supported hooks and options, to inform
the users of the option’s availability and the meaning of its value(s).

The above hook example allows the user to toggle the collection of extra
data from mypackage by setting the corresponding option in their
.spec file:

a = Analysis(
 ["program-using-mypackage.py"],
 ...,
 hooksconfig={
 "mypackage": {
 "collect_extra_data": True,
 },
 },
 ...,
)

Building the Bootloader

PyInstaller comes with pre-compiled bootloaders for some platforms in
the bootloader folder of the distribution folder.
When there is no pre-compiled bootloader for
the current platform (operating-system and word-size),
the pip [http://www.pip-installer.org/] setup will attempt to build one.

If there is no precompiled bootloader for your platform,
or if you want to modify the bootloader source,
you need to build the bootloader.
To do this,

	Download and install Python, which is required for running waf,

	git clone or download the source from our GitHub repository [https://github.com/pyinstaller/pyinstaller/],

	cd into the folder where you cloned or unpacked the source to,

	cd bootloader, and

	make the bootloader with: python ./waf all,

	test the build by ref:running (parts of) the test-suite
<running-the-test-suite>.

This will produce the bootloader executables for your current platform
(of course, for Windows these files will have the .exe extension):

	../PyInstaller/bootloader/OS_ARCH/run,

	../PyInstaller/bootloader/OS_ARCH/run_d,

	../PyInstaller/bootloader/OS_ARCH/runw (macOS and Windows only), and

	../PyInstaller/bootloader/OS_ARCH/runw_d (macOS and Windows only).

The bootloaders architecture defaults to the machine’s one, but can be changed
using the --target-arch option – given the appropriate compiler and
development files are installed. E.g. to build a 32-bit bootloader on a 64-bit
machine, run:

python ./waf all --target-arch=32bit

If this reports an error, read the detailed notes that follow,
then ask for technical help.

By setting the environment variable PYINSTALLER_COMPILE_BOOTLOADER
the pip [http://www.pip-installer.org/] setup will attempt to build the bootloader for your platform, even
if it is already present.

Supported platforms are

	GNU/Linux (using gcc)

	Windows (using Visual C++ (VS2015 or later) or MinGW’s gcc)

	Mac OX X (using clang)

Contributed platforms are

	AIX (using gcc or xlc)

	HP-UX (using gcc or xlc)

	Solaris

For more information about cross-building please read on
and mind the section about the virtual machines
provided in the Vagrantfile.

Building for GNU/Linux

Development Tools

For building the bootloader you’ll need a development environment.
You can run the following to install everything required:

	On Debian- or Ubuntu-like systems:

sudo apt-get install build-essential zlib1g-dev

	On Fedora, RedHat and derivates:

sudo yum groupinstall "Development Tools"
sudo yum install zlib-devel

	For other Distributions please consult the distributions documentation.

Now you can build the bootloader as shown above.

Alternatively you may want to use the linux64 build-guest
provided by the Vagrantfile (see below).

Building Linux Standard Base (LSB) compliant binaries (optional)

By default, the bootloaders on GNU/Linux are ”normal“, non-LSB binaries, which
should be fine for all GNU/Linux distributions.

If for some reason you want to build Linux Standard Base (LSB) compliant
binaries 1, you can do so by specifying --lsb on the waf command line,
as follows:

python ./waf distclean all --lsb

LSB version 4.0 is required for successfully building of bootloader. Please
refer to python ./waf --help for further options related to LSB building.

	1

	Linux Standard Base (LSB) is a set of open standards that should
increase compatibility among GNU/Linux distributions. Unfortunately it is
not widely adopted and both Debian and Ubuntu dropped support for LSB
in autumn 2015. Thus PyInstaller bootloaders are no longer provided
as LSB binary.

Cross Building for Different Architectures

Bootloaders can be built for other architectures such as ARM or MIPS using
Docker [https://www.docker.com/].
The Dockerfile [https://github.com/pyinstaller/pyinstaller/tree/develop/bootloader/Dockerfile] contains the instructions on how to do this.
Open it in some flavour of text previewer to see them:

less bootloader/Dockerfile

Building for macOS

On macOS please install Xcode [http://developer.apple.com/xcode], Apple’s suite of tools for developing
software for macOS.
Instead of installing the full Xcode package, you can also install
and use Command Line Tools for Xcode [https://developer.apple.com/download/more/].
Installing either will provide the clang compiler.

If the toolchain supports universal2 binaries, the 64-bit bootloaders
are by default built as universal2 fat binaries that support both
x86_64 and arm64 architectures. This requires a recent version
of Xcode (12.2 or later). On older toolchains that lack support for
universal2 binaries, a single-arch x86_64 thin bootloader is
built. This behavior can be controlled by passing --universal2 or
--no-universal2 flags to the waf build command. Attempting to
use --universal2 flag and a toolchain that lacks support for
universal2 binaries will result in configuration error.

The --no-universal2 flag leaves the target architecture unspecified letting
the resultant executable’s architecture be the C compiler’s default (which is
almost certainly the architecture of the build machine). Should you want to
build a thin executable of either architecture, use the --no-universal2 flag
and then optionally override the compiler, adding the -arch flag, via the
CC environment variable.

Build a thin, native executable:

python waf --no-universal2 all

Build a thin, x86_64 executable (regardless of the build machine’s
architecture):

CC='clang -arch=x86_64' python waf --no-universal2 all

Build a thin, arm64 executable (regardless of the build machine’s
architecture):

CC='clang -arch=arm64' python waf --no-universal2 all

By default, the build script targets macOS 10.13, which can be overridden by
exporting the MACOSX_DEPLOYMENT_TARGET environment variable.

Cross-Building for macOS

For cross-compiling for macOS you need the Clang/LLVM compiler, the
cctools (ld, lipo, …), and the OSX SDK. Clang/LLVM is a cross compiler by
default and is available on nearly every GNU/Linux distribution, so you just
need a proper port of the cctools and the macOS SDK.

This is easy to get and needs to be done only once and the result can be
transferred to you build-system. The build-system can then be a normal
(somewhat current) GNU/Linux system. 2

	2

	Please keep in mind that to avoid problems, the system you are using
for the preparation steps should have the same architecture (and
possible the same GNU/Linux distribution version) as the build-system.

Preparation: Get SDK and Build-tools

For preparing the SDK and building the cctools, we use the very helpful
scripts from the OS X Cross [https://github.com/tpoechtrager/osxcross]
toolchain. If you are interested in the details, and what other features OS X
Cross offers, please refer to its homepage.

To save you reading the OSXCross’ documentation, we prepared a virtual box
definition that performs all required steps.
If you are interested in the precise commands, please refer to
packages_osxcross_debianoid, prepare_osxcross_debianiod, and
build_osxcross in the Vagrantfile.

Please proceed as follows:

	Download Command Line Tools for Xcode [https://developer.apple.com/download/more/]
12.2 or later. You will need an Apple ID to search and download the
files; if you do not have one already, you can register it for free.

Please make sure that you are complying to the license of the respective
package.

	Save the downloaded .dmg file to
bootloader/_sdks/osx/Xcode_tools.dmg.

	Use the Vagrantfile to automatically build the SDK and tools:

vagrant up build-osxcross && vagrant halt build-osxcross

This should create the file bootloader/_sdks/osx/osxcross.tar.xz,
which will then be installed on the build-system.

If for some reason this fails, try running vagrant provision
build-osxcross.

	This virtual machine is no longer used, you may now want to discard it
using vagrant destroy build-osxcross.

Building the Bootloader

Again, simply use the Vagrantfile to automatically build the macOS bootloaders:

export TARGET=OSX # make the Vagrantfile build for macOS
vagrant up linux64 && vagrant halt linux

This should create the bootloaders in
* ../PyInstaller/bootloader/Darwin-*/.

If for some reason this fails, try running vagrant provision
linux64.

	This virtual machine is no longer used, you may now want to discard it
using:

vagrant destroy build-osxcross

	If you are finished with the macOS bootloaders, unset TARGET again:

unset TARGET

If you don’t want to use the build-guest provided by the Vagrant file,
perform the following steps
(see build_bootloader_target_osx in the Vagrantfile):

mkdir -p ~/osxcross
tar -C ~/osxcross --xz -xf /vagrant/sdks/osx/osxcross.tar.xz
PATH=~/osxcross/bin/:$PATH
python ./waf all CC=x86_64-apple-darwin15-clang
python ./waf all CC=i386-apple-darwin15-clang

Building for Windows

The pre-compiled bootloader coming with PyInstaller are
self-contained static executable that imposes no restrictions
on the version of Python being used.

When building the bootloader yourself, you have to carefully choose
between three options:

	Using the Visual Studio C++ compiler.

This allows creating self-contained static executables,
which can be used for all versions of Python.
This is why the bootloaders delivered with PyInstaller are build using
Visual Studio C++ compiler.

Visual Studio 2015 or later is required.

	Using the MinGW-w64 [http://mingw-w64.sourceforge.net/] suite.

This allows to create smaller, dynamically linked executables,
but requires to use the same
level of Visual Studio 3
as was used to compile Python.
So this bootloader will be tied to a specific version of Python.

The reason for this is, that unlike Unix-like systems, Windows doesn’t
supply a system standard C library,
leaving this to the compiler.
But Mingw-w64 doesn’t have a standard C library.
Instead it links against msvcrt.dll, which happens to exist
on many Windows installations – but is not guaranteed to exist.

	3

	This description seems to be technically incorrect. I ought to depend
on the C++ run-time library. If you know details, please open an
issue [https://github.com/pyinstaller/pyinstaller/issues/].

	Using cygwin and MinGW.

This will create executables for cygwin, not for ‘plain’ Windows.

In all cases you may want

	to set the path to include python, e.g. set PATH=%PATH%;c:\python35,

	to peek into the Vagrantfile or
../appveyor.yml to learn how we are building.

You can also build the bootloaders for cygwin.

Build using Visual Studio C++

	With our wscript file, you don’t need to run vcvarsall.bat to ’switch’
the environment between VC++ installations and target architecture. The
actual version of C++ does not matter and the target architecture is
selected by using the --target-arch= option.

	If you are not using Visual Studio for other work, installing only the
standalone C++ build-tools might be the best option as it avoids bloating
your system with stuff you don’t need (and saves a lot if installation
time).

Hint

We recommend
installing the build-tools software using the
chocolatey [https://chocolatey.org/] package manager.
While at a first glance it looks like overdose, this is the easiest
way to install the C++ build-tools. It comes down to two lines in an
administrative powershell:

… one-line-install as written on the chocolatey homepage
choco install -y python3 visualstudio2019-workload-vctools

	Useful Links:

	Microsoft Visual C++ Build-Tools 2015 [http://landinghub.visualstudio.com/visual-cpp-build-tools]

	Microsoft Build-Tools for Visual Studio 2017. [https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017]

After installing the C++ build-tool
you can build the bootloader as shown above.

Build using MinGW-w64

Please be aware of the restrictions mentioned above.

If Visual Studio is not convenient,
you can download and install the MinGW distribution from one of the
following locations:

	MinGW-w64 [http://mingw-w64.sourceforge.net/] required, uses gcc 4.4 and up.

	TDM-GCC [http://tdm-gcc.tdragon.net/] - MinGW (not used) and MinGW-w64 installers

Note: Please mind that using cygwin’s python or MinGW
when running ./waf will
create executables for cygwin, not for Windows.

On Windows, when using MinGW-w64, add PATH_TO_MINGWbin
to your system PATH. variable. Before building the
bootloader run for example:

set PATH=C:\MinGW\bin;%PATH%

Now you can build the bootloader as shown above.
If you have installed both Visual C++ and MinGW,
you might need to add run python ./waf --gcc all.

Build using cygwin and MinGW

Please be aware that
this will create executables for cygwin, not for ‘plain’ Windows.

Use cygwin’s setup.exe to install python and mingw.

Now you can build the bootloader as shown above.

Building for AIX

	By default AIX builds 32-bit executables.

	For 64-bit executables set the environment variable OBJECT_MODE.

If Python was built as a 64-bit executable
then the AIX utilities that work with binary files
(e.g., .o, and .a) may need the flag -X64.
Rather than provide this flag with every command,
the preferred way to provide this setting
is to use the environment variable OBJECT_MODE.
Depending on whether Python was build as a 32-bit or a 64-bit executable
you may need to set or unset
the environment variable OBJECT_MODE.

To determine the size the following command can be used:

$ python -c "import sys; print(sys.maxsize <= 2**32)"
True

When the answer is True (as above) Python was build as a 32-bit
executable.

When working with a 32-bit Python executable proceed as follows:

unset OBJECT_MODE
./waf configure all

When working with a 64-bit Python executable proceed as follows:

export OBJECT_MODE=64
./waf configure all

Note

The correct setting of OBJECT_MODE is also needed when you
use PyInstaller to package your application.

To build the bootloader you will need a compiler compatible (identical)
with the one used to build python.

Note

Python compiled with a different version of gcc that you are using
might not be compatible enough.
GNU tools are not always binary compatible.

If you do not know which compiler that was,
this command can help you determine
if the compiler was gcc or an IBM compiler:

python -c "import sysconfig; print(sysconfig.get_config_var('CC'))"

If the compiler is gcc you may need additional RPMs installed
to support the GNU run-time dependencies.

When the IBM compiler is used no additional prerequisites are expected.
The recommended value for CC [https://docs.python.org/3/using/configure.html#envvar-CC] with the IBM compilers is
:command:xlc_r.

Building for FreeBSD

A FreeBSD bootloader may be built with clang using the usual steps on a FreeBSD machine.
Beware, however that any executable compiled natively on FreeBSD will only run
on equal or newer versions of FreeBSD.
In order to support older versions of FreeBSD, you must compile the oldest OS
version you wish to support.

Alternatively, the FreeBSD bootloaders may be cross compiled from Linux using
Docker and a FreeBSD cross compiler image [https://github.com/bwoodsend/freebsd-cross-build].
This image is kept in sync with the oldest non end of life FreeBSD release so
that anything compiled on it will work on all active FreeBSD versions.

In a random directory:

	Start the docker daemon (usually with systemctl start docker - possibly
requiring sudo if you haven’t setup rootless docker).

	Download the latest cross compiler .tar.xz image from here [https://github.com/bwoodsend/freebsd-cross-build/releases].

	Import the image: docker image load -i freebsd-cross-build.tar.xz.
The cross compiler image is now saved under the name freebsd-cross-build.
You may discard the .tar.xz file if you wish.

Then from the root of this repository:

	Run:

docker run -v $(pwd):/io -it freebsd-cross-build bash -c "cd /io/bootloader; ./waf all"

Vagrantfile Virtual Machines

PyInstaller maintains a set of virtual machine description for testing and
(cross-) building. For managing these boxes, we use vagrant [https://www.vagrantup.com/].

All guests 4 will automatically build the bootloader when running
vagrant up GUEST or
vagrant provision GUEST. They will build both 32- and 64-bit bootloaders.

	4

	Except of guest osxcross, which will build the OS X SDK and cctools
as described in section Cross-Building for macOS.

When building the bootloaders, the guests are sharing
the PyInstaller distribution folder and will put the built executables onto
the build-host (into ../PyInstaller/bootloader/).

Most boxes requires two Vagrant plugins to be installed:

vagrant plugin install vagrant-reload vagrant-scp

Example usage:

vagrant up linux64 # will also build the bootloader
vagrant halt linux64 # or `destroy`

verify the bootloader has been rebuild
git status ../PyInstaller/bootloader/

You can pass some parameters for configuring the Vagrantfile by setting
environment variables, like this:

GUI=1 TARGET=OSX vagrant up linux64

or like this:

export TARGET=OSX
vagrant provision linux64

We currently provide this guests:

	linux64

	GNU/Linux (some recent version) used to build the GNU/Linux
bootloaders.

	If TARGET=OSX is set, cross-builds the bootloaders for macOS
(see Cross-Building for macOS).

	If TARGET=WINDOWS is set, cross-builds the bootloaders
for Windows using mingw. Please have in mind that this imposes
the restrictions mentioned above.

	Otherwise (which is the default) bootloaders for GNU/Linux are
build.

	windows10

	Windows 10, used for building the Windows bootloaders
using Visual C++.

	If MINGW=1 is set, the bootloaders will be build using
MinGW. Please be aware of the restrictions mentioned above.

Note

The Windows box uses password authentication, so in
some cases you need to enter the password (which is
Passw0rd!).

	build-osxcross

	GNU/Linux guest used to build the OS X SDK and cctools as
described in section Cross-Building for macOS.

Changelog for PyInstaller

5.8.0 (2023-02-11)

Features

	Compile the collected GLib schema files using glib-schema-compiler
instead of collecting the pre-compiled gschemas.compiled file, in
order to properly support collection of schema files from multiple
locations. Do not collect the source schema files anymore, as only
gschemas.compiled file should be required at run time. (#7394 [https://github.com/pyinstaller/pyinstaller/issues/7394])

Bugfix

	(Cygwin) Avoid using Windows-specific codepaths that require
pywin32-ctypes functionality that is not available in Cygwin
environment. (#7382 [https://github.com/pyinstaller/pyinstaller/issues/7382])

	(non-Windows) Fix race condition in environment modification done by
multiprocessing runtime hook when multiple threads concurrently
spawn processes using the spawn method. (#7410 [https://github.com/pyinstaller/pyinstaller/issues/7410])

	(Windows) Changes in the version info file now trigger rebuild of the
executable file. (#7338 [https://github.com/pyinstaller/pyinstaller/issues/7338])

	Disallow empty source path in the binaries and datas tuples
that are returned from the hooks and sanitized in the
PyInstaller.building.utils.format_binaries_and_datas. The empty
source path is usually result of an error in the hook’s path retrieval
code, and causes implicit collection of the whole current working
directory. This is never the intended behavior, so raise a SystemExit.
(#7384 [https://github.com/pyinstaller/pyinstaller/issues/7384])

	Fix unknown log level error raised with --log-level=DEPRECATION.
(#7413 [https://github.com/pyinstaller/pyinstaller/issues/7413])

Incompatible Changes

	The deprecated PEP-302 find_module() and load_module()
methods have been removed from PyInstaller’s FrozenImporter. These
methods have not been used by python’s import machinery since
python 3.4 and PEP-451, and were effectively left untested and
unmaintained. The removal affects 3rd party code that still relies
on PEP-302 finder/loader methods instead of the PEP-451 ones.
(#7344 [https://github.com/pyinstaller/pyinstaller/issues/7344])

Hooks

	Collect multimedia plugins that are required by QtMultimedia
module starting with Qt6 v6.4.0. (#7352 [https://github.com/pyinstaller/pyinstaller/issues/7352])

	Do not collect designer plugins as part of QtUiTools module in
PySide2 and PySide6 bindings. Instead, tie the collection of
plugins only to the QtDesigner module. (#7322 [https://github.com/pyinstaller/pyinstaller/issues/7322])

Module Loader

	Remove deprecated PEP-302 functionality from FrozenImporter.
The find_module() and load_module() methods are deprecated
since python 3.4 in favor of PEP-451 loader. (#7344 [https://github.com/pyinstaller/pyinstaller/issues/7344])

5.7.0 (2022-12-04)

Features

	Add the package’s location and exact interpreter path to the error message
for
the check for obsolete and PyInstaller-incompatible standard library
back-port
packages (enum34 and typing). (#7221 [https://github.com/pyinstaller/pyinstaller/issues/7221])

	Allow controlling the build log level (--log-level) via a
PYI_LOG_LEVEL environment variable. (#7235 [https://github.com/pyinstaller/pyinstaller/issues/7235])

	Support building native ARM applications for Windows. If PyInstaller is ran
on
an ARM machine with an ARM build of Python, it will prodice an ARM
application. (#7257 [https://github.com/pyinstaller/pyinstaller/issues/7257])

Bugfix

	(Anaconda) Fix the PyInstaller.utils.hooks.conda.collect_dynamic_libs
hook utility function to collect only dynamic libraries, by introducing
an additional type check (to exclude directories and symbolic links to
directories) and additional suffix check (to include only files whose
name matches the following patterns: *.dll, *.dylib, *.so,
and *.so.*). (#7248 [https://github.com/pyinstaller/pyinstaller/issues/7248])

	(Anaconda) Fix the problem with Anaconda python 3.10 on linux and macOS,
where all content of the environment’s lib directory would end up
collected as data due to additional symbolic link pointing from
python3.1
to python3.10. (#7248 [https://github.com/pyinstaller/pyinstaller/issues/7248])

	(GNU/Linux) Fixes an issue with gi shared libraries not being packaged if
they don’t
have version suffix and are in a special location set by LD_LIBRARY_PATH
instead of
a typical library path. (#7278 [https://github.com/pyinstaller/pyinstaller/issues/7278])

	(Windows) Fix the problem with windowed frozen application being unable
to spawn interactive command prompt console via subprocess module due
to interference of the subprocess runtime hook with stream handles.
(#7118 [https://github.com/pyinstaller/pyinstaller/issues/7118])

	(Windows) In windowed/noconsole mode, stop setting sys.stdout
and sys.stderr to custom NullWriter object, and instead leave
them at None. This matches the behavior of windowed python interpreter
(pythonw.exe) and prevents interoperability issues with code that
(rightfully) expects the streams to be either None or objects that
are fully compatible with io.IOBase. (#3503 [https://github.com/pyinstaller/pyinstaller/issues/3503])

	Ensure that PySide6.support.deprecated module is collected for
PySide6 6.4.0 and later in order to enable continued support for
| and & operators between Qt key and key modifier enum values
(e.g., QtCore.Qt.Key_D and QtCore.Qt.AltModifier). (#7249 [https://github.com/pyinstaller/pyinstaller/issues/7249])

	Fix potential duplication of python extension modules in onefile
builds, which happened when an extension was collected both as an
EXTENSION and as a DATA (or a BINARY) TOC type. This
resulted in run-time warnings about files already existing; the
most notorious example being WARNING: file already exists but
should not:
C:\Users\user\AppData\Local\Temp\MEI1234567\torch_C.cp39-win_amd64.pyd
when building onefile applications that use torch. (#7273 [https://github.com/pyinstaller/pyinstaller/issues/7273])

	Fix spurious attempt at reading the top_level.txt metadata from
packages installed in egg form. (#7086 [https://github.com/pyinstaller/pyinstaller/issues/7086])

	Fix the log level (provided via --log-level) being ignored by some
build steps. (#7235 [https://github.com/pyinstaller/pyinstaller/issues/7235])

	Fix the problem with MERGE not properly cleaning up passed
Analysis.binaries and Analysis.datas TOCs due to changes made to
TOC class in PyInstaller 5.0. This effectively broke the supposed
de-duplication functionality of MERGE and multi-package bundles,
which should be restored now. (#7273 [https://github.com/pyinstaller/pyinstaller/issues/7273])

	Prevent $pythonprefix/bin from being added to sys.path [https://docs.python.org/3/library/sys.html#sys.path] when
PyInstaller is invoked using pyinstaller your-code.py but not using
python -m PyInstaller your-code.py. This prevents collection mismatch
when
a library has the same name as console script. (#7120 [https://github.com/pyinstaller/pyinstaller/issues/7120])

	Prevent isolated-subprocess calls from indefinitely blocking in their
clean-up codepath when the subprocess fails to exit. After the grace
period of 5 seconds, we now attempt to terminate such subprocess in
order to prevent hanging of the build process. (#7290 [https://github.com/pyinstaller/pyinstaller/issues/7290])

Incompatible Changes

	(Windows) In windowed/noconsole mode, PyInstaller does not set
sys.stdout and sys.stderr to custom NullWriter object anymore,
but leaves them at None. The new behavior matches that of the windowed
python interpreter (pythonw.exe), but may break the code that uses
sys.stdout or sys.stderr without first checking that they are
available. The code intended to be run frozen in windowed/noconsole
mode should be therefore be validated using the windowed python interpreter
to catch errors related to console being unavailable. (#7216 [https://github.com/pyinstaller/pyinstaller/issues/7216])

Deprecations

	Deprecate bytecode encryption (the --key option), to be removed in
PyInstaller v6.0. (#6999 [https://github.com/pyinstaller/pyinstaller/issues/6999])

Hooks

	(Windows) Remove the subprocess runtime hook. The problem with invalid
standard stream handles, which caused the subprocess module raise an
OSError: [WinError 6] The handle is invalid error in a windowed
onefile frozen application when trying to spawn a subprocess without
redirecting all standard streams, has been fixed in the bootloader.
(#7182 [https://github.com/pyinstaller/pyinstaller/issues/7182])

	Ensure that each Qt* submodule of the PySide2, PyQt5,
PySide6,
and PyQt6 bindings has a corresponding hook, and can therefore been
imported in a frozen application on its own. Applicable to the latest
versions of packages at the time of writing: PySide2 == 5.15.2.1,
PyQt5 == 5.15.7, PySide6 == 6.4.0, and PyQt6 == 6.4.0.
(#7284 [https://github.com/pyinstaller/pyinstaller/issues/7284])

	Improve compatibility with contemporary Django 4.x version by removing
the override of django.core.management.get_commands from the Django
run-time hook. The static command list override is both outdated (based on
Django 1.8) and unnecessary due to dynamic command list being properly
populated under contemporary versions of PyInstaller and Django.
(#7259 [https://github.com/pyinstaller/pyinstaller/issues/7259])

	Introduce additional log messages to matplotlib.backend hook to
provide better insight into what backends are selected and why when the
detection of matplotlib.use calls comes into effect. (#7300 [https://github.com/pyinstaller/pyinstaller/issues/7300])

Bootloader

	(Windows) In a onefile application, avoid passing invalid stream handles
(the INVALID_HANDLE_VALUE constant with value -1) to the launched
application child process when the standard streams are unavailable (for
example, in a windowed/no-console application). (#7182 [https://github.com/pyinstaller/pyinstaller/issues/7182])

Bootloader build

	Support building ARM native binaries using MSVC using the command
python waf --target-arch=64bit-arm all. If built on an ARM machine,
--target-arch=64bit-arm is the default. (#7257 [https://github.com/pyinstaller/pyinstaller/issues/7257])

	Windows ARM64 bootloaders may now be built using an ARM build of clang with
python waf --target-arch=64bit-arm --clang all. (#7257 [https://github.com/pyinstaller/pyinstaller/issues/7257])

5.6.2 (2022-10-31)

Bugfix

	(Linux, macOS) Fix the regression in shared library collection, where
the shared library would end up collected under its fully-versioned
.so name (e.g., libsomething.so.1.2.3) instead of its originally
referenced name (e.g., libsomething.so.1) due to accidental
symbolic link resolution. (#7189 [https://github.com/pyinstaller/pyinstaller/issues/7189])

5.6.1 (2022-10-25)

Bugfix

	(macOS) Fix regression in macOS app bundle signing caused by a typo made
in #7180 [https://github.com/pyinstaller/pyinstaller/issues/7180]. (#7184 [https://github.com/pyinstaller/pyinstaller/issues/7184])

5.6 (2022-10-23)

Features

	Add official support for Python 3.11. (Note that PyInstaller v5.5 is also
expected to work but has only been tested with a pre-release of Python 3.11.)
(#6783 [https://github.com/pyinstaller/pyinstaller/issues/6783])

	Implement a new hook utility function,
collect_delvewheel_libs_directory(),
intended for dealing with external shared library in delvewheel-enabled
PyPI
wheels for Windows. (#7170 [https://github.com/pyinstaller/pyinstaller/issues/7170])

Bugfix

	(macOS) Fix OpenCV (cv2) loader error in generated macOS .app
bundles, caused by the relocation of package’s source .py files.
(#7180 [https://github.com/pyinstaller/pyinstaller/issues/7180])

	(Windows) Improve compatibility with scipy 1.9.2, whose Windows wheels
switched to delvewheel, and therefore have shared libraries located in
external .libs directory. (#7168 [https://github.com/pyinstaller/pyinstaller/issues/7168])

	(Windows) Limit the DLL parent path preservation behavior from #7028 [https://github.com/pyinstaller/pyinstaller/issues/7028]
to files collected from site-packages directories (as returned by
site.getsitepackages() [https://docs.python.org/3/library/site.html#site.getsitepackages] and site.getusersitepackages() [https://docs.python.org/3/library/site.html#site.getusersitepackages]) instead of all
paths in sys.path [https://docs.python.org/3/library/sys.html#sys.path], to avoid unintended behavior in corner cases, such as
sys.path [https://docs.python.org/3/library/sys.html#sys.path] containing the drive root or user’s home directory.
(#7155 [https://github.com/pyinstaller/pyinstaller/issues/7155])

	Fix compatibility with PySide6 6.4.0, where the deprecated
Qml2ImportsPath location key is not available anymore; use the
new QmlImportsPath key when it is available. (#7164 [https://github.com/pyinstaller/pyinstaller/issues/7164])

	Prevent PyInstaller runtime hook for setuptools from attempting to
override distutils with setuptools-provided version when
setuptools is collected and its version is lower than 60.0. This
both mimics the unfrozen behavior and prevents errors on versions
between 50.0 and 60.0, where we do not explicitly collect
setuptools._distutils. (#7172 [https://github.com/pyinstaller/pyinstaller/issues/7172])

Incompatible Changes

	(macOS) In generated macOS .app bundles, the collected source .py files
are not relocated from Contents/MacOS to Contents/Resources
anymore, to avoid issues when the path to a .py file is supposed to
resolve to the same directory as adjacent binary extensions. On the
other hand, this change might result in regressions w.r.t. bundle
signing and/or notarization. (#7180 [https://github.com/pyinstaller/pyinstaller/issues/7180])

Bootloader

	(Windows) Update the bundled zlib sources to v1.2.13. (#7166 [https://github.com/pyinstaller/pyinstaller/issues/7166])

5.5 (2022-10-08)

Features

	(Windows) Support embedding multiple icons in the executable. (#7103 [https://github.com/pyinstaller/pyinstaller/issues/7103])

Bugfix

	(Windows) Fix a regression introduced in PyInstaller 5.4 (#6925 [https://github.com/pyinstaller/pyinstaller/issues/#6925]),
where incorrect copy of python3.dll (and consequently an additional,
incorrect copy of python3X.dll from the same directory) is collected
when additional python installations are present in PATH. (#7102 [https://github.com/pyinstaller/pyinstaller/issues/7102])

	(Windows) Provide run-time override for ctypes.util.find_library that
searches sys._MEIPASS in addition to directories specified in PATH.
(#7097 [https://github.com/pyinstaller/pyinstaller/issues/7097])

	Fix the problem with pywin32 DLLs not being found when importing
pywin32 top-level extension modules, caused by the DLL directory
structure preservation behavior introduced in #7028 [https://github.com/pyinstaller/pyinstaller/issues/7028]. Introduce
a new bootstrap/loader module that adds the pywin32_system32
directory, if available, to both sys.path and the DLL search paths,
in lieu of having to provide a runtime hook script for every single
top-level extension module from pywin32. (#7110 [https://github.com/pyinstaller/pyinstaller/issues/7110])

Hooks

	Fix an error raised by the matplotlib.backends hook when trying to
specify the list of backends to collect via the hooks configuration.
(#7091 [https://github.com/pyinstaller/pyinstaller/issues/7091])

5.4.1 (2022-09-11)

Bugfix

	(Windows) Fix run-time error raised by pyi_rth_win32comgenpy, the
run-time
hook for win32com. (#7079 [https://github.com/pyinstaller/pyinstaller/issues/7079])

5.4 (2022-09-10)

Features

	(Windows) When collecting a DLL that was discovered via link-time
dependency analysis of a collected binary/extension, attempt to preserve
its parent directory structure instead of collecting it into application’s
top-level directory. This aims to preserve the parent directory structure
of DLLs bundled with python packages in PyPI wheels, while the DLLs
collected from system directories (as well as from Library\bin
directory of the Anaconda’s environment) are still collected into
top-level application directory. (#7028 [https://github.com/pyinstaller/pyinstaller/issues/7028])

	Add support for setuptools-provided distutils, available since
setuptools >= 60.0. (#7075 [https://github.com/pyinstaller/pyinstaller/issues/7075])

	Implement a generic file filtering decision function for use in hooks,
based on the source filename and optional inclusion and exclusion pattern
list (PyInstaller.utils.hooks.include_or_exclude_file()).
(#7040 [https://github.com/pyinstaller/pyinstaller/issues/7040])

	Rework the module exclusion mechanism. The excluded module entries,
specified via excludedimports list in the hooks, are now used to
suppress module imports from corresponding nodes during modulegraph
construction, rather than to remove the nodes from the graph as a
post-processing step. This should make the module exclusion more robust,
but the main benefit is that we avoid running (potentially many and
potentially costly) hooks for modules that would end up excluded anyway.
(#7066 [https://github.com/pyinstaller/pyinstaller/issues/7066])

Bugfix

	(Windows) Attempt to extend DLL search paths with directories found in
the PATH environment variable and by tracking calls to the
os.add_dll_directory function during import of the packages in
the isolated sub-process that performs the binary dependency scanning.
(#6924 [https://github.com/pyinstaller/pyinstaller/issues/6924])

	(Windows) Ensure that ANGLE DLLs (libEGL.dll and libGLESv2.dll)
are collected when using Anaconda-installed PyQt5 and Qt5.
(#7029 [https://github.com/pyinstaller/pyinstaller/issues/7029])

	Fix AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] during build when analysing a .pyc file
containing more that 255 variable names followed by an import statement all
in
the same namespace. (#7055 [https://github.com/pyinstaller/pyinstaller/issues/7055])

Incompatible Changes

	(Windows) PyInstaller now attempts to preserve parent directory structure
of DLLs that are collected from python packages (e.g., bundled with
packages in PyPI wheels) instead of collecting them to the top-level
application directory. This behavior might be incompatible with 3rd
party hooks that assume the old behavior, and may result in duplication
of DLL files or missing DLLs in hook-provided runtime search paths.
(#7028 [https://github.com/pyinstaller/pyinstaller/issues/7028])

Hooks

	Implement new gstreamer hook configuration group with
include_plugins and exclude_plugins options that enable control
over GStreamer plugins collected by the gi.repository.Gst hook.
(#7040 [https://github.com/pyinstaller/pyinstaller/issues/7040])

	Provide hooks for additional gstreamer modules provided via
GObject introspection (gi) bindings: gi.repository.GstAllocators,
gi.repository.GstApp, gi.repository.GstBadAudio,
gi.repository.GstCheck,
gi.repository.GstCodecs, gi.repository.GstController,
gi.repository.GstGL,
gi.repository.GstGLEGL, gi.repository.GstGLWayland,
gi.repository.GstGLX11,
gi.repository.GstInsertBin, gi.repository.GstMpegts,
gi.repository.GstNet,
gi.repository.GstPlay, gi.repository.GstPlayer,
gi.repository.GstRtp,
gi.repository.GstRtsp, gi.repository.GstRtspServer,
gi.repository.GstSdp,
gi.repository.GstTranscoder, gi.repository.GstVulkan,
gi.repository.GstVulkanWayland,
gi.repository.GstVulkanXCB, and gi.repository.GstWebRTC.
(#7074 [https://github.com/pyinstaller/pyinstaller/issues/7074])

5.3 (2022-07-30)

Features

	(Windows) Implement handling of console control signals in the onefile
bootloader parent process. The implemented handler suppresses the
CTRL_C_EVENT and CTRL_BREAK_EVENT to let the child process
deal with them as they see it fit. In the case of CTRL_CLOSE_EVENT,
CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT, the handler attempts
to delay the termination of the parent process in order to buy time for
the child process to exit and for the main thread of the parent process
to clean up the temporary directory before exiting itself. This should
prevent the temporary directory of a onefile frozen application
being left behind when the user closes the console window. (#6591 [https://github.com/pyinstaller/pyinstaller/issues/6591])

	Implement a mechanism for controlling the collection mode of modules and
packages, with granularity ranging from top-level packages to individual
sub-modules. Therefore, the hooks can now specify whether the hooked
package should be collected as byte-compiled .pyc modules into embedded
PYZ archive (the default behavior), or as source .py files collected as
external data files (without corresponding modules in the PYZ archive).
(#6945 [https://github.com/pyinstaller/pyinstaller/issues/6945])

Bugfix

	(non-Windows) Avoid generating debug messages in POSIX signal handlers,
as the functions involved are generally not signal-safe. Should also
fix the endless spam of SIGPIPE that ocurrs under certain conditions
when shutting down the frozen application on linux. (#5270 [https://github.com/pyinstaller/pyinstaller/issues/5270])

	(non-Windows) If the child process of a onefile frozen application
is terminated by a signal, delay re-raising of the signal in the parent
process until after the clean up has been performed. This prevents
onefile frozen applications from leaving behind their unpacked
temporary directories when either the parent or the child process is
sent the SIGTERM signal. (#2379 [https://github.com/pyinstaller/pyinstaller/issues/2379])

	When building with noarchive=True (e.g., --debug noarchive or
--debug all), PyInstaller no longer pollutes user-writable source
locations with its .pyc or .pyo files written next to the
corresponding source files. (#6591 [https://github.com/pyinstaller/pyinstaller/issues/6591])

	When building with noarchive=True (e.g., --debug noarchive or
--debug all), the source paths are now stripped from the collected
.pyc modules, same as if PYZ archive was used. (#6591 [https://github.com/pyinstaller/pyinstaller/issues/6591])

Hooks

	Add PyGObject hook for gi.repository.freetype2. Remove warning for
hidden import not found for gi._gobject with PyGObject 3.25.1+.
(#6951 [https://github.com/pyinstaller/pyinstaller/issues/6951])

	Remove pkg_resources hidden imports that aren’t available including
py2_warn, markers, and _vendor.pyparsing.diagram. (#6952 [https://github.com/pyinstaller/pyinstaller/issues/6952])

Documentation

	Document the signal handling behavior Windows and various quirks related
to the frozen application shutdown via the Task Manager. (#6935 [https://github.com/pyinstaller/pyinstaller/issues/6935])

5.2 (2022-07-08)

Features

	Detect if an icon file (.ico or .icns) is of another image type but
has been mislabelled as a native icon type via its file suffix then either
normalise to a genuinely native image type if pillow is installed or raise
an error. (#6870 [https://github.com/pyinstaller/pyinstaller/issues/6870])

	Exit gracefully with an explanatory SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] if the user moves or
deletes the application whilst it’s still running. Note that this is only
detected on trying to load a module which has not already been loaded.
(#6856 [https://github.com/pyinstaller/pyinstaller/issues/6856])

	Implement new standard hook variable, called
warn_on_missing_hiddenimports. This optional boolean flag allows a hook to
opt out from warnings generated by missing hidden imports originating from
that hook. (#6914 [https://github.com/pyinstaller/pyinstaller/issues/6914])

Bugfix

	(Linux) Fix potential mismatch between the collected Python shared library
name and the name expected by the bootloader when using Anaconda environment.
The mismatch would occur on some attempts to freeze a program that uses an
extension that is also linked against the python shared library.
(#6831 [https://github.com/pyinstaller/pyinstaller/issues/6831])

	(Linux) Fix the missing gi.repository error in an application frozen on
RHEL/Fedora linux with GObject introspection installed from the distribution’s
RPM package. (#6780 [https://github.com/pyinstaller/pyinstaller/issues/6780])

	(macOS) The QtWebEngine hook now makes QtOpenGL and QtDBus
available to the renderer process with framework installs of Qt 6.
(#6892 [https://github.com/pyinstaller/pyinstaller/issues/6892])

	(Windows) Optimize EXE PE headers fix-up process in an attempt to reduce the
processing time and the memory footprint with large onefile builds.
(#6874 [https://github.com/pyinstaller/pyinstaller/issues/6874])

	Add a try/except guard around ctypes.util.find_library() [https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library] to protect
against CPython bug #93094 [https://github.com/python/cpython/issues/93094]
which leads to a FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError]. (#6864 [https://github.com/pyinstaller/pyinstaller/issues/6864])

	Fix regression in PyInstaller v5 where an import of a non-existent GObject
introspection (gi) module (for example, an optional dependency) in the
program causes a build-time error and aborts the build process.
(#6897 [https://github.com/pyinstaller/pyinstaller/issues/6897])

	If passed a name of an importable module instead of a package, the
PyInstaller.utils.hooks.collect_submodules() function now returns
a list containing the module’s name, same as it would for a package without
submodules. (#6850 [https://github.com/pyinstaller/pyinstaller/issues/6850])

	Prevent PyInstaller.utils.hooks.collect_submodules() from recursing into
sub-packages that are excluded by the function passed via the filter
argument. (#6846 [https://github.com/pyinstaller/pyinstaller/issues/6846])

	The PyInstaller.utils.hooks.collect_submodules() function now excludes
un-importable subpackages from the returned modules list. (#6850 [https://github.com/pyinstaller/pyinstaller/issues/6850])

Hooks

	(macOS) Disable QtWebEngine sandboxing for Qt6 in the corresponding
PySide6 and PyQt6 run-time hooks as a work-around for the
QtWebEngineProcess helper process crashing. This is required as of Qt
6.3.1 due to the way PyInstaller collects Qt libraries, but is applied
regardless of the used Qt6 version. If you are using an older version of Qt6
and would like to keep the sandboxing, reset the
QTWEBENGINE_DISABLE_SANDBOX environment variable at the start of your
program, before importing Qt packages. (#6903 [https://github.com/pyinstaller/pyinstaller/issues/6903])

	Add support for GTK4 by adding dependencies and updating gi.repository.Gtk
and gi.repository.Gdk to work with module-versions in hooksconfig for
gi. (#6834 [https://github.com/pyinstaller/pyinstaller/issues/6834])

	Refactor the GObject introspection (gi) hooks so that the processing is
performed only in hook loading stage or in the hook() function, but not in
the mixture of two. (#6901 [https://github.com/pyinstaller/pyinstaller/issues/6901])

	Update the GObject introspection (gi) hooks to use newly-introduced
GiModuleInfo object to:

	Check for module availability.

	Perform typelib data collection; equivalent of old get_gi_typelibs
function call.

	Obtain associated shared library path, equivalent of old get_gi_libdir
function call.

The get_gi_typelibs and get_gi_libdir functions now internally
use GiModuleInfo to provide backwards-compatibility for external
users. (#6901 [https://github.com/pyinstaller/pyinstaller/issues/6901])

5.1 (2022-05-17)

Bugfix

	(Windows) Fix the regression causing the (relative) spec path ending up
prepended to relative icon path twice, resulting in icon not being found.
(#6788 [https://github.com/pyinstaller/pyinstaller/issues/6788])

	Prevent collection of an entire Python site when using
collect_data_files() or
collect_dynamic_libs() for single-file modules
(#6789 [https://github.com/pyinstaller/pyinstaller/issues/6789])

	Prevent the hook utility functions, such as
collect_submodules(),
collect_data_files(), and
collect_dynamic_libs(), from failing to
identify a package when its PEP451-compliant loader does not implement
the optional is_package method. (#6790 [https://github.com/pyinstaller/pyinstaller/issues/6790])

	The get_package_paths() function now
supports PEP420 namespace packages - although for backwards-compatibility
reasons, it returns only the first path when multiple paths are
present. (#6790 [https://github.com/pyinstaller/pyinstaller/issues/6790])

	The hook utility functions
collect_submodules(),
collect_data_files(), and
collect_dynamic_libs()) now support
collection from PEP420 namespace packages. (#6790 [https://github.com/pyinstaller/pyinstaller/issues/6790])

	The user-provided spec file path and paths provided via --workpath
and --distpath are now resolved to absolute full paths before being
passed to PyInstaller’s internals. (#6788 [https://github.com/pyinstaller/pyinstaller/issues/6788])

Hooks

	Exclude doctest in the pickle hook. Update PySide2, PySide6,
PyQt5, and PyQt6 hooks with hidden imports that were previously
pulled in by doctest (that was in turn pulled in by pickle).
(#6797 [https://github.com/pyinstaller/pyinstaller/issues/6797])

Bootloader

	(Windows) Update the bundled zlib sources to v1.2.12. (#6804 [https://github.com/pyinstaller/pyinstaller/issues/6804])

Bootloader build

	Building on Windows with MSVC no longer falls to bits if the PyInstaller repo
is
stored in a directory with a long path. (#6806 [https://github.com/pyinstaller/pyinstaller/issues/6806])

5.0.1 (2022-04-25)

Bugfix

	(Linux) Have glib runtime hook prepend the frozen application’s data
dir to the XDG_DATA_DIRS environment variable instead of completely
overwriting it. This should fix the case when xdg-open is used to
launch a system-installed application (for example, opening an URL in a
web browser via the webbrowser module) and no registered applications
being found. (#3668 [https://github.com/pyinstaller/pyinstaller/issues/3668])

	Prevent unactionable errors raised by UPX from terminating the build.
(#6757 [https://github.com/pyinstaller/pyinstaller/issues/6757])

	Restore the pre PyInstaller 5.0 behavior of resolving relative paths to icons
as
relative to the spec file rather than the current working directory.
(#6759 [https://github.com/pyinstaller/pyinstaller/issues/6759])

	(Windows) Update system DLL inclusion list to allow collection of DLLs from
Visual Studio 2012 (VC11) runtime and Visual Studio 2013 (VC12) runtime,
as well as the latest version of Visual Studio 2015/2017/2019/2022 (VC14)
runtime (14.3). (#6778 [https://github.com/pyinstaller/pyinstaller/issues/6778])

Hooks

	Refactor QtWebEngine hooks to support both pure Widget-based and
pure QML/Quick-based applications. (#6753 [https://github.com/pyinstaller/pyinstaller/issues/6753])

	Update PySide6 and PyQt6 hooks for compatibility with Qt 6.3. QtWebEngine
on Windows and Linux does not provide the qt.conf file for the helper
executable anymore, so we generate our own version of the file in order for
QtWebengine -based frozen applications to work. (#6769 [https://github.com/pyinstaller/pyinstaller/issues/6769])

5.0 (2022-04-15)

Features

	(macOS) App bundles built in onedir mode can now opt-in for argv
emulation so that file paths
passed from the UI (Open with…) are reflected in sys.argv [https://docs.python.org/3/library/sys.html#sys.argv].
(#5908 [https://github.com/pyinstaller/pyinstaller/issues/5908])

	(macOS) App bundles built in onedir mode can now opt-in for argv
emulation so that file paths
received in initial drag & drop event are reflected in sys.argv [https://docs.python.org/3/library/sys.html#sys.argv].
(#5436 [https://github.com/pyinstaller/pyinstaller/issues/5436])

	(macOS) The argv emulation
functionality is now available as an optional feature for app bundles
built in either onefile or onedir mode. (#6089 [https://github.com/pyinstaller/pyinstaller/issues/6089])

	(Windows) Embed the manifest into generated onedir executables by
default, in order to avoid potential issues when user renames the executable
(e.g., the manifest not being found anymore due to activation context
caching when user renames the executable and attempts to run it before
also renaming the manifest file). The old behavior of generating the
external manifest file in onedir mode can be re-enabled using the
--no-embed-manifest command-line switch, or via the
embed_manifest=False argument to EXE() in the .spec file.
(#6223 [https://github.com/pyinstaller/pyinstaller/issues/6223])

	(Wine) Prevent collection of Wine built-in DLLs (in either PE-converted or
fake/placeholder form) when building a Windows frozen application under
Wine. Display a warning for each excluded Wine built-in DLL. (#6149 [https://github.com/pyinstaller/pyinstaller/issues/6149])

	Add a PyInstaller.isolated submodule as a safer replacement to
PyInstaller.utils.hooks.exec_statement(). (#6052 [https://github.com/pyinstaller/pyinstaller/issues/6052])

	Improve matching of UPX exclude patterns to include OS-default case
sensitivity,
the wildcard operator (*), and support for parent directories in the
pattern.
Enables use of patterns like "Qt*.dll" and "PySide2*.pyd".
(#6161 [https://github.com/pyinstaller/pyinstaller/issues/6161])

	Make the error handing of collect_submodules()
configurable. (#6052 [https://github.com/pyinstaller/pyinstaller/issues/6052])

Bugfix

	(macOS) Fix potential loss of Apple Events during onefile app bundle
start-up, when the child process is not yet ready to receive events
forwarded by the parent process. (#6089 [https://github.com/pyinstaller/pyinstaller/issues/6089])

	(Windows) Remove the attempt to load the manifest of a onefile
frozen executable via the activation context, which fails with An
attempt to set the process default activation context failed because
the process default activation context was already set. message that
can be observed in debug builds. This approach has been invalid ever
since #3746 [https://github.com/pyinstaller/pyinstaller/issues/3746] implemented direct manifest embedding into the
onefile executable. (#6203 [https://github.com/pyinstaller/pyinstaller/issues/6203])

	Fix an import leak when
PyInstaller.utils.hooks.get_module_file_attribute()
is called with a sub-module or a sub-package name. (#6169 [https://github.com/pyinstaller/pyinstaller/issues/6169])

	Fix an import leak when PyInstaller.utils.hooks.is_package()
is called with a sub-module or a sub-package name. (#6169 [https://github.com/pyinstaller/pyinstaller/issues/6169])

	Fix import errors when calling get_gi_libdir() during packaging of GTK
apps.
Enable CI tests of GTK by adding PyGObject dependencies for the Ubuntu
builds. (#6300 [https://github.com/pyinstaller/pyinstaller/issues/6300])

	Issue an error report if a .spec file will not be generated, but
command-line options specific to that functionality are given.
(#6660 [https://github.com/pyinstaller/pyinstaller/issues/6660])

	Prevent onefile cleanup from recursing into symlinked directories and
just remove the link instead. (#6074 [https://github.com/pyinstaller/pyinstaller/issues/6074])

Incompatible Changes

	(macOS) App bundles built in onefile mode do not perform
argv emulation by
default anymore. The functionality of converting initial open document/URL
events into sys.argv entries must now be explicitly opted-in,
via argv_emulation=True argument to EXE() in the .spec file
or via --argv-emulation command-line flag. (#6089 [https://github.com/pyinstaller/pyinstaller/issues/6089])

	(Windows) By default, manifest is now embedded into the executable in
onedir mode. The old behavior of generating the external manifest
file can be re-enabled using the --no-embed-manifest
command-line switch, or via the embed_manifest=False argument to
EXE() in the .spec file. (#6223 [https://github.com/pyinstaller/pyinstaller/issues/6223])

	Issue an error report if a .spec file will not be generated, but
command-line options specific to that functionality are given.
(#6660 [https://github.com/pyinstaller/pyinstaller/issues/6660])

	The PyInstaller.utils.hooks.get_module_attribute() function now
returns the actual attribute value instead of its string representation.
The external users (e.g., 3rd party hooks) of this function must adjust
their handling of the return value accordingly. (#6169 [https://github.com/pyinstaller/pyinstaller/issues/6169])

	The matplotlib.backends hook no longer collects all available
matplotlib backends, but rather tries to auto-detect the used
backend(s) by default. The old behavior can be re-enabled via the
hook configuration option. (#6024 [https://github.com/pyinstaller/pyinstaller/issues/6024])

Hooks

	Rework the matplotlib.backends hook to attempt performing
auto-detection of the used backend(s) instead of collecting all
available backends. Implement hook configuration option that allows users to switch between
this new behavior and the old behavior of collecting all backends,
or to manually specify the backend(s) to be collected. (#6024 [https://github.com/pyinstaller/pyinstaller/issues/6024])

Bootloader

	Change the behaviour of the --no-universal2 flag so that it now assumes
the
target architecture of the compiler (which may be overridden via the CC
environment variable to facilitate cross compiling). (#6096 [https://github.com/pyinstaller/pyinstaller/issues/6096])

	Refactor Apple Events handling code and move it into a separate source file.
(#6089 [https://github.com/pyinstaller/pyinstaller/issues/6089])

Documentation

	Add a new section
describing Apple Event forwarding behavior on macOS and the optional
argv emulation for macOS app bundles, along with its caveats.
(#6089 [https://github.com/pyinstaller/pyinstaller/issues/6089])

	Update documentation on using UPX. (#6161 [https://github.com/pyinstaller/pyinstaller/issues/6161])

PyInstaller Core

	Drop support for Python 3.6. (#6475 [https://github.com/pyinstaller/pyinstaller/issues/6475])

Bootloader build

	(Windows) Enable Control Flow Guard [https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard]
for the Windows bootloader. (#6136 [https://github.com/pyinstaller/pyinstaller/issues/6136])

4.10 (2022-03-05)

Features

	(Wine) Prevent collection of Wine built-in DLLs (in either PE-converted or
fake/placeholder form) when building a Windows frozen application under
Wine. Display a warning for each excluded Wine built-in DLL. (#6622 [https://github.com/pyinstaller/pyinstaller/issues/6622])

Bugfix

	(Linux) Remove the timeout on objcopy operations to prevent wrongful
abortions when processing large executables on slow disks. (#6647 [https://github.com/pyinstaller/pyinstaller/issues/6647])

	(macOS) Limit the strict architecture validation for collected binaries to
extension modules only. Fixes architecture validation errors when a
universal2 package has its multi-arch extension modules’ arch slices
linked against distinct single-arch thin shared libraries, as is the
case with scipy 1.8.0 macOS universal2 wheel. (#6587 [https://github.com/pyinstaller/pyinstaller/issues/6587])

	(macOS) Remove the 60 seconds timeout for each codesign and lipo
operation which caused build abortion when
processing huge binaries. (#6644 [https://github.com/pyinstaller/pyinstaller/issues/6644])

	(Windows) Use a made up (not .exe) suffix for intermediate executable
files during the build process to prevent
antiviruses from attempting to scan the file whilst PyInstaller is still
working on it leading to a
PermissionError [https://docs.python.org/3/library/exceptions.html#PermissionError] at build time. (#6467 [https://github.com/pyinstaller/pyinstaller/issues/6467])

	Fix an attempt to collect a non-existent .pyc file when the corresponding
source .py file has st_mtime set to zero. (#6625 [https://github.com/pyinstaller/pyinstaller/issues/6625])

Hooks

	Add IPython to the list of excluded packages in the PIL hook in
order to prevent automatic collection of IPython when it is not
imported anywhere else. This in turn prevents whole matplotlib being
automatically pulled in when using PIL.Image. (#6605 [https://github.com/pyinstaller/pyinstaller/issues/6605])

Bootloader

	Fix detection of 32-bit arm platform when Thumb instruction set is
enabled in the compiler. In this case, the ctx.env.DEST_CPU in
waf build script is set to thumb instead of arm. (#6532 [https://github.com/pyinstaller/pyinstaller/issues/6532])

4.9 (2022-02-03)

Bugfix

	Add support for external paths when running pkgutil.iter_modules.
Add support for multiple search paths to pkgutil.iter_modules.
Correctly handle pkgutil.iter_modules with an empty list.
(#6529 [https://github.com/pyinstaller/pyinstaller/issues/6529])

	Fix finding libpython3x.so when Python is installed with pyenv and the
python executable is not linked against libpython3x.so. (#6542 [https://github.com/pyinstaller/pyinstaller/issues/6542])

	Fix handling of symbolic links in the path matching part of the
PyInstaller’s pkgutil.iter_modules replacement/override. (#6537 [https://github.com/pyinstaller/pyinstaller/issues/6537])

Hooks

	Add hooks for PySide6.QtMultimedia and PyQt6.QtMultimedia.
(#6489 [https://github.com/pyinstaller/pyinstaller/issues/6489])

	Add hooks for QtMultimediaWidgets of all four supported Qt bindings
(PySide2, PySide6, PyQt5, and PySide6). (#6489 [https://github.com/pyinstaller/pyinstaller/issues/6489])

	Add support for setuptools 60.7.1 and its vendoring of jaraco.text
in pkg_resources. Exit with an error message if setuptools 60.7.0
is encountered due to incompatibility with PyInstaller’s loader logic.
(#6564 [https://github.com/pyinstaller/pyinstaller/issues/6564])

	Collect the QtWaylandClient-related plugins to enable Wayland support in
the
frozen applications using any of the four supported Qt bindings (PySide2,
PyQt5, PySide6, and PyQt6). (#6483 [https://github.com/pyinstaller/pyinstaller/issues/6483])

	Fix the issue with missing QtMultimediaWidgets module when using
PySide2.QtMultimedia or PySide6.QtMultimedia in combination
with PySide’s true_property feature [https://doc.qt.io/qtforpython/feature-why.html#the-true-property-feature].
(#6489 [https://github.com/pyinstaller/pyinstaller/issues/6489])

4.8 (2022-01-06)

Features

	(Windows) Set the executable’s build time in PE header to the current
time. A custom timestamp can be specified via the SOURCE_DATE_EPOCH
environment variable to allow reproducible builds. (#6469 [https://github.com/pyinstaller/pyinstaller/issues/6469])

	Add strictly unofficial support for the Termux [https://f-droid.org/en/packages/com.termux/] platform. (#6484 [https://github.com/pyinstaller/pyinstaller/issues/6484])

	Replace the dual-process onedir mode on Linux and other Unix-like OSes
with a single-process implementation. This makes onedir mode on these
OSes comparable to Windows and macOS, where single-process onedir mode
has already been used for a while. (#6407 [https://github.com/pyinstaller/pyinstaller/issues/6407])

Bugfix

	(macOS) Fix regression in generation of universal2 executables that
caused the generated executable to fail codesign strict validation.
(#6381 [https://github.com/pyinstaller/pyinstaller/issues/6381])

	(Windows) Fix onefile extraction behavior when the run-time temporary
directory is set to a drive letter. The application’s temporary directory
is now created directly on the specified drive as opposed to the current
directory on the specified drive. (#6051 [https://github.com/pyinstaller/pyinstaller/issues/6051])

	(Windows) Fix compatibility issues with python 3.9.8 from python.org, arising
from the lack of embedded manifest in the python.exe executable.
(#6367 [https://github.com/pyinstaller/pyinstaller/issues/6367])

	(Windows) Fix stack overflow in pyarmor-protected frozen applications,
caused
by the executable’s stack being smaller than that of the python interpreter.
(#6459 [https://github.com/pyinstaller/pyinstaller/issues/6459])

	(Windows) Fix the python3.dll shared library not being found and
collected when using Python from MS App Store. (#6390 [https://github.com/pyinstaller/pyinstaller/issues/6390])

	Fix a bug that prevented traceback from uncaught exception to be
retrieved and displayed in the windowed bootloader’s error reporting
facility (uncaught exception dialog on Windows, syslog on macOS).
(#6426 [https://github.com/pyinstaller/pyinstaller/issues/6426])

	Fix a crash when a onefile build attempts to overwrite an existing onedir
build
on macOS or Linux (#6418 [https://github.com/pyinstaller/pyinstaller/issues/6418])

	Fix build errors when a linux shared library (.so) file is collected as
a binary on macOS. (#6327 [https://github.com/pyinstaller/pyinstaller/issues/6327])

	Fix build errors when a Windows DLL/PYD file is collected as a binary on
a non-Windows OS. (#6327 [https://github.com/pyinstaller/pyinstaller/issues/6327])

	Fix handling of encodings when reading the collected .py source files
via FrozenImporter.get_source(). (#6143 [https://github.com/pyinstaller/pyinstaller/issues/6143])

	Fix hook loader function not finding hooks if path has whitespaces.
(Re-apply the fix that has been inadvertedly undone during the
codebase reformatting.) (#6080 [https://github.com/pyinstaller/pyinstaller/issues/6080])

	Windows: Prevent invalid handle errors when an application compiled in
--windowed mode uses subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess]
without explicitly setting stdin, stdout and stderr to either
PIPE [https://docs.python.org/3/library/subprocess.html#subprocess.PIPE] or
DEVNULL [https://docs.python.org/3/library/subprocess.html#subprocess.DEVNULL]. (#6364 [https://github.com/pyinstaller/pyinstaller/issues/6364])

Hooks

	(macOS) Add support for Anaconda-installed PyQtWebEngine.
(#6373 [https://github.com/pyinstaller/pyinstaller/issues/6373])

	Add hooks for PySide6.QtWebEngineWidgets and
PyQt6.QtWebEngineWidgets.
The QtWebEngine support in PyInstaller requires Qt6 v6.2.2 or later,
so if an earlier version is encountered, we exit with an error instead of
producing a defunct build. (#6387 [https://github.com/pyinstaller/pyinstaller/issues/6387])

	Avoid collecting the whole QtQml module and its dependencies in cases
when it is not necessary (i.e., the application does not use QtQml or
QtQuick modules). The unnecessary collection was triggered due to
extension modules being linked against the libQt5Qml or libQt6Qml
shared library, and affected pure widget-based applications (PySide2
and PySide6 on Linux) and widget-based applications that use
QtWebEngineWidgets (PySide2, PySide6, PyQt5, and PyQt6
on all OSes). (#6447 [https://github.com/pyinstaller/pyinstaller/issues/6447])

	Update numpy hook for compatibility with version 1.22; the hook
cannot exclude distutils and numpy.distutils anymore, as they
are required by numpy.testing, which is used by some external
packages, such as scipy. (#6474 [https://github.com/pyinstaller/pyinstaller/issues/6474])

Bootloader

	(Windows) Set the bootloader executable’s stack size to 2 MB to match the
stack size of the python interpreter executable. (#6459 [https://github.com/pyinstaller/pyinstaller/issues/6459])

	Implement single-process onedir mode for Linux and Unix-like OSes as a
replacement for previously-used two-process implementation. The new mode
uses exec() without fork() to restart the bootloader executable
image within the same process after setting up the environment (i.e., the
LD_LIBRARY_PATH and other environment variables). (#6407 [https://github.com/pyinstaller/pyinstaller/issues/6407])

	Lock the PKG sideload mode in the bootloader unless the executable has a
special signature embedded. (#6470 [https://github.com/pyinstaller/pyinstaller/issues/6470])

	When user script terminates with an uncaught exception, ensure that the
exception data obtained via PyErr_Fetch is normalized by also calling
PyErr_NormalizeException. Otherwise, trying to format the traceback
via traceback.format_exception fails in some circumstances, and no
traceback can be displayed in the windowed bootloader’s error report.
(#6426 [https://github.com/pyinstaller/pyinstaller/issues/6426])

Bootloader build

	The bootloader can be force compiled during pip install by setting the
environment variable PYINSTALLER_COMPILE_BOOTLOADER. (#6384 [https://github.com/pyinstaller/pyinstaller/issues/6384])

4.7 (2021-11-10)

Bugfix

	Fix a bug since v4.6 where certain Unix system directories were incorrectly
assumed to exist and resulted in
a FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError]. (#6331 [https://github.com/pyinstaller/pyinstaller/issues/6331])

Hooks

	Update sphinx hook for compatibility with latest version (4.2.0).
(#6330 [https://github.com/pyinstaller/pyinstaller/issues/6330])

Bootloader

	(Windows) Explicitly set NTDDI_VERSION=0x06010000 and
_WIN32_WINNT=0x0601 when compiling Windows bootloaders to request
Windows 7 feature level for Windows headers. The windowed bootloader
requires at least Windows Vista feature level, and some toolchains
(e.g., mingw cross-compiler on linux) set too low level by default.
(#6338 [https://github.com/pyinstaller/pyinstaller/issues/6338])

	(Windows) Remove the check for the unused windres utility when compiling
with MinGW toolchain. (#6339 [https://github.com/pyinstaller/pyinstaller/issues/6339])

	Replace use of PyRun_SimpleString with PyRun_SimpleStringFlags.
(#6332 [https://github.com/pyinstaller/pyinstaller/issues/6332])

4.6 (2021-10-29)

Features

	Add support for Python 3.10. (#5693 [https://github.com/pyinstaller/pyinstaller/issues/5693])

	(Windows) Embed the manifest into generated onedir executables by
default, in order to avoid potential issues when user renames the executable
(e.g., the manifest not being found anymore due to activation context
caching when user renames the executable and attempts to run it before
also renaming the manifest file). The old behavior of generating the
external manifest file in onedir mode can be re-enabled using the
--no-embed-manifest command-line switch, or via the
embed_manifest=False argument to EXE() in the .spec file.
(#6248 [https://github.com/pyinstaller/pyinstaller/issues/6248])

	(Windows) Respect PEP 239 [https://www.python.org/dev/peps/pep-0239] encoding specifiers in Window’s VSVersionInfo
files. (#6259 [https://github.com/pyinstaller/pyinstaller/issues/6259])

	Implement basic resource reader for accessing on-filesystem resources (data
files)
via importlib.resources (python >= 3.9) or importlib_resources
(python <= 3.8). (#5616 [https://github.com/pyinstaller/pyinstaller/issues/5616])

	Ship precompiled wheels for musl-based Linux distributions (such as Alpine or
OpenWRT) on x86_64 and aarch64. (#6245 [https://github.com/pyinstaller/pyinstaller/issues/6245])

Bugfix

	(macOS) Ensure that executable pre-processing and post-processing steps
(target arch selection, SDK version adjustment, (re)signing) are applied in
the stand-alone PKG mode. (#6251 [https://github.com/pyinstaller/pyinstaller/issues/6251])

	(macOS) Robustify the macOS assembly pipeline to work around the issues with
the codesign utility on macOS 10.13 High Sierra. (#6167 [https://github.com/pyinstaller/pyinstaller/issues/6167])

	(Windows) Fix collection of sysconfig platform-specific data module when
using MSYS2/MINGW python. (#6118 [https://github.com/pyinstaller/pyinstaller/issues/6118])

	(Windows) Fix displayed script name and exception message in the
unhandled exception dialog (windowed mode) when bootloader is compiled
using the MinGW-w64 toolchain. (#6199 [https://github.com/pyinstaller/pyinstaller/issues/6199])

	(Windows) Fix issues in onedir frozen applications when the bootloader
is compiled using a toolchain that forcibly embeds a default manifest
(e.g., the MinGW-w64 toolchain from msys2). The issues range from
manifest-related options (e.g., uac-admin) not working to windowed frozen
application not starting at all (with the The procedure entry point
LoadIconMetric could not be located... error message). (#6196 [https://github.com/pyinstaller/pyinstaller/issues/6196])

	(Windows) Fix the declared length of strings in the optional embedded
product version information resource structure. The declared lengths
were twice too long, and resulted in trailing garbage characters when
the version information was read using ctypes and winver API.
(#6219 [https://github.com/pyinstaller/pyinstaller/issues/6219])

	(Windows) Remove the attempt to load the manifest of a onefile
frozen executable via the activation context, which fails with An
attempt to set the process default activation context failed because
the process default activation context was already set. message that
can be observed in debug builds. This approach has been invalid ever
since #3746 [https://github.com/pyinstaller/pyinstaller/issues/3746] implemented direct manifest embedding into the
onefile executable. (#6248 [https://github.com/pyinstaller/pyinstaller/issues/6248])

	(Windows) Suppress missing library warnings for api-ms-win-core-* DLLs.
(#6201 [https://github.com/pyinstaller/pyinstaller/issues/6201])

	(Windows) Tolerate reading Windows VSVersionInfo files with unicode byte
order
marks. (#6259 [https://github.com/pyinstaller/pyinstaller/issues/6259])

	Fix sys.executable pointing to the external package file instead of
the executable when in package side-load mode (pkg_append=False).
(#6202 [https://github.com/pyinstaller/pyinstaller/issues/6202])

	Fix a runaway glob which caused ctypes.util.find_library("libfoo") to
non-deterministically pick any library
matching libfoo* to bundle instead of libfoo.so. (#6245 [https://github.com/pyinstaller/pyinstaller/issues/6245])

	Fix compatibility with with MIPS and loongarch64 architectures.
(#6306 [https://github.com/pyinstaller/pyinstaller/issues/6306])

	Fix the FrozenImporter.get_source() to correctly handle the packages’
__init__.py source files. This in turn fixes missing-source-file
errors for packages that use pytorch JIT when the source .py files
are collected and available (for example, kornia). (#6237 [https://github.com/pyinstaller/pyinstaller/issues/6237])

	Fix the location of the generated stand-alone pkg file when using the
side-load mode (pkg_append=False) in combination with onefile mode.
The package file is now placed next to the executable instead of next to
the .spec file. (#6202 [https://github.com/pyinstaller/pyinstaller/issues/6202])

	When generating spec files, avoid hard-coding the spec file’s location as the
pathex argument to the Analysis. (#6254 [https://github.com/pyinstaller/pyinstaller/issues/6254])

Incompatible Changes

	(Windows) By default, manifest is now embedded into the executable in
onedir mode. The old behavior of generating the external manifest
file can be re-enabled using the --no-embed-manifest
command-line switch, or via the embed_manifest=False argument to
EXE() in the .spec file. (#6248 [https://github.com/pyinstaller/pyinstaller/issues/6248])

Hooks

	(macOS) Fix compatibility with Anaconda PyQt5 package. (#6181 [https://github.com/pyinstaller/pyinstaller/issues/6181])

	Add a hook for pandas.plotting to restore compatibility with pandas
1.3.0
and later. (#5994 [https://github.com/pyinstaller/pyinstaller/issues/5994])

	Add a hook for QtOpenGLWidgets for PyQt6 and PySide6 to collect
the new QtOpenGLWidgets module introduced in Qt6 (#6310 [https://github.com/pyinstaller/pyinstaller/issues/6310])

	Add hooks for QtPositioning and QtLocation modules of the Qt5-based
packages (PySide2 and PyQt5) to ensure that corresponding plugins
are collected. (#6250 [https://github.com/pyinstaller/pyinstaller/issues/6250])

	Fix compatibility with PyQt5 5.9.2 from conda’s main channel.
(#6114 [https://github.com/pyinstaller/pyinstaller/issues/6114])

	Prevent potential error in hooks for Qt-based packages that could be
triggered
by a partial PyQt6 installation. (#6141 [https://github.com/pyinstaller/pyinstaller/issues/6141])

	Update QtNetwork hook for PyQt6 and PySide6 to collect the
new tls plugins that were introduced in Qt 6.2. (#6276 [https://github.com/pyinstaller/pyinstaller/issues/6276])

	Update the gi.repository.GtkSource hook to accept a module-versions
hooksconfig dict in order to allow the hook to be used with GtkSource
versions
greater than 3.0. (#6267 [https://github.com/pyinstaller/pyinstaller/issues/6267])

Bootloader

	(Windows) Suppress two snprintf truncation warnings that prevented
bootloader from building with winlibs MinGW-w64 toolchain.
(#6196 [https://github.com/pyinstaller/pyinstaller/issues/6196])

	Update the Linux bootloader cross compiler Dockerfile to allow using the
official PyPA base images [https://quay.io/organization/pypa/] in place of the dockcross ones.
(#6245 [https://github.com/pyinstaller/pyinstaller/issues/6245])

4.5.1 (2021-08-06)

Bugfix

	Fix hook loader function not finding hooks if path has whitespaces.
(#6080 [https://github.com/pyinstaller/pyinstaller/issues/6080])

4.5 (2021-08-01)

Features

	(POSIX) Add exclude_system_libraries function to the Analysis class
for .spec files,
to exclude most or all non-Python system libraries from the bundle.
Documented in new POSIX Specific Options section. (#6022 [https://github.com/pyinstaller/pyinstaller/issues/6022])

Bugfix

	(Cygwin) Add _MEIPASS to DLL search path to fix loading of python shared
library in onefile builds made in cygwin environment and executed outside of
it. (#6000 [https://github.com/pyinstaller/pyinstaller/issues/6000])

	(Linux) Display missing library warnings for “not found” lines in ldd
output (i.e., libsomething.so => not found) instead of quietly
ignoring them. (#6015 [https://github.com/pyinstaller/pyinstaller/issues/6015])

	(Linux) Fix spurious missing library warning when libc.so points to
ldd. (#6015 [https://github.com/pyinstaller/pyinstaller/issues/6015])

	(macOS) Fix python shared library detection for non-framework python builds
when the library path cannot be inferred from imports of the python
executable. (#6021 [https://github.com/pyinstaller/pyinstaller/issues/6021])

	(macOS) Fix the crashes in onedir bundles of tkinter-based
applications
created using Homebrew python 3.9 and Tcl/Tk 8.6.11. (#6043 [https://github.com/pyinstaller/pyinstaller/issues/6043])

	(macOS) When fixing executable for codesigning, update the value of
vmsize field in the __LINKEDIT segment. (#6039 [https://github.com/pyinstaller/pyinstaller/issues/6039])

	Downgrade messages about missing dynamic link libraries from ERROR to
WARNING. (#6015 [https://github.com/pyinstaller/pyinstaller/issues/6015])

	Fix a bytecode parsing bug which caused tuple index errors whilst scanning
modules which use ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes]. (#6007 [https://github.com/pyinstaller/pyinstaller/issues/6007])

	Fix an error when rhtooks for pkgutil and pkg_resources are used
together. (#6018 [https://github.com/pyinstaller/pyinstaller/issues/6018])

	Fix architecture detection on Apple M1 (#6029 [https://github.com/pyinstaller/pyinstaller/issues/6029])

	Fix crash in windowed bootloader when the traceback for unhandled exception
cannot be retrieved. (#6070 [https://github.com/pyinstaller/pyinstaller/issues/6070])

	Improve handling of errors when loading hook entry-points. (#6028 [https://github.com/pyinstaller/pyinstaller/issues/6028])

	Suppress missing library warning for shiboken2 (PySide2) and
shiboken6 (PySide6) shared library. (#6015 [https://github.com/pyinstaller/pyinstaller/issues/6015])

Incompatible Changes

	(macOS) Disable processing of Apple events for the purpose of argv emulation
in onedir application bundles. This functionality was introduced in
PyInstaller 4.4 by (#5920 [https://github.com/pyinstaller/pyinstaller/issues/5920]) in response to feature requests
(#5436 [https://github.com/pyinstaller/pyinstaller/issues/5436]) and (#5908 [https://github.com/pyinstaller/pyinstaller/issues/5908]), but was discovered to be breaking
tkinter-based onedir bundles made with Homebrew python 3.9 and
Tcl/Tk 8.6.11 (#6043 [https://github.com/pyinstaller/pyinstaller/issues/6043]). As such, until the cause is investigated
and the issue addressed, this feature is reverted/disabled. (#6048 [https://github.com/pyinstaller/pyinstaller/issues/6048])

Hooks

	Add a hook for pandas.io.formats.style to deal with indirect import of
jinja2 and the missing template file. (#6010 [https://github.com/pyinstaller/pyinstaller/issues/6010])

	Simplify the PySide2.QWebEngineWidgets and PyQt5.QWebEngineWidgets by
merging most of their code into a common helper function. (#6020 [https://github.com/pyinstaller/pyinstaller/issues/6020])

Documentation

	Add a page describing hook configuration mechanism and the currently
implemented options. (#6025 [https://github.com/pyinstaller/pyinstaller/issues/6025])

PyInstaller Core

	Isolate discovery of 3rd-party hook directories into a separate
subprocess to avoid importing packages in the main process. (#6032 [https://github.com/pyinstaller/pyinstaller/issues/6032])

Bootloader build

	Allow statically linking zlib on non-Windows specified via either a
--static-zlib flag or a PYI_STATIC_ZLIB=1 environment variable.
(#6010 [https://github.com/pyinstaller/pyinstaller/issues/6010])

4.4 (2021-07-13)

Features

	(macOS) Implement signing of .app bundle (ad-hoc or with actual signing
identity, if provided). (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	(macOS) Implement support for Apple Silicon M1 (arm64) platform
and different targets for frozen applications (thin-binary x86_64,
thin-binary arm64, and fat-binary universal2), with build-time
arch validation and ad-hoc resigning of all collected binaries.
(#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	(macOS) In onedir windowed (.app bundle) mode, perform an
interaction of Apple event processing to convert odoc and GURL
events to sys.argv before entering frozen python script. (#5920 [https://github.com/pyinstaller/pyinstaller/issues/5920])

	(macOS) In windowed (.app bundle) mode, always log unhandled exception
information to syslog, regardless of debug mode. (#5890 [https://github.com/pyinstaller/pyinstaller/issues/5890])

	(Windows) Add support for Python from Microsoft App Store. (#5816 [https://github.com/pyinstaller/pyinstaller/issues/5816])

	(Windows) Implement a custom dialog for displaying information about
unhandled
exception and its traceback when running in windowed/noconsole mode.
(#5890 [https://github.com/pyinstaller/pyinstaller/issues/5890])

	Add recursive option to PyInstaller.utils.hooks.copy_metadata().
(#5830 [https://github.com/pyinstaller/pyinstaller/issues/5830])

	Add --codesign-identity command-line switch to perform code-signing
with actual signing identity instead of ad-hoc signing (macOS only).
(#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	Add --osx-entitlements-file command-line switch that specifies optional
entitlements file to be used during code signing of collected binaries
(macOS only). (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	Add --target-arch command-line switch to select target architecture
for frozen application (macOS only). (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	Add a splash screen that displays a background image and text:
The splash screen can be controlled from within Python using the
pyi_splash module.
A splash screen can be added using the --splash IMAGE_FILE option.
If optional text is enabled, the splash screen will show the progress of
unpacking in
onefile mode.
This feature is supported only on Windows and Linux.
A huge thanks to @Chrisg2000 [https://github.com/Chrisg2000] for
programming this feature. (#4354 [https://github.com/pyinstaller/pyinstaller/issues/4354], #4887 [https://github.com/pyinstaller/pyinstaller/issues/4887])

	Add hooks for PyQt6. (#5865 [https://github.com/pyinstaller/pyinstaller/issues/5865])

	Add hooks for PySide6. (#5865 [https://github.com/pyinstaller/pyinstaller/issues/5865])

	Add option to opt-out from reporting full traceback for unhandled exceptions
in windowed mode (Windows and macOS only), via
--disable-windowed-traceback
PyInstaller CLI switch and the corresponding disable_windowed_traceback
boolean argument to EXE() in spec file. (#5890 [https://github.com/pyinstaller/pyinstaller/issues/5890])

	Allow specify which icon set, themes and locales
to pack with Gtk applications.
Pass a keyword arg hooksconfig to
Analysis.

a = Analysis(["my-gtk-app.py"],
 ...,
 hooksconfig={
 "gi": {
 "icons": ["Adwaita"],
 "themes": ["Adwaita"],
 "languages": ["en_GB", "zh_CN"]
 }
 },
 ...)

(#5853 [https://github.com/pyinstaller/pyinstaller/issues/5853])

	Automatically exclude Qt plugins from UPX processing. (#4178 [https://github.com/pyinstaller/pyinstaller/issues/4178])

	Collect distribution metadata automatically.
This works by scanning collected Python files for uses of:

	pkg_resources.get_distribution()

	pkg_resources.require()

	importlib.metadata.distribution()

	importlib.metadata.metadata()

	importlib.metadata.files()

	importlib.metadata.version()

In all cases, the metadata will only be collected if the distribution name is
given as a plain string literal. Anything more complex will still require a
hook containing PyInstaller.utils.hooks.copy_metadata().
(#5830 [https://github.com/pyinstaller/pyinstaller/issues/5830])

	Implement support for pkgutil.iter_modules() [https://docs.python.org/3/library/pkgutil.html#pkgutil.iter_modules]. (#1905 [https://github.com/pyinstaller/pyinstaller/issues/1905])

	Windows: Provide a meaningful error message if given an icon in an
unsupported
Image format. (#5755 [https://github.com/pyinstaller/pyinstaller/issues/5755])

Bugfix

	(macOS) App bundles built in onedir mode now filter out -psnxxx
command-line argument from sys.argv, to keep behavior consistent
with bundles built in onefile mode. (#5920 [https://github.com/pyinstaller/pyinstaller/issues/5920])

	(macOS) Ensure that the macOS SDK version reported by the frozen application
corresponds to the minimum of the SDK version used to build the bootloader
and the SDK version used to build the Python library. Having the application
report more recent version than Python library and other bundled libraries
may result in macOS attempting to enable additional features that are not
available in the Python library, which may in turn cause inconsistent
behavior
and UI issues with tkinter. (#5839 [https://github.com/pyinstaller/pyinstaller/issues/5839])

	(macOS) Remove spurious MacOS/ prefix from CFBundleExecutable
property
in the generated Info.plist when building an app bundle. (#4413 [https://github.com/pyinstaller/pyinstaller/issues/4413],
#5442 [https://github.com/pyinstaller/pyinstaller/issues/5442])

	(macOS) The drag & drop file paths passed to app bundles built in
onedir mode are now reflected in sys.argv. (#5436 [https://github.com/pyinstaller/pyinstaller/issues/5436])

	(macOS) The file paths passed from the UI (Open with…) to app bundles
built in onedir mode are now reflected in sys.argv. (#5908 [https://github.com/pyinstaller/pyinstaller/issues/5908])

	(macOS) Work around the tkinter UI issues due to problems with
dark mode activation: black Tk window with macOS Intel installers
from python.org, or white text on bright background with Anaconda
python. (#5827 [https://github.com/pyinstaller/pyinstaller/issues/5827])

	(Windows) Enable collection of additional VC runtime DLLs (msvcp140.dll,
msvcp140_1.dll, msvcp140_2.dll, and vcruntime140_1.dll), to
allow frozen applications to run on Windows systems that do not have
Visual Studio 2015/2017/2019 Redistributable installed. (#5770 [https://github.com/pyinstaller/pyinstaller/issues/5770])

	Enable retrieval of code object for __main__ module via its associated
loader (i.e., FrozenImporter). (#5897 [https://github.com/pyinstaller/pyinstaller/issues/5897])

	Fix inspect.getmodule() [https://docs.python.org/3/library/inspect.html#inspect.getmodule] failing to resolve module from stack-frame
obtained via inspect.stack() [https://docs.python.org/3/library/inspect.html#inspect.stack]. (#5963 [https://github.com/pyinstaller/pyinstaller/issues/5963])

	Fix __main__ module being recognized as built-in instead of module.
(#5897 [https://github.com/pyinstaller/pyinstaller/issues/5897])

	Fix a bug in ctypes dependency scanning which
caused references to be missed if the preceding code contains more than
256 names or 256 literals. (#5830 [https://github.com/pyinstaller/pyinstaller/issues/5830])

	Fix collection of duplicated _struct and zlib extension modules
with mangled filenames. (#5851 [https://github.com/pyinstaller/pyinstaller/issues/5851])

	Fix python library lookup when building with RH SCL python 3.8 or later.
(#5749 [https://github.com/pyinstaller/pyinstaller/issues/5749])

	Prevent PyInstaller.utils.hooks.copy_metadata() from renaming
[...].dist-info metadata folders to [...].egg-info which breaks usage
of pkg_resources.requires() with extras. (#5774 [https://github.com/pyinstaller/pyinstaller/issues/5774])

	Prevent a bootloader executable without an embedded CArchive from being
misidentified as having one, which leads to undefined behavior in frozen
applications with side-loaded CArchive packages. (#5762 [https://github.com/pyinstaller/pyinstaller/issues/5762])

	Prevent the use of sys or os as variables in the global namespace
in frozen script from affecting the ctypes hooks thar are installed
during bootstrap. (#5797 [https://github.com/pyinstaller/pyinstaller/issues/5797])

	Windows: Fix EXE being rebuilt when there are no changes. (#5921 [https://github.com/pyinstaller/pyinstaller/issues/5921])

Hooks

	
	Add PostGraphAPI.analysis attribute.
Hooks can access the Analysis object
through the hook() function.

	Hooks may access a Analysis.hooksconfig attribute
assigned on Analysis construction.

A helper function get_hook_config()
was defined in utils.hooks to get the config. (#5853 [https://github.com/pyinstaller/pyinstaller/issues/5853])

	Add support for PyQt5 5.15.4. (#5631 [https://github.com/pyinstaller/pyinstaller/issues/5631])

	Do not exclude setuptools.py27compat and setuptools.py33compat
as they are required by other setuptools modules. (#5979 [https://github.com/pyinstaller/pyinstaller/issues/5979])

	Switch the library search order in ctypes hooks: first check whether
the given name exists as-is, before trying to search for its basename in
sys._MEIPASS (instead of the other way around). (#5907 [https://github.com/pyinstaller/pyinstaller/issues/5907])

Bootloader

	(macOS) Build bootloader as universal2 binary by default (can
be disabled by passing --no-universal2 to waf). (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	Add Tcl/Tk based Splash screen, which is controlled from
within Python. The necessary module to create the Splash
screen in PyInstaller is under Splash available.
A huge thanks to @Chrisg2000 [https://github.com/Chrisg2000] for
programming this feature. (#4887 [https://github.com/pyinstaller/pyinstaller/issues/4887])

	Provide a Dockerfile to build Linux bootloaders for different architectures.
(#5995 [https://github.com/pyinstaller/pyinstaller/issues/5995])

Documentation

	Document the new macOS multi-arch support and code-signing behavior
in corresponding sub-sections of Notes about specific Features.
(#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

Bootloader build

	Update clang in linux64 Vagrant VM to clang-11 from
apt.llvm.org so it can build universal2 macOS bootloader.
(#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

	Update crossosx Vagrant VM to build the toolchain from Command Line
Tools for Xcode instead of full Xcode package. (#5581 [https://github.com/pyinstaller/pyinstaller/issues/5581])

4.3 (2021-04-16)

Features

	Provide basic implementation for FrozenImporter.get_source() that
allows reading source from .py files that are collected by hooks as
data files. (#5697 [https://github.com/pyinstaller/pyinstaller/issues/5697])

	Raise the maximum allowed size of CArchive (and consequently onefile
executables) from 2 GiB to 4 GiB. (#3939 [https://github.com/pyinstaller/pyinstaller/issues/3939])

	The unbuffered stdio mode (the u option) now sets the
Py_UnbufferedStdioFlag
flag to enable unbuffered stdio mode in Python library. (#1441 [https://github.com/pyinstaller/pyinstaller/issues/1441])

	Windows: Set EXE checksums. Reduces false-positive detection from antiviral
software. (#5579 [https://github.com/pyinstaller/pyinstaller/issues/5579])

	Add new command-line options that map to collect functions from hookutils:
--collect-submodules, --collect-data, --collect-binaries,
--collect-all, and --copy-metadata. (#5391 [https://github.com/pyinstaller/pyinstaller/issues/5391])

	Add new hook utility collect_entry_point() for
collecting plugins defined through setuptools entry points. (#5734 [https://github.com/pyinstaller/pyinstaller/issues/5734])

Bugfix

	(macOS) Fix Bad CPU type in executable error in helper-spawned python
processes when running under arm64-only flavor of Python on Apple M1.
(#5640 [https://github.com/pyinstaller/pyinstaller/issues/5640])

	(OSX) Suppress missing library error messages for system libraries as
those are never collected by PyInstaller and starting with Big Sur,
they are hidden by the OS. (#5107 [https://github.com/pyinstaller/pyinstaller/issues/5107])

	(Windows) Change default cache directory to LOCALAPPDATA
(from the original APPDATA).
This is to make sure that cached data
doesn’t get synced with the roaming profile.
For this and future versions AppData\Roaming\pyinstaller
might be safely deleted. (#5537 [https://github.com/pyinstaller/pyinstaller/issues/5537])

	(Windows) Fix onefile builds not having manifest embedded when icon is
disabled via --icon NONE. (#5625 [https://github.com/pyinstaller/pyinstaller/issues/5625])

	(Windows) Fix the frozen program crashing immediately with
Failed to execute script pyiboot01_bootstrap message when built in
noconsole mode and with import logging enabled (either via
--debug imports or --debug all command-line switch). (#4213 [https://github.com/pyinstaller/pyinstaller/issues/4213])

	CArchiveReader now performs full back-to-front file search for
MAGIC, allowing pyi-archive_viewer to open binaries with extra
appended data after embedded package (e.g., digital signature).
(#2372 [https://github.com/pyinstaller/pyinstaller/issues/2372])

	Fix MERGE() to properly set references to nested resources with their
full shared-package-relative path instead of just basename. (#5606 [https://github.com/pyinstaller/pyinstaller/issues/5606])

	Fix onefile builds failing to extract files when the full target
path exceeds 260 characters. (#5617 [https://github.com/pyinstaller/pyinstaller/issues/5617])

	Fix a crash in pyi-archive_viewer when quitting the application or
moving up a level. (#5554 [https://github.com/pyinstaller/pyinstaller/issues/5554])

	Fix extraction of nested files in onefile builds created in MSYS
environments. (#5569 [https://github.com/pyinstaller/pyinstaller/issues/5569])

	Fix installation issues stemming from unicode characters in
file paths. (#5678 [https://github.com/pyinstaller/pyinstaller/issues/5678])

	Fix the build-time error under python 3.7 and earlier when ctypes
is manually added to hiddenimports. (#3825 [https://github.com/pyinstaller/pyinstaller/issues/3825])

	Fix the return code if the frozen script fails due to unhandled exception.
The return code 1 is used instead of -1, to keep the behavior consistent
with that of the python interpreter. (#5480 [https://github.com/pyinstaller/pyinstaller/issues/5480])

	Linux: Fix binary dependency scanner to support changes to ldconfig [https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=dfb3f101c5ef23adf60d389058a2b33e23303d04]
introduced in glibc 2.33. (#5540 [https://github.com/pyinstaller/pyinstaller/issues/5540])

	Prevent MERGE (multipackage) from creating self-references for
duplicated TOC entries. (#5652 [https://github.com/pyinstaller/pyinstaller/issues/5652])

	PyInstaller-frozen onefile programs are now compatible with staticx
even if the bootloader is built as position-independent executable (PIE).
(#5330 [https://github.com/pyinstaller/pyinstaller/issues/5330])

	Remove dependence on a private function [https://github.com/matplotlib/matplotlib/commit/e1352c71f07aee7eab004b73dd9bda2a260ab31b]
removed in matplotlib 3.4.0rc1. (#5568 [https://github.com/pyinstaller/pyinstaller/issues/5568])

	Strip absolute paths from .pyc modules collected into
base_library.zip
to enable reproducible builds that are invariant to Python install location.
(#5563 [https://github.com/pyinstaller/pyinstaller/issues/5563])

	(OSX) Fix issues with pycryptodomex on macOS. (#5583 [https://github.com/pyinstaller/pyinstaller/issues/5583])

	Allow compiled modules to be collected into base_library.zip.
(#5730 [https://github.com/pyinstaller/pyinstaller/issues/5730])

	Fix a build error triggered by scanning ctypes.CDLL('libc.so') on certain
Linux C compiler combinations. (#5734 [https://github.com/pyinstaller/pyinstaller/issues/5734])

	Improve performance and reduce stack usage of module scanning.
(#5698 [https://github.com/pyinstaller/pyinstaller/issues/5698])

Hooks

	Add support for Conda Forge’s distribution of NumPy. (#5168 [https://github.com/pyinstaller/pyinstaller/issues/5168])

	Add support for package content listing via pkg_resources. The
implementation enables querying/listing resources in a frozen package
(both PYZ-embedded and on-filesystem, in that order of precedence) via
pkg_resources.resource_exists(), resource_isdir(), and
resource_listdir(). (#5284 [https://github.com/pyinstaller/pyinstaller/issues/5284])

	Hooks: Import correct typelib for GtkosxApplication. (#5475 [https://github.com/pyinstaller/pyinstaller/issues/5475])

	Prevent matplotlib hook from collecting current working directory when it
fails to determine the path to matplotlib’s data directory. (#5629 [https://github.com/pyinstaller/pyinstaller/issues/5629])

	Update pandas hook for compatibility with version 1.2.0 and later.
(#5630 [https://github.com/pyinstaller/pyinstaller/issues/5630])

	Update hook for distutils.sysconfig to be compatible with
pyenv-virtualenv. (#5218 [https://github.com/pyinstaller/pyinstaller/issues/5218])

	Update hook for sqlalchemy to support version 1.4.0 and above.
(#5679 [https://github.com/pyinstaller/pyinstaller/issues/5679])

	Update hook for sysconfig to be compatible with pyenv-virtualenv.
(#5018 [https://github.com/pyinstaller/pyinstaller/issues/5018])

Bootloader

	Implement full back-to-front file search for the embedded archive.
(#5511 [https://github.com/pyinstaller/pyinstaller/issues/5511])

	Perform file extraction from the embedded archive in a streaming manner
in order to limit memory footprint when archive contains large files.
(#5551 [https://github.com/pyinstaller/pyinstaller/issues/5551])

	Set the __file__ attribute in the __main__ module (entry-point
script) to the absolute file name inside the _MEIPASS. (#5649 [https://github.com/pyinstaller/pyinstaller/issues/5649])

	Enable cross compiling for FreeBSD from Linux. (#5733 [https://github.com/pyinstaller/pyinstaller/issues/5733])

Documentation

	Doc: Add version spec file option for macOS Bundle. (#5476 [https://github.com/pyinstaller/pyinstaller/issues/5476])

	Update the Run-time Information section to reflect the changes in
behavior of __file__ inside the __main__ module. (#5649 [https://github.com/pyinstaller/pyinstaller/issues/5649])

PyInstaller Core

	Drop support for python 3.5; EOL since September 2020. (#5439 [https://github.com/pyinstaller/pyinstaller/issues/5439])

	Collect python extension modules that correspond to built-ins into
lib-dynload sub-directory instead of directly into bundle’s root
directory. This prevents them from shadowing shared libraries with the
same basename that are located in a package and loaded via ctypes or
cffi, and also declutters the bundle’s root directory. (#5604 [https://github.com/pyinstaller/pyinstaller/issues/5604])

Breaking

	No longer collect pyconfig.h and makefile for sysconfig [https://docs.python.org/3/library/sysconfig.html#module-sysconfig]. Instead
of get_config_h_filename() [https://docs.python.org/3/library/sysconfig.html#sysconfig.get_config_h_filename] and
get_makefile_filename() [https://docs.python.org/3/library/sysconfig.html#sysconfig.get_makefile_filename], you should use
get_config_vars() [https://docs.python.org/3/library/sysconfig.html#sysconfig.get_config_vars] which no longer depends on those files. (#5218 [https://github.com/pyinstaller/pyinstaller/issues/5218])

	The __file__ attribute in the __main__ module (entry-point
script) is now set to the absolute file name inside the _MEIPASS
(as if script file existed there) instead of just script filename.
This better matches the behavior of __file__ in the unfrozen script,
but might break the existing code that explicitly relies on the old
frozen behavior. (#5649 [https://github.com/pyinstaller/pyinstaller/issues/5649])

4.2 (2021-01-13)

Features

	Add hooks utilities to find binary dependencies of Anaconda distributions.
(#5213 [https://github.com/pyinstaller/pyinstaller/issues/5213])

	(OSX) Automatically remove the signature from the collected copy of the
Python shared library, using codesign --remove-signature. This
accommodates both onedir and onefile builds with recent python
versions for macOS, where invalidated signature on PyInstaller-collected
copy of the Python library prevents the latter from being loaded.
(#5451 [https://github.com/pyinstaller/pyinstaller/issues/5451])

	(Windows) PyInstaller’s console or windowed icon is now added at freeze-time
and
no longer built into the bootloader. Also, using --icon=NONE allows to
not
apply any icon, thereby making the OS to show some default icon.
(#4700 [https://github.com/pyinstaller/pyinstaller/issues/4700])

	(Windows) Enable longPathAware option in built application’s manifest in
order to support long file paths on Windows 10 v.1607 and later.
(#5424 [https://github.com/pyinstaller/pyinstaller/issues/5424])

Bugfix

	Fix loading of plugin-type modules at run-time of the frozen application:
If the plugin path is one character longer than sys._MEIPATH
(e.g. “$PWD/p/plugin_1” and “$PWD/dist/main”),
the plugin relative-imports a sub-module (of the plugin)
and the frozen application contains a module of the same name,
the frozen application module was imported. (#4141 [https://github.com/pyinstaller/pyinstaller/issues/4141], #4299 [https://github.com/pyinstaller/pyinstaller/issues/4299])

	Ensure that spec for frozen packages has submodule_search_locations set
in order to fix compatibility with importlib_resources 3.2.0 and later.
(#5396 [https://github.com/pyinstaller/pyinstaller/issues/5396])

	Fix: No rebuild if “noarchive” build-option changes. (#5404 [https://github.com/pyinstaller/pyinstaller/issues/5404])

	(OSX) Fix the problem with Python shared library collected from
recent python versions not being loaded due to invalidated signature.
(#5062 [https://github.com/pyinstaller/pyinstaller/issues/5062], #5272 [https://github.com/pyinstaller/pyinstaller/issues/5272], #5434 [https://github.com/pyinstaller/pyinstaller/issues/5434])

	(Windows) PyInstaller’s default icon is no longer built into the bootloader,
but
added at freeze-time. Thus, when specifying an icon, only that icon is
contained in the executable and displayed for a shortcut. (#870 [https://github.com/pyinstaller/pyinstaller/issues/870],
#2995 [https://github.com/pyinstaller/pyinstaller/issues/2995])

	(Windows) Fix “toc is bad” error messages
when passing a VSVersionInfo
as the version parameter to EXE()
in a .spec file. (#5445 [https://github.com/pyinstaller/pyinstaller/issues/5445])

	(Windows) Fix exception when trying to read a manifest from an exe or dll.
(#5403 [https://github.com/pyinstaller/pyinstaller/issues/5403])

	(Windows) Fix the --runtime-tmpdir option by creating paths if they don’t
exist and expanding environment variables (e.g. %LOCALAPPDATA%).
(#3301 [https://github.com/pyinstaller/pyinstaller/issues/3301], #4579 [https://github.com/pyinstaller/pyinstaller/issues/4579], #4720 [https://github.com/pyinstaller/pyinstaller/issues/4720])

Hooks

	(GNU/Linux) Collect xcbglintegrations and egldeviceintegrations
plugins as part of Qt5Gui. (#5349 [https://github.com/pyinstaller/pyinstaller/issues/5349])

	(macOS) Fix: Unable to code sign apps built with GTK (#5435 [https://github.com/pyinstaller/pyinstaller/issues/5435])

	(Windows) Add a hook for win32ctypes.core. (#5250 [https://github.com/pyinstaller/pyinstaller/issues/5250])

	Add hook for scipy.spatial.transform.rotation to fix compatibility with
SciPy 1.6.0. (#5456 [https://github.com/pyinstaller/pyinstaller/issues/5456])

	Add hook-gi.repository.GtkosxApplication to fix TypeError with Gtk macOS
apps. (#5385 [https://github.com/pyinstaller/pyinstaller/issues/5385])

	Add hooks utilities to find binary dependencies of Anaconda distributions.
(#5213 [https://github.com/pyinstaller/pyinstaller/issues/5213])

	Fix the Qt5 library availability check in PyQt5 and PySide2 hooks
to re-enable support for Qt5 older than 5.8. (#5425 [https://github.com/pyinstaller/pyinstaller/issues/5425])

	Implement exec_statement_rc() and exec_script_rc() as exit-code
returning counterparts of exec_statement() and exec_script().
Implement can_import_module() helper for hooks that need to query module
availability. (#5301 [https://github.com/pyinstaller/pyinstaller/issues/5301])

	Limit the impact of a failed sub-package import on the result of
collect_submodules() to ensure that modules from all other sub-packages
are collected. (#5426 [https://github.com/pyinstaller/pyinstaller/issues/5426])

	Removed obsolete pygame hook. (#5362 [https://github.com/pyinstaller/pyinstaller/issues/5362])

	Update keyring hook to collect metadata, which is required for backend
discovery. (#5245 [https://github.com/pyinstaller/pyinstaller/issues/5245])

Bootloader

	(GNU/Linux) Reintroduce executable resolution via readlink() on
/proc/self/exe and preserve the process name using prctl() with
PR_GET_NAME and PR_SET_NAME. (#5232 [https://github.com/pyinstaller/pyinstaller/issues/5232])

	(Windows) Create temporary directories with user’s SID instead of
S-1-3-4,
to work around the lack of support for the latter in wine.
This enables onefile builds to run under wine again. (#5216 [https://github.com/pyinstaller/pyinstaller/issues/5216])

	(Windows) Fix a bug in path-handling code with paths exceeding PATH_MAX,
which is caused by use of _snprintf instead of snprintf when
building with MSC. Requires Visual Studio 2015 or later.
Clean up the MSC codepath to address other compiler warnings.
(#5320 [https://github.com/pyinstaller/pyinstaller/issues/5320])

	(Windows) Fix building of bootloader’s test suite under Windows with Visual
Studio.
This fixes build errors when cmocka is present in the build environment.
(#5318 [https://github.com/pyinstaller/pyinstaller/issues/5318])

	(Windows) Fix compiler warnings produced by MinGW 10.2 in order to allow
building the bootloader without having to suppress the warnings.
(#5322 [https://github.com/pyinstaller/pyinstaller/issues/5322])

	(Windows) Fix windowed+debug bootloader variant not properly
displaying the exception message and traceback information when the
frozen script terminates due to uncaught exception. (#5446 [https://github.com/pyinstaller/pyinstaller/issues/5446])

PyInstaller Core

	(Windows) Avoid using UPX with DLLs that have control flow guard (CFG)
enabled. (#5382 [https://github.com/pyinstaller/pyinstaller/issues/5382])

	Avoid using .pyo module file suffix (removed since PEP-488) in
noarchive mode. (#5383 [https://github.com/pyinstaller/pyinstaller/issues/5383])

	Improve support for PEP-420 namespace packages. (#5354 [https://github.com/pyinstaller/pyinstaller/issues/5354])

	Strip absolute paths from .pyc modules collected in the CArchive (PKG).
This enables build reproducibility without having to match the location of
the build environment. (#5380 [https://github.com/pyinstaller/pyinstaller/issues/5380])

4.1 (2020-11-18)

Features

	Add support for Python 3.9. (#5289 [https://github.com/pyinstaller/pyinstaller/issues/5289])

	Add support for Python 3.8. (#4311 [https://github.com/pyinstaller/pyinstaller/issues/4311])

Bugfix

	Fix endless recursion if a package’s __init__ module is an extension
module. (#5157 [https://github.com/pyinstaller/pyinstaller/issues/5157])

	Remove duplicate logging messages (#5277 [https://github.com/pyinstaller/pyinstaller/issues/5277])

	Fix sw_64 architecture support (#5296 [https://github.com/pyinstaller/pyinstaller/issues/5296])

	(AIX) Include python-malloc labeled libraries in search for libpython.
(#4210 [https://github.com/pyinstaller/pyinstaller/issues/4210])

Hooks

	Add exclude_datas, include_datas, and filter_submodules to
collect_all(). These arguments map to the excludes and includes
arguments of collect_data_files, and to the filter argument of
collect_submodules. (#5113 [https://github.com/pyinstaller/pyinstaller/issues/5113])

	Add hook for difflib to not pull in doctests, which is only
required when run as main program.

	Add hook for distutils.util to not pull in lib2to3 unittests, which will be
rearly used in frozen packages.

	Add hook for heapq to not pull in doctests, which is only
required when run as main program.

	Add hook for multiprocessing.util to not pull in python test-suite and thus
e.g. tkinter.

	Add hook for numpy._pytesttester to not pull in pytest.

	Add hook for pickle to not pull in doctests and argpargs, which are only
required when run as main program.

	Add hook for PIL.ImageFilter to not pull
numpy, which is an optional component.

	Add hook for setuptools to not pull in numpy, which is only imported if
installed, not mean to be a dependency

	Add hook for zope.interface to not pull in pytest unittests, which will be
rearly used in frozen packages.

	Add hook-gi.repository.HarfBuzz to fix Typelib error with Gtk apps.
(#5133 [https://github.com/pyinstaller/pyinstaller/issues/5133])

	Enable overriding Django settings path by DJANGO_SETTINGS_MODULE
environment variable. (#5267 [https://github.com/pyinstaller/pyinstaller/issues/5267])

	Fix collect_system_data_files to scan the given input path instead of its
parent.
File paths returned by collect_all_system_data are now relative to the
input path. (#5110 [https://github.com/pyinstaller/pyinstaller/issues/5110])

	Fix argument order in exec_script() and eval_script().
(#5300 [https://github.com/pyinstaller/pyinstaller/issues/5300])

	Gevent hook does not unnecessarily bundle HTML documentation, __pycache__
folders, tests nor generated .c and .h files (#4857 [https://github.com/pyinstaller/pyinstaller/issues/4857])

	gevent: Do not pull in test-suite (still to be refined)

	Modify hook for gevent to exclude test submodules. (#5201 [https://github.com/pyinstaller/pyinstaller/issues/5201])

	Prevent .pyo files from being collected by collect_data_files when
include_py_files is False. (#5141 [https://github.com/pyinstaller/pyinstaller/issues/5141])

	Prevent output to stdout during module imports from ending up in the
modules list collected by collect_submodules. (#5244 [https://github.com/pyinstaller/pyinstaller/issues/5244])

	Remove runtime hook and fix regular hook for matplotlib’s data to support
matplotlib>=3.3.0, fix deprecation warning on version 3.1<= & <3.3,
and behave normally for versions <3.1. (#5006 [https://github.com/pyinstaller/pyinstaller/issues/5006])

	Remove support for deprecated PyQt4 and PySide (#5118 [https://github.com/pyinstaller/pyinstaller/issues/5118],
#5126 [https://github.com/pyinstaller/pyinstaller/issues/5126])

	setuptools: Exclude outdated compat modules.

	Update sqlalchemy hook to support v1.3.19 and later, by adding
sqlalchemy.ext.baked as a hidden import (#5128 [https://github.com/pyinstaller/pyinstaller/issues/5128])

	Update tkinter hook to collect Tcl modules directory (tcl8) in
addition to Tcl/Tk data directories. (#5175 [https://github.com/pyinstaller/pyinstaller/issues/5175])

	(GNU/Linux) {PyQt5,PySide2}.QtWebEngineWidgets: fix search for extra NSS
libraries to prevent an error on systems where /lib64/nss/*.so
comes up empty. (#5149 [https://github.com/pyinstaller/pyinstaller/issues/5149])

	(OSX) Avoid collecting data from system Tcl/Tk framework in tkinter hook
as we do not collect their shared libraries, either.
Affects only python versions that still use the system Tcl/Tk 8.5.
(#5217 [https://github.com/pyinstaller/pyinstaller/issues/5217])

	(OSX) Correctly locate the tcl/tk framework bundled with official
python.org python builds from v.3.6.5 on. (#5013 [https://github.com/pyinstaller/pyinstaller/issues/5013])

	(OSX) Fix the QTWEBENGINEPROCESS_PATH set in PyQt5.QtWebEngineWidgets rthook.
(#5183 [https://github.com/pyinstaller/pyinstaller/issues/5183])

	(OSX) PySide2.QtWebEngineWidgets: add QtQmlModels to included libraries.
(#5150 [https://github.com/pyinstaller/pyinstaller/issues/5150])

	(Windows) Remove the obsolete python2.4-era _handle_broken_tcl_tk
work-around for old virtual environments from the tkinter hook.
(#5222 [https://github.com/pyinstaller/pyinstaller/issues/5222])

Bootloader

	Fix freeing memory allocated by Python using free() instead of
PyMem_RawFree(). (#4441 [https://github.com/pyinstaller/pyinstaller/issues/4441])

	(GNU/Linux) Avoid segfault when temp path is missing. (#5255 [https://github.com/pyinstaller/pyinstaller/issues/5255])

	(GNU/Linux) Replace a strncpy() call in pyi_path_dirname() with
snprintf() to ensure that the resulting string is always null-terminated.
(#5212 [https://github.com/pyinstaller/pyinstaller/issues/5212])

	(OSX) Added capability for already-running apps to accept URL & drag’n drop
events via Apple Event forwarding (#5276 [https://github.com/pyinstaller/pyinstaller/issues/5276])

	(OSX) Bump MACOSX_DEPLOYMENT_TARGET from 10.7 to 10.13. (#4627 [https://github.com/pyinstaller/pyinstaller/issues/4627],
#4886 [https://github.com/pyinstaller/pyinstaller/issues/4886])

	(OSX) Fix to reactivate running app on “reopen” (#5295 [https://github.com/pyinstaller/pyinstaller/issues/5295])

	(Windows) Use _wfullpath() instead of _fullpath() in
pyi_path_fullpath to allow non-ASCII characters in the path.
(#5189 [https://github.com/pyinstaller/pyinstaller/issues/5189])

Documentation

	Add zlib to build the requirements in the Building the Bootlooder section of
the docs. (#5130 [https://github.com/pyinstaller/pyinstaller/issues/5130])

PyInstaller Core

	Add informative message what do to if RecurrsionError occurs.
(#4406 [https://github.com/pyinstaller/pyinstaller/issues/4406], #5156 [https://github.com/pyinstaller/pyinstaller/issues/5156])

	Prevent a local directory with clashing name from shadowing a system library.
(#5182 [https://github.com/pyinstaller/pyinstaller/issues/5182])

	Use module loaders to get module content instea of an quirky way semming from
early Python 2.x times. (#5157 [https://github.com/pyinstaller/pyinstaller/issues/5157])

	(OSX) Exempt the Tcl/Tk dynamic libraries in the system framework
from relative path overwrite. Fix missing Tcl/Tk dynlib on older
python.org builds that still make use of the system framework.
(#5172 [https://github.com/pyinstaller/pyinstaller/issues/5172])

Test-suite and Continuous Integration

	Replace skipif_xxx for platform-specific tests by markers.
(#1427 [https://github.com/pyinstaller/pyinstaller/issues/1427])

	Test/CI: Test failures are automatically retried once. (#5214 [https://github.com/pyinstaller/pyinstaller/issues/5214])

Bootloader build

	Fix AppImage builds that were broken since PyInstaller 3.6. (#4693 [https://github.com/pyinstaller/pyinstaller/issues/4693])

	Update build system to use Python 3.

	OSX: Fixed the ineffectiveness of the --distpath argument for the
BUNDLE step. (#4892 [https://github.com/pyinstaller/pyinstaller/issues/4892])

	OSX: Improve codesigning and notarization robustness. (#3550 [https://github.com/pyinstaller/pyinstaller/issues/3550],
#5112 [https://github.com/pyinstaller/pyinstaller/issues/5112])

	OSX: Use high resolution mode by default for GUI applications.
(#4337 [https://github.com/pyinstaller/pyinstaller/issues/4337])

4.0 (2020-08-08)

Features

	Provide setuptools entrypoints to enable other packages to provide
PyInstaller hooks specific to that package, along with tests for these
hooks.

Maintainers of Python packages requiring hooks are invited to use this new
feature and provide up-to-date PyInstaller support along with their package.
This is quite easy, see our sample project [https://github.com/pyinstaller/hooksample] for more information
(#4232 [https://github.com/pyinstaller/pyinstaller/issues/4232], #4301 [https://github.com/pyinstaller/pyinstaller/issues/4301], #4582 [https://github.com/pyinstaller/pyinstaller/issues/4582]).
Many thanks to Bryan A. Jones for implementing the important parts.

	A new package pyinstaller-hooks-contrib [https://github.com/pyinstaller/pyinstaller-hooks-contrib] provides monthly updated hooks
now. This package is installed automatically when installing PyInstaller,
but can be updated independently.
Many thanks to Legorooj for setting up the new package
and moving the hooks there.

	Added the excludes and includes arguments to the hook utility
function collect_data_files.

	Change the hook collection order so that the hook-priority is command line,
then entry-point, then PyInstaller builtins. (#4876 [https://github.com/pyinstaller/pyinstaller/issues/4876])

Bugfix

	(AIX) Include python-malloc labeled libraries in search for libpython.
(#4738 [https://github.com/pyinstaller/pyinstaller/issues/4738])

	(win32) Fix Security Alerts caused by subtle implementation differences
between posix anf windows in os.path.dirname(). (#4707 [https://github.com/pyinstaller/pyinstaller/issues/4707])

	(win32) Fix struct format strings for versioninfo. (#4861 [https://github.com/pyinstaller/pyinstaller/issues/4861])

	(Windows) cv2: bundle the opencv_videoio_ffmpeg*.dll, if available.
(#4999 [https://github.com/pyinstaller/pyinstaller/issues/4999])

	(Windows) GLib: bundle the spawn helper executables for g_spawn* API.
(#5000 [https://github.com/pyinstaller/pyinstaller/issues/5000])

	(Windows) PySide2.QtNetwork: search for SSL DLLs in PrefixPath in addition
to BinariesPath. (#4998 [https://github.com/pyinstaller/pyinstaller/issues/4998])

	(Windows) When building with 32-bit python in onefile mode, set the
requestedExecutionLevel manifest key every time and embed the manifest.
(#4992 [https://github.com/pyinstaller/pyinstaller/issues/4992])

	
	(AIX) Fix uninitialized variable. (#4728 [https://github.com/pyinstaller/pyinstaller/issues/4728], #4734 [https://github.com/pyinstaller/pyinstaller/issues/4734])

	Allow building on a different drive than the source. (#4820 [https://github.com/pyinstaller/pyinstaller/issues/4820])

	Consider Python<version> as possible library binary path. Fixes issue where
python is not found if Python3 is installed via brew on OSX (#4895 [https://github.com/pyinstaller/pyinstaller/issues/4895])

	Ensure shared dependencies from onefile packages can be opened in the
bootloader.

	Ensuring repeatable builds of base_library.zip. (#4654 [https://github.com/pyinstaller/pyinstaller/issues/4654])

	Fix FileNotFoundError showing up in utils/misc.py which occurs when a
namespace was processed as an filename. (#4034 [https://github.com/pyinstaller/pyinstaller/issues/4034])

	Fix multipackaging. The MERGE class will now have the correct relative
paths
between shared dependencies which can correctly be opened by the bootloader.
(#1527 [https://github.com/pyinstaller/pyinstaller/issues/1527], #4303 [https://github.com/pyinstaller/pyinstaller/issues/4303])

	Fix regression when trying to avoid hard-coded paths in .spec files.

	Fix SIGTSTP signal handling to allow typing Ctrl-Z from terminal.
(#4244 [https://github.com/pyinstaller/pyinstaller/issues/4244])

	Update the base library to support encrypting Python bytecode (--key
option) again. Many thanks to Matteo Bertini for finally fixing this.
(#2365 [https://github.com/pyinstaller/pyinstaller/issues/2365], #3093 [https://github.com/pyinstaller/pyinstaller/issues/3093], #3133 [https://github.com/pyinstaller/pyinstaller/issues/3133], #3160 [https://github.com/pyinstaller/pyinstaller/issues/3160],
#3198 [https://github.com/pyinstaller/pyinstaller/issues/3198], #3316 [https://github.com/pyinstaller/pyinstaller/issues/3316], #3619 [https://github.com/pyinstaller/pyinstaller/issues/3619], #4241 [https://github.com/pyinstaller/pyinstaller/issues/4241],
#4652 [https://github.com/pyinstaller/pyinstaller/issues/4652])

	When stripping the leading parts of paths in compiled code objects, the
longest possible import path will now be stripped. (#4922 [https://github.com/pyinstaller/pyinstaller/issues/4922])

Incompatible Changes

	Remove support for Python 2.7. The minimum required version is now Python
3.5. The last version supporting Python 2.7 was PyInstaller 3.6.
(#4623 [https://github.com/pyinstaller/pyinstaller/issues/4623])

	Many hooks are now part of the new pyinstaller-hooks-contrib
repository. See below for a detailed list.

Hooks

	Add hook for scipy.stats._stats (needed for scipy since 1.5.0).
(#4981 [https://github.com/pyinstaller/pyinstaller/issues/4981])

	Prevent hook-nltk from adding non-existing directories. (#3900 [https://github.com/pyinstaller/pyinstaller/issues/3900])

	Fix importlib_resources hook for modern versions (after 1.1.0).
(#4889 [https://github.com/pyinstaller/pyinstaller/issues/4889])

	Fix hidden imports in pkg_resources [https://setuptools.readthedocs.io/en/latest/pkg_resources.html] and packaging [https://packaging.pypa.io/en/latest/] (#5044 [https://github.com/pyinstaller/pyinstaller/issues/5044])

	Add yet more hidden imports to pkg_resources hook.

	Mirror the pkg_resources hook for packaging which may or may not be
duplicate of pkg_resources._vendor.packaging.

	Update pkg_resources hook for setuptools v45.0.0.

	Add QtQmlModels to included libraries for QtWebEngine on OS X
(#4631 [https://github.com/pyinstaller/pyinstaller/issues/4631]).

	Fix detecting Qt5 libraries and dependencies from conda-forge builds
(#4636 [https://github.com/pyinstaller/pyinstaller/issues/4636]).

	Add an AssertionError message so that users who get an error due
to Hook conflicts can resolve it (#4626 [https://github.com/pyinstaller/pyinstaller/issues/4626]).

	These hooks have been moved to the new
pyinstaller-hooks-contrib [https://github.com/pyinstaller/pyinstaller-hooks-contrib] repository:
BTrees, Crypto, Cryptodome, IPython, OpenGL, OpenGL_accelerate,
Xlib, accessible_output2, adios, aliyunsdkcore, amazonproduct,
appdirs, appy, astor, astroid, astropy, avro, bacon, boto, boto3,
botocore, certifi, clr, countrycode, cryptography, cv2, cx_Oracle,
cytoolz, dateparser, dclab, distorm3, dns, docutils, docx, dynaconf,
enchant, enzyme, eth_abi, eth_account, eth_hash, eth_keyfile,
eth_utils, faker, flex, fmpy, gadfly, gooey, google.*, gst, gtk,
h5py, httplib, httplib2, imageio, imageio_ffmpeg, jedi, jinja2,
jira, jsonpath_rw_ext, jsonschema, jupyterlab, kinterbasdb,
langcodes, lensfunpy, libaudioverse, llvmlite, logilab, lxml, lz4,
magic, mako, markdown, migrate, mpl_toolkits, mssql, mysql, nacl,
names, nanite, nbconvert, nbdime, nbformat, ncclient, netCDF4, nltk,
nnpy, notebook, numba, openpyxl, osgeo, passlib, paste, patsy,
pendulum, phonenumbers, pint, pinyin, psychopy, psycopg2, pubsub,
pyarrow, pycountry, pycparser, pyexcel, pyexcelerate, pylint,
pymssql, pyodbc, pyopencl, pyproj, pysnmp, pytest, pythoncom,
pyttsx, pywintypes, pywt, radicale, raven, rawpy, rdflib, redmine,
regex, reportlab, reportlab, resampy, selenium, shapely, skimage,
sklearn, sound_lib, sounddevice, soundfile, speech_recognition,
storm, tables, tcod, tensorflow, tensorflow_corethon,
text_unidecode, textdistance, torch, ttkthemes, ttkwidgets, u1db,
umap, unidecode, uniseg, usb, uvloop, vtkpython, wavefile,
weasyprint, web3, webrtcvad, webview, win32com, wx, xml.dom,
xml.sax, xsge_gui, zeep, zmq.

	These hooks have been added while now moved to the new
pyinstaller-hooks-contrib repository: astor (#4400 [https://github.com/pyinstaller/pyinstaller/issues/4400],
#4704 [https://github.com/pyinstaller/pyinstaller/issues/4704]), argon2 (#4625 [https://github.com/pyinstaller/pyinstaller/issues/4625]) bcrypt. (#4735 [https://github.com/pyinstaller/pyinstaller/issues/4735]),
(Bluetooth Low Energy platform Agnostic Klient for Python) (#4649 [https://github.com/pyinstaller/pyinstaller/issues/4649])
jaraco.text (#4576 [https://github.com/pyinstaller/pyinstaller/issues/4576], #4632 [https://github.com/pyinstaller/pyinstaller/issues/4632]), LightGBM. (#4634 [https://github.com/pyinstaller/pyinstaller/issues/4634]),
xmldiff (#4680 [https://github.com/pyinstaller/pyinstaller/issues/4680]), puremagic (identify a file based off it’s magic
numbers) (#4709 [https://github.com/pyinstaller/pyinstaller/issues/4709]) webassets (#4760 [https://github.com/pyinstaller/pyinstaller/issues/4760]), tensorflow_core (to
support tensorflow module forwarding logic (#4400 [https://github.com/pyinstaller/pyinstaller/issues/4400], #4704 [https://github.com/pyinstaller/pyinstaller/issues/4704])

	These changes have been applied to hooks now moved to the new
pyinstaller-hooks-contrib repository

	Update Bokeh hook for v2.0.0. (#4742 [https://github.com/pyinstaller/pyinstaller/issues/4742], #4746 [https://github.com/pyinstaller/pyinstaller/issues/4746])

	Fix shapely hook on Windows for non-conda shapely installations.
(#2834 [https://github.com/pyinstaller/pyinstaller/issues/2834], #4749 [https://github.com/pyinstaller/pyinstaller/issues/4749])

Bootloader

	Rework bootloader from using strcpy/strncpy with “is this string
terminated”-check to use snprintf(); check success at more places. (This
started from fixing GCC warnings for strncpy and strncat.)

	Fix: When copying files, too much data was copied in most cases. This
corrupted the file and inhibited using shared dependencies. (#4303 [https://github.com/pyinstaller/pyinstaller/issues/4303])

	In debug and windowed mode, show the traceback in dialogs to help debug
pyiboot01_bootstrap errors. (#4213 [https://github.com/pyinstaller/pyinstaller/issues/4213], #4592 [https://github.com/pyinstaller/pyinstaller/issues/4592])

	Started a small test-suite for bootloader basic functions. (#4585 [https://github.com/pyinstaller/pyinstaller/issues/4585])

Documentation

	Add platform-specific usage notes and bootloader build notes for AIX.
(#4731 [https://github.com/pyinstaller/pyinstaller/issues/4731])

PyInstaller Core

	Provide setuptools entrypoints to enable other packages to provide
PyInstaller hooks specific to that package, along with tests for these hooks.
See https://github.com/pyinstaller/hooksample for more information.
(#4232 [https://github.com/pyinstaller/pyinstaller/issues/4232], #4582 [https://github.com/pyinstaller/pyinstaller/issues/4582])

Bootloader build

	(AIX) The argument -X32 or -X64 is not recognized by the AIX loader - so this
code needs to be removed. (#4730 [https://github.com/pyinstaller/pyinstaller/issues/4730], #4731 [https://github.com/pyinstaller/pyinstaller/issues/4731])

	(OSX) Allow end users to override MACOSX_DEPLOYMENT_TARGET and
mmacosx-version-min
via environment variables and set 10.7 as the fallback value for both.
(#4677 [https://github.com/pyinstaller/pyinstaller/issues/4677])

	Do not print info about --noconfirm when option is already being used.
(#4727 [https://github.com/pyinstaller/pyinstaller/issues/4727])

	Update waf to version 2.0.20 (#4839 [https://github.com/pyinstaller/pyinstaller/issues/4839])

Older Versions

Older Versions

	Changelog for PyInstaller 3.0 – 3.6

	Changelog for PyInstaller 2.x

	Changelog for PyInstaller 1.x

Changelog for PyInstaller 3.0 – 3.6

3.6 (2020-01-09)

Important: This is the last release of PyInstaller supporting Python 2.7.
Python 2 is end-of-life, many packages are about to drop support for Python
2.7 [https://python3statement.org/] - or already did it.

Security

	[SECURITY] (Win32) Fix CVE-2019-16784: Local Privilege Escalation caused by
insecure directory permissions of sys._MEIPATH. This security fix effects all
Windows software frozen by PyInstaller in “onefile” mode.
While PyInstaller itself was not vulnerable, all Windows software frozen
by PyInstaller in “onefile” mode is vulnerable.

If you are using PyInstaller to freeze Windows software using “onefile”
mode, you should upgrade PyInstaller and rebuild your software.

Features

	(Windows): Applications built in windowed mode have their debug messages
sent to any attached debugger or DebugView instead of message boxes.
(#4288 [https://github.com/pyinstaller/pyinstaller/issues/4288])

	Better error message when file exists at path we want to be dir.
(#4591 [https://github.com/pyinstaller/pyinstaller/issues/4591])

Bugfix

	(Windows) Allow usage of VSVersionInfo as version argument to EXE again.
(#4381 [https://github.com/pyinstaller/pyinstaller/issues/4381], #4539 [https://github.com/pyinstaller/pyinstaller/issues/4539])

	(Windows) Fix MSYS2 dll’s are not found by modulegraph. (#4125 [https://github.com/pyinstaller/pyinstaller/issues/4125],
#4417 [https://github.com/pyinstaller/pyinstaller/issues/4417])

	(Windows) The temporary copy of bootloader used add resources, icons, etc.
is not created in –workpath instead of in %TEMP%. This fixes issues on
systems where the anti-virus cleans %TEMP% immediately. (#3869 [https://github.com/pyinstaller/pyinstaller/issues/3869])

	Do not fail the build when ldconfig is missing/inoperable.
(#4261 [https://github.com/pyinstaller/pyinstaller/issues/4261])

	Fixed loading of IPython extensions. (#4271 [https://github.com/pyinstaller/pyinstaller/issues/4271])

	Fixed pre-find-module-path hook for distutils to be compatible with
virtualenv >= 16.3. (#4064 [https://github.com/pyinstaller/pyinstaller/issues/4064], #4372 [https://github.com/pyinstaller/pyinstaller/issues/4372])

	Improve error reporting when the Python library can’t be found.
(#4162 [https://github.com/pyinstaller/pyinstaller/issues/4162])

Hooks

	Add hook for
avro (serialization and RPC framework) (#4388 [https://github.com/pyinstaller/pyinstaller/issues/4388]),
django-babel [https://github.com/python-babel/django-babel] (#4516 [https://github.com/pyinstaller/pyinstaller/issues/4516]),
enzyme [https://pypi.org/project/enzyme/] (#4338 [https://github.com/pyinstaller/pyinstaller/issues/4338]),
google.api (resp. google.api.core) (#3251 [https://github.com/pyinstaller/pyinstaller/issues/3251]),
google.cloud.bigquery (#4083 [https://github.com/pyinstaller/pyinstaller/issues/4083], #4084 [https://github.com/pyinstaller/pyinstaller/issues/4084]),
google.cloud.pubsub (#4446 [https://github.com/pyinstaller/pyinstaller/issues/4446]),
google.cloud.speech (#3888 [https://github.com/pyinstaller/pyinstaller/issues/3888]),
nnpy (#4483 [https://github.com/pyinstaller/pyinstaller/issues/4483]),
passlib (#4520 [https://github.com/pyinstaller/pyinstaller/issues/4520]),
pyarrow [https://pypi.org/project/pyarrow/] (#3720 [https://github.com/pyinstaller/pyinstaller/issues/3720], #4517 [https://github.com/pyinstaller/pyinstaller/issues/4517]),
pyexcel and its plugins io, ods, ods3, odsr, xls, xlsx, xlsxw (#4305 [https://github.com/pyinstaller/pyinstaller/issues/4305]),
pysnmp (#4287 [https://github.com/pyinstaller/pyinstaller/issues/4287]),
scrapy (#4514 [https://github.com/pyinstaller/pyinstaller/issues/4514]),
skimage.io (#3934 [https://github.com/pyinstaller/pyinstaller/issues/3934]),
sklearn.mixture (#4612 [https://github.com/pyinstaller/pyinstaller/issues/4612]),
sounddevice on macOS and Windows (#4498 [https://github.com/pyinstaller/pyinstaller/issues/4498]),
text-unidecode (#4327 [https://github.com/pyinstaller/pyinstaller/issues/4327], #4530 [https://github.com/pyinstaller/pyinstaller/issues/4530]),
the google-cloud-kms client library (#4408 [https://github.com/pyinstaller/pyinstaller/issues/4408]),
ttkwidgets (#4484 [https://github.com/pyinstaller/pyinstaller/issues/4484]), and
webrtcvad (#4490 [https://github.com/pyinstaller/pyinstaller/issues/4490]).

	Correct the location of Qt translation files. (#4429 [https://github.com/pyinstaller/pyinstaller/issues/4429])

	Exclude imports for pkg_resources to fix bundling issue. (#4263 [https://github.com/pyinstaller/pyinstaller/issues/4263],
#4360 [https://github.com/pyinstaller/pyinstaller/issues/4360])

	Fix hook for pywebview to collect all required libraries and data-files.
(#4312 [https://github.com/pyinstaller/pyinstaller/issues/4312])

	Fix hook numpy and hook scipy to account for differences in location of extra
dlls on Windows. (#4593 [https://github.com/pyinstaller/pyinstaller/issues/4593])

	Fix pysoundfile hook to bundle files correctly on both OSX and Windows.
(#4325 [https://github.com/pyinstaller/pyinstaller/issues/4325])

	Fixed hook for pint [https://github.com/hgrecco/pint]
to also copy metadata as required to retrieve the version at runtime.
(#4280 [https://github.com/pyinstaller/pyinstaller/issues/4280])

	Fixed PySide2.QtNetwork hook by mirroring PyQt5 approach. (#4467 [https://github.com/pyinstaller/pyinstaller/issues/4467],
#4468 [https://github.com/pyinstaller/pyinstaller/issues/4468])

	Hook for pywebview now collects data files and dynamic libraries only for the
correct OS (Windows).
Hook for pywebview now bundles only the required ‘lib’ subdirectory.
(#4375 [https://github.com/pyinstaller/pyinstaller/issues/4375])

	Update hooks related to PySide2.QtWebEngineWidgets, ensure the relevant
supporting files required for a QtWebEngineView are copied into the
distribution. (#4377 [https://github.com/pyinstaller/pyinstaller/issues/4377])

	Update PyQt5 loader to support PyQt >=5.12.3. (#4293 [https://github.com/pyinstaller/pyinstaller/issues/4293],
#4332 [https://github.com/pyinstaller/pyinstaller/issues/4332])

	Update PyQt5 to package 64-bit SSL support DLLs. (#4321 [https://github.com/pyinstaller/pyinstaller/issues/4321])

	Update PyQt5 to place OpenGL DLLs correctly for PyQt >= 5.12.3.
(#4322 [https://github.com/pyinstaller/pyinstaller/issues/4322])

	(GNU/Linux) Make hook for GdkPixbuf compatible with Ubuntu and Debian
(#4486 [https://github.com/pyinstaller/pyinstaller/issues/4486]).

Bootloader

	(OSX): Added support for appending URL to program arguments when applications
is launched from custom protocol handler. (#4397 [https://github.com/pyinstaller/pyinstaller/issues/4397], #4399 [https://github.com/pyinstaller/pyinstaller/issues/4399])

	(POSIX) For one-file binaries, if the program is started via a symlink, the
second process now keeps the basename of the symlink. (#3823 [https://github.com/pyinstaller/pyinstaller/issues/3823],
#3829 [https://github.com/pyinstaller/pyinstaller/issues/3829])

	(Windows) If bundled with the application, proactivley load ucrtbase.dll
before loading the Python library. This works around unresolved symbol errors
when loading python35.dll (or later) on legacy Windows (7, 8, 8.1)
systems
with Universal CRT update is not installed. (#1566 [https://github.com/pyinstaller/pyinstaller/issues/1566], #2170 [https://github.com/pyinstaller/pyinstaller/issues/2170],
#4230 [https://github.com/pyinstaller/pyinstaller/issues/4230])

	Add our own implementation for strndup and strnlen to be used on
platforms one of these is missing.

PyInstaller Core

	Now uses hash based .pyc files as specified in PEP 552 [https://www.python.org/dev/peps/pep-0552] in
base_library.zip when using Python 3.7 (#4096 [https://github.com/pyinstaller/pyinstaller/issues/4096])

Bootloader build

	(MinGW-w64) Fix .rc.o file not found error. (#4501 [https://github.com/pyinstaller/pyinstaller/issues/4501], #4586 [https://github.com/pyinstaller/pyinstaller/issues/4586])

	Add a check whether strndup and strnlen are available.

	Added OpenBSD support. (#4545 [https://github.com/pyinstaller/pyinstaller/issues/4545])

	Fix build on Solaris 10.

	Fix checking for compiler flags in configure phase. The check for compiler
flags actually did never work. (#4278 [https://github.com/pyinstaller/pyinstaller/issues/4278])

	Update url for public key in update-waf script. (#4584 [https://github.com/pyinstaller/pyinstaller/issues/4584])

	Update waf to version 2.0.19.

3.5 (2019-07-09)

Features

	(Windows) Force --windowed option if first script is a .pyw file.
This might still be overwritten in the spec-file. (#4001 [https://github.com/pyinstaller/pyinstaller/issues/4001])

	Add support for relative paths for icon-files, resource-files and
version-resource-files. (#3333 [https://github.com/pyinstaller/pyinstaller/issues/3333], #3444 [https://github.com/pyinstaller/pyinstaller/issues/3444])

	Add support for the RedHat Software Collections (SCL) Python 3.x.
(#3536 [https://github.com/pyinstaller/pyinstaller/issues/3536], #3881 [https://github.com/pyinstaller/pyinstaller/issues/3881])

	Install platform-specific dependencies only on that platform.
(#4166 [https://github.com/pyinstaller/pyinstaller/issues/4166], #4173 [https://github.com/pyinstaller/pyinstaller/issues/4173])

	New command-line option --upx-exclude, which allows the user to prevent
binaries from being compressed with UPX. (#3821 [https://github.com/pyinstaller/pyinstaller/issues/3821])

Bugfix

	(conda) Fix detection of conda/anaconda platform.

	(GNU/Linux) Fix Anaconda Python library search. (#3885 [https://github.com/pyinstaller/pyinstaller/issues/3885],
#4015 [https://github.com/pyinstaller/pyinstaller/issues/4015])

	(Windows) Fix UAC in one-file mode by embedding the manifest.
(#1729 [https://github.com/pyinstaller/pyinstaller/issues/1729], #3746 [https://github.com/pyinstaller/pyinstaller/issues/3746])

	(Windows\Py3.7) Now able to locate pylib when VERSION.dll is listed in
python.exe PE Header rather than pythonXY.dll (#3942 [https://github.com/pyinstaller/pyinstaller/issues/3942],
#3956 [https://github.com/pyinstaller/pyinstaller/issues/3956])

	Avoid errors if PyQt5 or PySide2 is referenced by the modulegraph but isn’t
importable. (#3997 [https://github.com/pyinstaller/pyinstaller/issues/3997])

	Correctly parse the --debug=import, --debug=bootloader, and
--debug=noarchive command-line options. (#3808 [https://github.com/pyinstaller/pyinstaller/issues/3808])

	Don’t treat PyQt5 and PySide2 files as resources in an OS X windowed build.
Doing so causes the resulting frozen app to fail under Qt 5.12.
(#4237 [https://github.com/pyinstaller/pyinstaller/issues/4237])

	Explicitly specify an encoding of UTF-8 when opening all text files.
(#3605 [https://github.com/pyinstaller/pyinstaller/issues/3605])

	Fix appending the content of datas in a spec files to binaries
instead of the internal datas. (#2326 [https://github.com/pyinstaller/pyinstaller/issues/2326], #3694 [https://github.com/pyinstaller/pyinstaller/issues/3694])

	Fix crash when changing from --onefile to --onedir on consecutive
runs. (#3662 [https://github.com/pyinstaller/pyinstaller/issues/3662])

	Fix discovery of Qt paths on Anaconda. (#3740 [https://github.com/pyinstaller/pyinstaller/issues/3740])

	Fix encoding error raised when reading a XML manifest file which includes
non-ASCII characters. This error inhibited building an executable which
has non-ASCII characters in the filename. (#3478 [https://github.com/pyinstaller/pyinstaller/issues/3478])

	Fix inputs to QCoreApplication constructor in Qt5LibraryInfo. Now the
core application’s initialization and finalization in addition to system-wide
and application-wide settings is safer. (#4121 [https://github.com/pyinstaller/pyinstaller/issues/4121])

	Fix installation with pip 19.0. (#4003 [https://github.com/pyinstaller/pyinstaller/issues/4003])

	Fixes PE-file corruption during version update. (#3142 [https://github.com/pyinstaller/pyinstaller/issues/3142],
#3572 [https://github.com/pyinstaller/pyinstaller/issues/3572])

	In the fake ´site` module set USER_BASE to empty string instead of None
as Jupyter Notebook requires it to be a ‘str’. (#3945 [https://github.com/pyinstaller/pyinstaller/issues/3945])

	Query PyQt5 to determine if SSL is supported, only adding SSL DLLs if so. In
addition, search the path for SSL DLLs, instead of looking in Qt’s
BinariesPath. (#4048 [https://github.com/pyinstaller/pyinstaller/issues/4048])

	Require pywin32-ctypes version 0.2.0, the minimum version which supports
Python 3.7. (#3763 [https://github.com/pyinstaller/pyinstaller/issues/3763])

	Use pkgutil instead of filesystem operations for interacting with the
modules. (#4181 [https://github.com/pyinstaller/pyinstaller/issues/4181])

Incompatible Changes

	PyInstaller is no longer tested against Python 3.4, which is end-of-live.

	Functions compat.architecture(), compat.system() and
compat.machine() have been replace by variables of the same name. This
avoids evaluating the save several times.

	Require an option for the --debug argument, rather than assuming a
default of all. (#3737 [https://github.com/pyinstaller/pyinstaller/issues/3737])

Hooks

	Added hooks for
aliyunsdkcore [https://pypi.org/project/aliyun-python-sdk-core/] (#4228 [https://github.com/pyinstaller/pyinstaller/issues/4228]),
astropy (#4274 [https://github.com/pyinstaller/pyinstaller/issues/4274]),
BTrees [https://pypi.org/project/BTrees/] (#4239 [https://github.com/pyinstaller/pyinstaller/issues/4239]),
dateparser.utils.strptime (#3790 [https://github.com/pyinstaller/pyinstaller/issues/3790]),
faker [https://faker.readthedocs.io] (#3989 [https://github.com/pyinstaller/pyinstaller/issues/3989], #4133 [https://github.com/pyinstaller/pyinstaller/issues/4133]),
gooey (#3773 [https://github.com/pyinstaller/pyinstaller/issues/3773]),
GtkSourceView (#3893 [https://github.com/pyinstaller/pyinstaller/issues/3893]),
imageio_ffmpeg (#4051 [https://github.com/pyinstaller/pyinstaller/issues/4051]),
importlib_metadata and importlib_resources (#4095 [https://github.com/pyinstaller/pyinstaller/issues/4095]),
jsonpath_rw_ext (#3841 [https://github.com/pyinstaller/pyinstaller/issues/3841]),
jupyterlab (#3951 [https://github.com/pyinstaller/pyinstaller/issues/3951]),
lz4 (#3710 [https://github.com/pyinstaller/pyinstaller/issues/3710]),
magic [https://pypi.org/project/python-magic-bin] (#4267 [https://github.com/pyinstaller/pyinstaller/issues/4267]),
nanite (#3860 [https://github.com/pyinstaller/pyinstaller/issues/3860]),
nbconvert (#3947 [https://github.com/pyinstaller/pyinstaller/issues/3947]),
nbdime (#3949 [https://github.com/pyinstaller/pyinstaller/issues/3949]),
nbformat (#3946 [https://github.com/pyinstaller/pyinstaller/issues/3946]),
notebook (#3950 [https://github.com/pyinstaller/pyinstaller/issues/3950]),
pendulum (#3906 [https://github.com/pyinstaller/pyinstaller/issues/3906]),
pysoundfile (#3844 [https://github.com/pyinstaller/pyinstaller/issues/3844]),
python-docx (#2574 [https://github.com/pyinstaller/pyinstaller/issues/2574], #3848 [https://github.com/pyinstaller/pyinstaller/issues/3848]),
python-wavefile (#3785 [https://github.com/pyinstaller/pyinstaller/issues/3785]),
pytzdata (#3906 [https://github.com/pyinstaller/pyinstaller/issues/3906]),
PyWavelets pywt [https://github.com/PyWavelets/pywt] (#4120 [https://github.com/pyinstaller/pyinstaller/issues/4120]),
pywebview (#3771 [https://github.com/pyinstaller/pyinstaller/issues/3771]),
radicale (#4109 [https://github.com/pyinstaller/pyinstaller/issues/4109]),
rdflib (#3708 [https://github.com/pyinstaller/pyinstaller/issues/3708]),
resampy (#3702 [https://github.com/pyinstaller/pyinstaller/issues/3702]),
sqlalchemy-migrate [https://github.com/openstack/sqlalchemy-migrate] (#4250 [https://github.com/pyinstaller/pyinstaller/issues/4250]),
textdistance [https://pypi.org/project/textdistance/] (#4239 [https://github.com/pyinstaller/pyinstaller/issues/4239]),
tcod (#3622 [https://github.com/pyinstaller/pyinstaller/issues/3622]),
ttkthemes (#4105 [https://github.com/pyinstaller/pyinstaller/issues/4105]), and
umap-learn [https://umap-learn.readthedocs.io/en/latest/] (#4165 [https://github.com/pyinstaller/pyinstaller/issues/4165]).

	Add runtime hook for certifi. (#3952 [https://github.com/pyinstaller/pyinstaller/issues/3952])

	Updated hook for ‘notebook’ to look in all Jupyter paths reported by
jupyter_core. (#4270 [https://github.com/pyinstaller/pyinstaller/issues/4270])

	Fixed hook for ‘notebook’ to only include directories that actually exist.
(#4270 [https://github.com/pyinstaller/pyinstaller/issues/4270])

	Fixed pre-safe-import-module hook for setuptools.extern.six. (#3806 [https://github.com/pyinstaller/pyinstaller/issues/3806])

	Fixed QtWebEngine hook on OS X. (#3661 [https://github.com/pyinstaller/pyinstaller/issues/3661])

	Fixed the QtWebEngine hook on distributions which don’t have a NSS subdir
(such as Archlinux) (#3758 [https://github.com/pyinstaller/pyinstaller/issues/3758])

	Include dynamically-imported backends in the eth_hash package.
(#3681 [https://github.com/pyinstaller/pyinstaller/issues/3681])

	Install platform-specific dependencies only on that platform.
(#4168 [https://github.com/pyinstaller/pyinstaller/issues/4168])

	Skip packaging PyQt5 QML files if the QML directory doesn’t exist.
(#3864 [https://github.com/pyinstaller/pyinstaller/issues/3864])

	Support ECC in PyCryptodome. (#4212 [https://github.com/pyinstaller/pyinstaller/issues/4212], #4229 [https://github.com/pyinstaller/pyinstaller/issues/4229])

	Updated PySide2 hooks to follow PyQt5 approach. (#3655 [https://github.com/pyinstaller/pyinstaller/issues/3655],
#3689 [https://github.com/pyinstaller/pyinstaller/issues/3689], #3724 [https://github.com/pyinstaller/pyinstaller/issues/3724], #4040 [https://github.com/pyinstaller/pyinstaller/issues/4040], #4103 [https://github.com/pyinstaller/pyinstaller/issues/4103],
#4136 [https://github.com/pyinstaller/pyinstaller/issues/4136], #4175 [https://github.com/pyinstaller/pyinstaller/issues/4175], #4177 [https://github.com/pyinstaller/pyinstaller/issues/4177], #4198 [https://github.com/pyinstaller/pyinstaller/issues/4198],
#4206 [https://github.com/pyinstaller/pyinstaller/issues/4206])

	Updated the jsonschema hook for v3.0+. (#4100 [https://github.com/pyinstaller/pyinstaller/issues/4100])

	Updated the Sphinx hook to correctly package Sphinx 1.8.

Bootloader

	Update bundled zlib library to 1.2.11 address vulnerabilities.
(#3742 [https://github.com/pyinstaller/pyinstaller/issues/3742])

Documentation

	Update the text produced by --help to state that the --debug argument
requires an option. Correctly format this argument in the Sphinx build
process. (#3737 [https://github.com/pyinstaller/pyinstaller/issues/3737])

Project & Process

	Remove the PEP-518 “build-system” table from pyproject.toml to fix
installation with pip 19.0.

PyInstaller Core

	Add support for folders in COLLECT and BUNDLE. (#3653 [https://github.com/pyinstaller/pyinstaller/issues/3653])

	Completely remove pywin32 dependency, which has erratic releases and
the version on pypi may no longer have future releases.
Require pywin32-ctypes instead which is pure python. (#3728 [https://github.com/pyinstaller/pyinstaller/issues/3728],
#3729 [https://github.com/pyinstaller/pyinstaller/issues/3729])

	modulegraph: Align with upstream version 0.17.

	Now prints a more descriptive error when running a tool fails (instead of
dumping a trace-back). (#3772 [https://github.com/pyinstaller/pyinstaller/issues/3772])

	Suppress warnings about missing UCRT dependencies on Win 10. (#1566 [https://github.com/pyinstaller/pyinstaller/issues/1566],
#3736 [https://github.com/pyinstaller/pyinstaller/issues/3736])

Test-suite and Continuous Integration

	Fix Appveyor failures of test_stderr_encoding() and
test_stdout_encoding() on Windows Python 3.7 x64. (#4144 [https://github.com/pyinstaller/pyinstaller/issues/4144])

	November update of packages used in testing. Prevent pyup from touching
test/requirements-tools.txt. (#3845 [https://github.com/pyinstaller/pyinstaller/issues/3845])

	Rewrite code to avoid a RemovedInPytest4Warning: Applying marks directly to
parameters is deprecated, please use pytest.param(..., marks=...) instead.

	Run Travis tests under Xenial; remove the deprecated sudo: false tag.
(#4140 [https://github.com/pyinstaller/pyinstaller/issues/4140])

	Update the Markdown test to comply with Markdown 3.0 changes [https://python-markdown.github.io/change_log/release-3.0/#positional-arguments-deprecated]
by using correct syntax for extensions [https://python-markdown.github.io/reference/#extensions].

3.4 (2018-09-09)

Features

	Add support for Python 3.7 (#2760 [https://github.com/pyinstaller/pyinstaller/issues/2760], #3007 [https://github.com/pyinstaller/pyinstaller/issues/3007], #3076 [https://github.com/pyinstaller/pyinstaller/issues/3076],
#3399 [https://github.com/pyinstaller/pyinstaller/issues/3399], #3656 [https://github.com/pyinstaller/pyinstaller/issues/3656]), implemented by Hartmut Goebel.

	Improved support for Qt5-based applications (#3439 [https://github.com/pyinstaller/pyinstaller/issues/3439]).
By emulating much of the Qt deployment tools’ behavior
most PyQt5 variants are supported.
However, Anaconda’s PyQt5 packages are not supported
because its QlibraryInfo implementation reports incorrect values.
CI tests currently run on PyQt5 5.11.2. Many thanks to Bryan A. Jones for
taking this struggle.

	--debug now allows more debugging to be activated more easily. This
includes bootloader messages, Python’s “verbose imports” and store collected
Python files in the output directory instead of freezing. See pyinstaller
–-help for details. (#3546 [https://github.com/pyinstaller/pyinstaller/issues/3546], #3585 [https://github.com/pyinstaller/pyinstaller/issues/3585], #3587 [https://github.com/pyinstaller/pyinstaller/issues/3587])

	Hint users to install development package for missing pyconfig.h.
(#3348 [https://github.com/pyinstaller/pyinstaller/issues/3348])

	In setup.py specify Python versions this distribution is compatible with.

	Make base_library.zip reproducible: Set time-stamp of files. (#2952 [https://github.com/pyinstaller/pyinstaller/issues/2952],
#2990 [https://github.com/pyinstaller/pyinstaller/issues/2990])

	New command-line option --bootloader-ignore-signals to make the
bootloader forward all signals to the bundle application. (#208 [https://github.com/pyinstaller/pyinstaller/issues/208],
#3515 [https://github.com/pyinstaller/pyinstaller/issues/3515])

	(OS X) Python standard library module plistlib is now used for generating
the Info.plist file. This allows passing complex and nested data in
info_plist. (#3532 [https://github.com/pyinstaller/pyinstaller/issues/3532], #3541 [https://github.com/pyinstaller/pyinstaller/issues/3541])

Bugfix

	Add missing warnings module to base_library.zip. (#3397 [https://github.com/pyinstaller/pyinstaller/issues/3397],
#3400 [https://github.com/pyinstaller/pyinstaller/issues/3400])

	Fix and simplify search for libpython on Windows, msys2, cygwin.
(#3167 [https://github.com/pyinstaller/pyinstaller/issues/3167], #3168 [https://github.com/pyinstaller/pyinstaller/issues/3168])

	Fix incompatibility with pycryptodome (a replacement for the apparently
abandoned pycrypto library) when using encrypted PYZ-archives.
(#3537 [https://github.com/pyinstaller/pyinstaller/issues/3537])

	Fix race condition caused by the bootloader parent process terminating before
the child is finished. This might happen e.g. when the child process itself
plays with switch_root. (#2966 [https://github.com/pyinstaller/pyinstaller/issues/2966])

	Fix wrong security alert if a filename contains ... (#2641 [https://github.com/pyinstaller/pyinstaller/issues/2641],
#3491 [https://github.com/pyinstaller/pyinstaller/issues/3491])

	Only update resources of cached files when necessary to keep signature valid.
(#2526 [https://github.com/pyinstaller/pyinstaller/issues/2526])

	(OS X) Fix: App icon appears in the dock, even if LSUIElement=True.
(#1917 [https://github.com/pyinstaller/pyinstaller/issues/1917], #2075 [https://github.com/pyinstaller/pyinstaller/issues/2075], #3566 [https://github.com/pyinstaller/pyinstaller/issues/3566])

	(Windows) Fix crash when trying to add resources to Windows executable using
the --resource option. (#2675 [https://github.com/pyinstaller/pyinstaller/issues/2675], #3423 [https://github.com/pyinstaller/pyinstaller/issues/3423])

	(Windows) Only update resources when necessary to keep signature valid
(#3323 [https://github.com/pyinstaller/pyinstaller/issues/3323])

	(Windows) Use UTF-8 when reading XML manifest file. (#3476 [https://github.com/pyinstaller/pyinstaller/issues/3476])

	(Windows) utils/win32: trap invalid --icon arguments and terminate with a
message. (#3126 [https://github.com/pyinstaller/pyinstaller/issues/3126])

Incompatible Changes

	Drop support for Python 3.3 (#3288 [https://github.com/pyinstaller/pyinstaller/issues/3288]), Thanks to Hugo and xoviat.

	--debug now expects an (optional) argument. Thus using … --debug
script.py will break. Use … script.py --debug or … --debug=all
script.py instead. Also --debug=all (which is the default if no
argument is given) includes noarchive, which will store all collected
Python files in the output directory instead of freezing them. Use
--debug=bootloader to get the former behavior. (#3546 [https://github.com/pyinstaller/pyinstaller/issues/3546],
#3585 [https://github.com/pyinstaller/pyinstaller/issues/3585], #3587 [https://github.com/pyinstaller/pyinstaller/issues/3587])

	(minor) Change naming of intermediate build files and the warn file. This
only effects 3rd-party tools (if any exists) relying on the names of these
files.

	(minor) The destination path for --add-data and --add-binary must no
longer be empty, use . instead. (#3066 [https://github.com/pyinstaller/pyinstaller/issues/3066])

	(minor) Use standard path, not dotted path, for C extensions (Python 3 only).

Hooks

	New hooks for bokeh visualization library (#3607 [https://github.com/pyinstaller/pyinstaller/issues/3607]),
Champlain, Clutter (#3443 [https://github.com/pyinstaller/pyinstaller/issues/3443]) dynaconf (#3641 [https://github.com/pyinstaller/pyinstaller/issues/3641]), flex
(#3401 [https://github.com/pyinstaller/pyinstaller/issues/3401]), FMPy (#3589 [https://github.com/pyinstaller/pyinstaller/issues/3589]), gi.repository.xlib
(#2634 [https://github.com/pyinstaller/pyinstaller/issues/2634], #3396 [https://github.com/pyinstaller/pyinstaller/issues/3396]) google-cloud-translate,
google-api-core (#3658 [https://github.com/pyinstaller/pyinstaller/issues/3658]), jedi (#3535 [https://github.com/pyinstaller/pyinstaller/issues/3535],
#3612 [https://github.com/pyinstaller/pyinstaller/issues/3612]), nltk (#3705 [https://github.com/pyinstaller/pyinstaller/issues/3705]), pandas (#2978 [https://github.com/pyinstaller/pyinstaller/issues/2978],
#2998 [https://github.com/pyinstaller/pyinstaller/issues/2998], #2999 [https://github.com/pyinstaller/pyinstaller/issues/2999], #3015 [https://github.com/pyinstaller/pyinstaller/issues/3015], #3063 [https://github.com/pyinstaller/pyinstaller/issues/3063],
#3079 [https://github.com/pyinstaller/pyinstaller/issues/3079]), phonenumbers (#3381 [https://github.com/pyinstaller/pyinstaller/issues/3381], #3558 [https://github.com/pyinstaller/pyinstaller/issues/3558]),
pinyin (#2822 [https://github.com/pyinstaller/pyinstaller/issues/2822]), PySide.phonon, PySide.QtSql
(#2859 [https://github.com/pyinstaller/pyinstaller/issues/2859]), pytorch (#3657 [https://github.com/pyinstaller/pyinstaller/issues/3657]), scipy (#2987 [https://github.com/pyinstaller/pyinstaller/issues/2987],
#3048 [https://github.com/pyinstaller/pyinstaller/issues/3048]), uvloop (#2898 [https://github.com/pyinstaller/pyinstaller/issues/2898]), web3, eth_account,
eth_keyfile (#3365 [https://github.com/pyinstaller/pyinstaller/issues/3365], #3373 [https://github.com/pyinstaller/pyinstaller/issues/3373]).

	Updated hooks for Cryptodome 3.4.8, Django 2.1, gevent 1.3.
Crypto (support for PyCryptodome) (#3424 [https://github.com/pyinstaller/pyinstaller/issues/3424]),
Gst and GdkPixbuf (to work on msys2, #3257 [https://github.com/pyinstaller/pyinstaller/issues/3257], #3387 [https://github.com/pyinstaller/pyinstaller/issues/3387]),
sphinx 1.7.1, setuptools 39.0.

	Updated hooks for PyQt5 (#1930 [https://github.com/pyinstaller/pyinstaller/issues/1930], #1988 [https://github.com/pyinstaller/pyinstaller/issues/1988], #2141 [https://github.com/pyinstaller/pyinstaller/issues/2141],
#2156 [https://github.com/pyinstaller/pyinstaller/issues/2156], #2220 [https://github.com/pyinstaller/pyinstaller/issues/2220], #2518 [https://github.com/pyinstaller/pyinstaller/issues/2518], #2566 [https://github.com/pyinstaller/pyinstaller/issues/2566],
#2573 [https://github.com/pyinstaller/pyinstaller/issues/2573], #2577 [https://github.com/pyinstaller/pyinstaller/issues/2577], #2857 [https://github.com/pyinstaller/pyinstaller/issues/2857], #2924 [https://github.com/pyinstaller/pyinstaller/issues/2924],
#2976 [https://github.com/pyinstaller/pyinstaller/issues/2976], #3175 [https://github.com/pyinstaller/pyinstaller/issues/3175], #3211 [https://github.com/pyinstaller/pyinstaller/issues/3211], #3233 [https://github.com/pyinstaller/pyinstaller/issues/3233],
#3308 [https://github.com/pyinstaller/pyinstaller/issues/3308], #3338 [https://github.com/pyinstaller/pyinstaller/issues/3338], #3417 [https://github.com/pyinstaller/pyinstaller/issues/3417], #3439 [https://github.com/pyinstaller/pyinstaller/issues/3439],
#3458 [https://github.com/pyinstaller/pyinstaller/issues/3458], #3505 [https://github.com/pyinstaller/pyinstaller/issues/3505]), among others:

	All QML is now loaded by QtQml.QQmlEngine.

	Improve error reporting when determining the PyQt5 library location.

	Improved method for finding qt.conf.

	Include OpenGL fallback DLLs for PyQt5. (#3568 [https://github.com/pyinstaller/pyinstaller/issues/3568]).

	Place PyQt5 DLLs in the correct location (#3583 [https://github.com/pyinstaller/pyinstaller/issues/3583]).

	Fix hooks for cryptodome (#3405 [https://github.com/pyinstaller/pyinstaller/issues/3405]),
PySide2 (style mismatch) (#3374 [https://github.com/pyinstaller/pyinstaller/issues/3374], #3578 [https://github.com/pyinstaller/pyinstaller/issues/3578])

	Fix missing SSL libraries on Windows with PyQt5.QtNetwork. (#3511 [https://github.com/pyinstaller/pyinstaller/issues/3511],
#3520 [https://github.com/pyinstaller/pyinstaller/issues/3520])

	Fix zmq on Windows Python 2.7. (#2147 [https://github.com/pyinstaller/pyinstaller/issues/2147])

	(GNU/Linux) Fix hook usb: Resolve library name reported by usb.backend.
(#2633 [https://github.com/pyinstaller/pyinstaller/issues/2633], #2831 [https://github.com/pyinstaller/pyinstaller/issues/2831], #3269 [https://github.com/pyinstaller/pyinstaller/issues/3269])

	Clean up the USB hook logic.

Bootloader

	Forward all signals to the child process if option
pyi-bootloader-ignore-signals to be set in the archive. (#208 [https://github.com/pyinstaller/pyinstaller/issues/208],
#3515 [https://github.com/pyinstaller/pyinstaller/issues/3515])

	Use waitpid instead of wait to avoid the bootloder parent process gets
signaled. (#2966 [https://github.com/pyinstaller/pyinstaller/issues/2966])

	(OS X) Don’t make the application a GUI app by default, even in
--windowed mode. Not enforcing this programmatically in the bootloader
allows to control behavior using Info.plist options - which can by set in
PyInstaller itself or in the .spec-file. (#1917 [https://github.com/pyinstaller/pyinstaller/issues/1917], #2075 [https://github.com/pyinstaller/pyinstaller/issues/2075],
#3566 [https://github.com/pyinstaller/pyinstaller/issues/3566])

	(Windows) Show respectively print utf-8 debug messages ungarbled.
(#3477 [https://github.com/pyinstaller/pyinstaller/issues/3477])

	Fix setenv() call when HAVE_UNSETENV is not defined. (#3722 [https://github.com/pyinstaller/pyinstaller/issues/3722],
#3723 [https://github.com/pyinstaller/pyinstaller/issues/3723])

Module Loader

	Improved error message in case importing an extension module fails.
(#3017 [https://github.com/pyinstaller/pyinstaller/issues/3017])

Documentation

	Fix typos, smaller errors and formatting errors in documentation.
(#3442 [https://github.com/pyinstaller/pyinstaller/issues/3442], #3521 [https://github.com/pyinstaller/pyinstaller/issues/3521], #3561 [https://github.com/pyinstaller/pyinstaller/issues/3561], #3638 [https://github.com/pyinstaller/pyinstaller/issues/3638])

	Make clear that --windowed is independent of --onedir.
(#3383 [https://github.com/pyinstaller/pyinstaller/issues/3383])

	Mention imports using imports imp.find_module() are not detected.

	Reflect actual behavior regarding LD_LIBRARY_PATH. (#3236 [https://github.com/pyinstaller/pyinstaller/issues/3236])

	(OS X) Revise section on info_plist for plistlib functionality and
use an example more aligned with real world usage. (#3532 [https://github.com/pyinstaller/pyinstaller/issues/3532],
#3540 [https://github.com/pyinstaller/pyinstaller/issues/3540], #3541 [https://github.com/pyinstaller/pyinstaller/issues/3541])

	(developers) Overhaul guidelines for commit and commit-messages.
(#3466 [https://github.com/pyinstaller/pyinstaller/issues/3466])

	(developers) Rework developer’s quick-start guide.

Project & Process

	Add a pip requirements.txt file.

	Let pyup update package requirements for “Test – Libraries” every month
only.

	Use towncrier to manage the change log entries. (#2756 [https://github.com/pyinstaller/pyinstaller/issues/2756],
#2837 [https://github.com/pyinstaller/pyinstaller/issues/2837], #3698 [https://github.com/pyinstaller/pyinstaller/issues/3698])

PyInstaller Core

	Add requirements_for_package() and collect_all() helper functions for
hooks.

	Add a explanatory header to the warn-file, hopefully reducing the number of
those posting the file to the issue tracker.

	Add module enum to base_library.zip, required for module re in
Python 3.6 (and re is required by warnings).

	Always write the warn file.

	Apply format_binaries_and_datas() (which converts hook-style tuples into
TOC-style tuples) to binaries and datas added through the hook api.

	Avoid printing a useless exceptions in the get_module_file_attribute()
helper function..

	Don’t gather Python extensions in collect_dynamic_libc().

	Fix several ResourceWarnings and DeprecationWarnings (#3677 [https://github.com/pyinstaller/pyinstaller/issues/3677])

	Hint users to install necessary development packages if, in
format_binaries_and_datas(), the file not found is pyconfig.h.
(#1539 [https://github.com/pyinstaller/pyinstaller/issues/1539], #3348 [https://github.com/pyinstaller/pyinstaller/issues/3348])

	Hook helper function is_module_satisfies() returns False for packages
not found. (#3428 [https://github.com/pyinstaller/pyinstaller/issues/3428], #3481 [https://github.com/pyinstaller/pyinstaller/issues/3481])

	Read data for cache digest in chunks. (#3281 [https://github.com/pyinstaller/pyinstaller/issues/3281])

	Select correct file extension for C-extension file-names like
libzmq.cp36-win_amd64.pyd.

	State type of import (conditional, delayed, etc.) in the warn file again.

	(modulegraph) Unbundle altgraph library, use from upstream.
(#3058 [https://github.com/pyinstaller/pyinstaller/issues/3058])

	(OS X) In --console mode set LSBackgroundOnly=True in``Info.plist`` to
hide the app-icon in the dock. This can still be overruled by passing
info_plist in the .spec-file. (#1917 [https://github.com/pyinstaller/pyinstaller/issues/1917], #3566 [https://github.com/pyinstaller/pyinstaller/issues/3566])

	(OS X) Use the python standard library plistlib for generating the
Info.plist file. (#3532 [https://github.com/pyinstaller/pyinstaller/issues/3532], #3541 [https://github.com/pyinstaller/pyinstaller/issues/3541])

	(Windows) Completely remove pywin32 dependency, which has erratic releases
and the version on pypi may no longer have future releases. Require
pywin32-ctypes instead, which is pure python. (#3141 [https://github.com/pyinstaller/pyinstaller/issues/3141])

	(Windows) Encode manifest before updating resource. (#3423 [https://github.com/pyinstaller/pyinstaller/issues/3423])

	(Windows) Make import compatible with python.net, which uses an incompatible
signature for __import__. (#3574 [https://github.com/pyinstaller/pyinstaller/issues/3574])

Test-suite and Continuous Integration

	Add script and dockerfile for running tests in docker. (Contributed, not
maintained) (#3519 [https://github.com/pyinstaller/pyinstaller/issues/3519])

	Avoid log messages to be written (and captured) twice.

	Fix decorator skipif_no_compiler.

	Fix the test for the “W” run-time Python option to verify module warnings
can actually be imported. (#3402 [https://github.com/pyinstaller/pyinstaller/issues/3402], #3406 [https://github.com/pyinstaller/pyinstaller/issues/3406])

	Fix unicode errors when not capturing output by pytest.

	Run pyinstaller -h to verify it works.

	test_setuptools_nspkg no longer modifies source files.

	Appveyor:

	Add documentation for Appveyor variables used to appveyor.yml.

	Significantly clean-up appveyor.yml (#3107 [https://github.com/pyinstaller/pyinstaller/issues/3107])

	Additional tests produce > 1 hour runs. Split each job into two
jobs.

	Appveyor tests run on 2 cores; therefore, run 2 jobs in parallel.

	Reduce disk usage.

	Split Python 2.7 tests into two jobs to avoid the 1 hour limit.

	Update to use Windows Server 2016. (#3563 [https://github.com/pyinstaller/pyinstaller/issues/3563])

	Travis

	Use build-stages.

	Clean-up travis.yml (#3108 [https://github.com/pyinstaller/pyinstaller/issues/3108])

	Fix Python installation on OS X. (#3361 [https://github.com/pyinstaller/pyinstaller/issues/3361])

	Start a X11 server for the “Test - Libraries” stage only.

	Use target python interpreter to compile bootloader to check if the
build tool can be used with that this Python version.

Bootloader build

	Print invoking python version when compiling.

	Update waf build-tool to 2.0.9 and fix our wscript for waf 2.0.

	(GNU/Linux) When building with --debug turn of FORTIFY_SOURCE to ease
debugging.

Known Issues

	Anaconda’s PyQt5 packages are not supported
because its QlibraryInfo implementation reports incorrect values.

	All scripts frozen into the package, as well as all run-time hooks, share
the same global variables. This issue exists since v3.2 but was discovered
only lately, see #3037 [https://github.com/pyinstaller/pyinstaller/issues/3037]. This may lead to leaking global variables
from run-time hooks into the script and from one script to subsequent ones.
It should have effects in rare cases only, though.

	Data-files from wheels, unzipped eggs or not ad egg at all are not included
automatically. This can be worked around using a hook-file, but may not
suffice when using --onefile and something like python-daemon.

	The multipackage (MERGE) feature (#1527 [https://github.com/pyinstaller/pyinstaller/issues/1527]) is currently broken.

	(OSX) Support for OpenDocument events (#1309 [https://github.com/pyinstaller/pyinstaller/issues/1309]) is broken.

	(Windows) With Python 2.7 the frozen application may not run if the
user-name (more specifically %TEMPDIR%) includes some Unicode
characters. This does not happen with all Unicode characters, but only some
and seems to be a windows bug. As a work-around please upgrade to Python 3
(#2754 [https://github.com/pyinstaller/pyinstaller/issues/2754], #2767 [https://github.com/pyinstaller/pyinstaller/issues/2767]).

	(Windows) For Python >= 3.5 targeting Windows < 10, the developer needs to
take special care to include the Visual C++ run-time .dlls. Please see the
section Platform-specific Notes
in the manual. (#1566 [https://github.com/pyinstaller/pyinstaller/issues/1566])

3.3.1 (2017-12-13)

Hooks

	Fix imports in hooks accessible_output and sound_lib (#2860).

	Fix ImportError for sysconfig for 3.5.4 Conda (#3105, #3106).

	Fix shapely hook for conda environments on Windows (#2838).

	Add hook for unidecode.

Bootloader

	(Windows) Pre-build bootloaders (and custom-build ones using MSVC) can be
used on Windows XP again. Set minimum target OS to XP (#2974).

Bootloader build

	Fix build for FreeBSD (#2861, #2862).

PyInstaller Core

	Usage: Add help-message clarifying use of options when a spec-file is
provided (#3039).

	Add printing infos on UnicodeDecodeError in exec_command(_all).

	(win32) Issue an error message on errors loading the icon file (#2039).

	(aarch64) Use correct bootloader for 64-bit ARM (#2873).

	(OS X) Fix replacement of run-time search path keywords (@…) (#3100).

	Modulegraph

	Fix recursion too deep errors cause by reimporting SWIG-like modules
(#2911, #3040, #3061).

	Keep order of imported identifiers.

Test-suite and Continuous Integration

	In Continuous Integration tests: Enable flake8-diff linting. This will
refuse all changed lines not following PEP 8.

	Enable parallel testing on Windows,

	Update requirements.

	Add more test cases for modulegraph.

	Fix a test-case for order of module import.

	Add test-cases to check scripts do not share the same global vars (see
Known Issues).

Documentation

	Add clarification about treatment of options when a spec-file is provided
(#3039).

	Add docs for running PyInstaller with Python optimizations (#2905).

	Add notes about limitations of Cython support.

	Add information how to handle undetected ctypes libraries.

	Add notes about requirements and restrictions of SWIG support.

	Add note to clarify what binary files are.

	Add a Development Guide.

	Extend “How to Contribute”.

	Add “Running the Test Suite”.

	Remove badges from the Readme (#2853).

	Update outdated sections in man-pages and other enhancements to the
man-page.

Known Issues

	All scripts frozen into the package, as well as all run-time hooks, share
the same global variables. This issue exists since v3.2 but was discovered
only lately, see #3037 [https://github.com/pyinstaller/pyinstaller/issues/3037]. This may lead to leaking global variables
from run-time hooks into the script and from one script to subsequent ones.
It should have effects in rare cases only, though.

	Further see the Known Issues for release 3.3.

3.3 (2017-09-21)

	Add Support for Python 3.6! Many thanks to xiovat! (#2331, #2341)

	New command line options for adding data files (--datas, #1990) and
binaries (--binaries, #703)

	Add command line option ‘–runtime-tmpdir’.

	Bootloaders for Windows are now build using MSVC and statically linked with
the run-time-library (CRT). This solved a lot of issues related to .dlls
being incompatible with the ones required by python.dll.

	Bootloaders for GNU/Linux are now officially no LSB binaries. This was
already the case since release 3.1, but documented the other way round. Also
the build defaults to non-LSB binaries now. (#2369)

	We improved and stabilized both building the bootloaders and the continuous
integration tests. See below for details. Many thanks to all who worked on
this.

	To ease solving issues with packages included wrongly, the html-file with a
cross-reference is now always generated. It’s visual appearance has been
modernized (#2765).

Incompatible changes

	Command-line option obsoleted several version ago are not longer handled
gracefully but raise an error (#2413)

	Installation: PyInstaller removed some internal copies of 3rd-party
packages. These are now taken from their official releases at PyPI (#2589).
This results in PyInstaller to no longer can be used from just an unpacked
archive, but needs to be installed like any Python package. This should
effect only a few people, e.g. the developers.

	Following PEP 527 [https://www.python.org/dev/peps/pep-0527], we only release one source archive now and decided to
use .tar.gz (#2754).

Hooks

	New and Updated hooks: accessible_output2 (#2266), ADIOS (#2096), CherryPy
(#2112), PySide2 (#2471, #2744) (#2472), Sphinx (#2612, 2708) (#2708),
appdir (#2478), clr (#2048), cryptodome (#2125), cryptography (#2013), dclab
(#2657), django (#2037), django migrations (#1795), django.contrib (#2336),
google.cloud, google.cloud.storage, gstreamer (#2603), imageio (#2696),
langcodes (#2682), libaudioverse (#2709), mpl_toolkits (#2400), numba,
llvmlite (#2113), openpyxl (#2066), pylint, pymssql, pyopencl, pyproj
(#2677), pytest (#2119), qtawesome (#2617), redmine, requests (#2334),
setuptools, setuptools (#2565), shapely (#2569), sound_lib (#2267),
sysconfig, uniseg (#2683), urllib3, wx.rc (#2295),

	numpy: Look for .dylib libraries, too ((#2544), support numpy MKL builds
(#1881, #2111)

	osgeo: Add conda specific places to check for auxiliary data (#2401)

	QT and related

	Add hooks for PySide2

	Eliminate run-time hook by placing files in the correct directory

	Fix path in homebrew for searching for qmake (#2354)

	Repair Qt dll location (#2403)

	Bundle PyQT 5.7 DLLs (#2152)

	PyQt5: Return qml plugin path including subdirectory (#2694)

	Fix hooks for PyQt5.QtQuick (#2743)

	PyQt5.QtWebEngineWidgets: Include files needed by QWebEngine

	GKT+ and related

	Fix Gir file path on windows.

	Fix unnecessary file search & generation when GI’s typelib is exists

	gi: change gir search path when running from a virtualenv

	gi: package gdk-pixbuf in osx codesign agnostic dir

	gi: rewrite the GdkPixbuf loader cache at runtime on Linux

	gi: support onefile mode for GdkPixbuf

	gi: support using gdk-pixbuf-query-loaders-64 when present

	gi: GIR files are only required on OSX

	gio: copy the mime.cache also

	Fix hooks for PyGObject on windows platform (#2306)

	Fixed hooks: botocore (#2384), clr (#1801), gstreamer (#2417), h5py
(#2686), pylint, Tix data files (#1660), usb.core (#2088), win32com on
non-windows-systems (#2479)

	Fix multiprocess spawn mode on POSIX OSs (#2322, #2505, #2759, #2795).

Bootloader

	Add tempdir option to control where bootloader will extract files (#2221)

	(Windows) in releases posted on PyPI requires msvcr*.dll (#2343)

	Fix unsafe string manipulation, resource and memory leaks. Thanks to Vito
Kortbeek (#2489, #2502, #2503)

	Remove a left-over use of getenv()

	Set proper LISTEN_PID (set by systemd) in child process (#2345)

	Adds PID to bootloader log messages (#2466, #2480)

	(Windows) Use _wputenv_s() instead of SetEnvironmentVariableW()

	(Windows) Enhance error messages (#1431)

	(Windows) Add workaround for a Python 3 issue
http://bugs.python.org/issue29778 (#2496, #2844)

	(OS X): Use single process for –onedir mode (#2616, #2618)

	(GNU/Linux) Compile bootloaders with –no-lsb by default (#2369)

	(GNU/Linux) Fix: linux64 bootloader requires glibc 2.14 (#2160)

	(GNU/Linux) set_dynamic_library_path change breaks plugin library use
(#625)

Bootloader build

The bootloader build was largely overhauled. In the wscript, the build no
longer depends on the Python interpreter’s bit-size, but on the compiler. We
have a machine for building bootloaders for Windows and cross-building for
OS X. Thus all mainteriner are now able to build the bootloaders for all
supported platforms.

	Add “official” build-script.

	(GNU/Linux) Make –no-lsb the default, add option –lsb.

	Largely overhauled Vagrantfile:

	Make Darwin bootloaders build in OS X box (unused)

	Make Windows bootloaders build using MSVC

	Allow specifying cross-target on linux64.

	Enable cross-building for OS X.

	Enable cross-building for Windows (unused)

	Add box for building osxcross.

	Largely overhauled wscript:

	Remove options –target-cpu.

	Use compiler’s target arch, not Python’s.

	Major overhaul of the script

	Build zlib if required, not if “on windows”.

	Remove obsolete warnings.

	Update Solaris, AIX and HPUX support.

	Add flags for ‘strip’ tool in AIX platform.

	Don’t set POSIX / SUS version defines.

	(GNU/Linux) for 64-bit arm/aarch ignore the gcc flag -m64
(#2801).

Module loader

	Implement PEP-451 ModuleSpec type import system (#2377)

	Fix: Import not thread-save? (#2010, #2371)

PyInstaller Core

	Analyze: Check Python version when testing whether to rebuild.

	Analyze: Don’t fail on syntax error in modules, simply ignore them.

	Better error message when datas are not found. (#2308)

	Building: OSX: Use unicode literals when creating Info.plist XML

	Building: Don’t fail if “datas” filename contain glob special characters.
(#2314)

	Building: Read runtime-tmpdir from .spec-file.

	Building: Update a comment.

	building: warn users if bincache gets corrupted. (#2614)

	Cli-utils: Remove graceful handling of obsolete command line options.

	Configure: Create new parent-dir when moving old cache-dir. (#2679)

	Depend: Include vcruntime140.dll on Windows. (#2487)

	Depend: print nice error message if analyzed script has syntax error.

	Depend: When scanning for ctypes libs remove non-basename binaries.

	Enhance run-time error message on ctypes import error.

	Fix #2585: py2 non-unicode sys.path been tempted by os.path.abspath().
(#2585)

	Fix crash if extension module has hidden import to ctypes. (#2492)

	Fix handling of obsolete command line options. (#2411)

	Fix versioninfo.py breakage on Python 3.x (#2623)

	Fix: “Unicode-objects must be encoded before hashing” (#2124)

	Fix: UnicodeDecodeError - collect_data_files does not return filenames as
unicode (#1604)

	Remove graceful handling of obsolete command line options. (#2413)

	Make grab version more polite on non-windows (#2054)

	Make utils/win32/versioninfo.py round trip the version info correctly.

	Makespec: Fix version number processing for PyCrypto. (#2476)

	Optimizations and refactoring to modulegraph and scanning for ctypes
dependencies.

	pyinstaller should not crash when hitting an encoding error in source code
(#2212)

	Remove destination for COLLECT and EXE prior to copying it (#2701)

	Remove uninformative traceback when adding not found data files (#2346)

	threading bug while processing imports (#2010)

	utils/hooks: Add logging to collect_data_files.

	(win32) Support using pypiwin32 or pywin32-ctypes (#2602)

	(win32) Use os.path.normpath to ensure that system libs are excluded.

	(win32) Look for libpython%.%.dll in Windows MSYS2 (#2571)

	(win32) Make versioninfo.py round trip the version info correctly (#2599)

	(win32) Ensure that pywin32 isn’t imported before check_requirements is
called

	(win32) pyi-grab_version and –version-file not working? (#1347)

	(win32) Close PE() object to avoid mmap memory leak (#2026)

	(win32) Fix: ProductVersion in windows version info doesn’t show in some
cases (#846)

	(win32) Fix multi-byte path bootloader import issue with python2 (#2585)

	(win32) Forward DYLD_LIBRARY_PATH through arch command. (#2035)

	(win32) Add vcruntime140.dll to_win_includes for Python 3.5 an 3.6
(#2487)

	(OS X) Add libpython%d.%dm.dylib to Darwin (is_darwin) PYDYLIB_NAMES.
(#1971)

	(OS X) macOS bundle Info.plist should be in UTF-8 (#2615)

	(OS X) multiprocessing spawn in python 3 does not work on macOS (#2322)

	(OS X) Pyinstaller not able to find path (@rpath) of dynamic library (#1514)

	Modulegraph

	Align with upstream version 0.13.

	Add the upstream test-suite

	Warn on syntax error and unicode error. (#2430)

	Implement enumerate_instructions() (#2720)

	Switch byte-code analysis to use Instruction (like dis3 does) (#2423)

	Log warning on unicode error instead of only a debug message (#2418)

	Use standard logging for messages. (#2433)

	Fix to reimport failed SWIG C modules (1522, #2578).

	Included 3rd-party libraries

	Remove bundled pefile and macholib, use the releases from PyPI.
(#1920, #2689)

	altgraph: Update to altgraph 0.13, add upstream test-suite.

Utilities

	grab_version.py: Display a friendly error message when utility
fails (#859, #2792).

Test-suite and Continuous Integration

	Rearrange requirements files.

	Pin required versions – now updated using pyup (#2745)

	Hide useless trace-backs of helper-functions.

	Add a test for PyQt5.QtQuick.

	Add functional tests for PySide2

	Add test for new feature –runtime-tmpdir.

	Fix regression-test for #2492.

	unit: Add test-cases for PyiModuleGraph.

	unit/altgraph: Bringing in upstream altgraph test-suite.

	unit/modulegraph: Bringing in the modulegraph test-suite.

	Continuous Integration

	Lots of enhancements to the CI tests to make them more stabile and
reliable.

	Pin required versions – now updated using pyup (#2745)

	OS X is now tested along with GNU/Linux at Travis CI (#2508)

	Travis: Use stages (#2753)

	appveyor: Save cache on failure (#2690)

	appveyor: Verify built bootloaders have the expected arch.

Documentation

	Add information how to donate (#2755, #2772).

	Add how to install the development version using pip.

	Fix installation instructions for development version. (#2761)

	Better examples for hidden imports.

	Clarify and fix “Adding Data Files” and “Adding Binary Files”. (#2482)

	Document new command line option ‘–runtime-tmpdir’.

	pyinstaller works on powerpc linux, big endian arch (#2000)

	Largely rewrite section “Building the Bootloader”, update from the wiki
page.

	Describe building LSB-compliant bootloader as (now) special case.

	help2rst: Add cross-reference labels for option-headers.

	Enable sphinx.ext.intersphinx and links to our website.

	Sphinx should not “adjust” display of command line documentation (#2217)

Known Issues

	Data-files from wheels, unzipped eggs or not ad egg at all are not included
automatically. This can be worked around using a hook-file, but may not
suffice when using --onefile and something like python-daemon.

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

	(Windows) With Python 2.7 the frozen application may not run if the
user-name (more specifically %TEMPDIR%) includes some Unicode
characters. This does not happen with all Unicode characters, but only some
and seems to be a windows bug. As a work-around please upgrade to Python 3
(#2754, #2767).

	(Windows) For Python >= 3.5 targeting Windows < 10, the developer needs to
take special care to include the Visual C++ run-time .dlls. Please see the
section Platform-specific Notes
in the manual. (#1566)

	For Python 3.3, imports are not thread-safe (#2371#). Since Python 3.3 is
end of live at 2017-09-29, we are not going to fix this.

3.2.1 (2017-01-15)

	New, updated and fixed hooks: botocore (#2094), gi (#2347), jira (#2222),
PyQt5.QtWebEngineWidgets (#2269), skimage (#2195, 2225), sphinx (#2323,)
xsge_gui (#2251).

Fixed the following issues:

	Don’t fail if working directory already exists (#1994)

	Avoid encoding errors in main script (#1976)

	Fix hasher digest bytes not str (#2229, #2230)

	(Windows) Fix additional dependency on the msvcrt10.dll (#1974)

	(Windows) Correctly decode a bytes object produced by pefile (#1981)

	(Windows) Package pefile with pyinstaller. This partially
undoes some changes in 3.2 in which the packaged pefiles were
removed to use the pypi version instead. The pypi version was
considerably slower in some applications, and still has a couple
of small issues on PY3. (#1920)

	(OS X) PyQt5 packaging issues on MacOS (#1874)

	(OS X) Replace run-time search path keyword (#1965)

	(OS X) (Re-) add argv emulation for OSX, 64-bit (#2219)

	(OS X) use decode(“utf-8”) to convert bytes in getImports_macholib() (#1973)

	(Bootloader) fix segfaults (#2176)

	(setup.py) pass option –no-lsb on GNU/Linux only (#1975)

	Updates and fixes in documentation, manuals, et al. (#1986, 2002, #2153,
#2227, #2231)

3.2 (2016-05-03)

	Even the “main” script is now byte-compiled (#1847, #1856)

	The manual is on readthedocs.io now (#1578)

	On installation try to compile the bootloader if there is none for
the current platform (#1377)

	(Unix) Use objcopy to create a valid ELF file (#1812, #1831)

	(Linux): Compile with _FORTIFY_SOURCE (#1820)

	New, updated and fixed hooks: CherryPy (#1860), Cryptography (#1425,
#1861), enchant (1562), gi.repository.GdkPixbuf (#1843), gst
(#1963), Lib2to3 (#1768), PyQt4, PyQt5, PySide (#1783, #1897,
#1887), SciPy (#1908, #1909), sphinx (#1911, #1912), sqlalchemy
(#1951), traitlets wx.lib.pubsub (#1837, #1838),

	For windowed mode add isatty() for our dummy NullWriter (#1883)

	Suppress “Failed to execute script” in case of SystemExit (#1869)

	Do not apply Upx compressor for bootloader files (#1863)

	Fix absolute path for lib used via ctypes (#1934)

	(OSX) Fix binary cache on NFS (#1573, #1849)

	(Windows) Fix message in grab_version (#1923)

	(Windows) Fix wrong icon parameter in Windows example (#1764)

	(Windows) Fix win32 unicode handling (#1878)

	(Windows) Fix unnecessary rebuilds caused by rebuilding winmanifest
(#1933)

	(Cygwin) Fix finding the Python library for Cygwin 64-bit (#1307,
#1810, #1811)

	(OSX) Fix compilation issue (#1882)

	(Windows) No longer bundle pefile, use package from pypi for windows
(#1357)

	(Windows) Provide a more robust means of executing a Python script

	AIX fixes.

	Update waf to version 1.8.20 (#1868)

	Fix excludedimports, more predictable order how hooks are applied
#1651

	Internal improvements and code clean-up (#1754, #1760, #1794, #1858,
#1862, #1887, #1907, #1913)

	Clean-ups fixes and improvements for the test suite

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

3.1.1 (2016-01-31)

Fixed the following issues:

	Fix problems with setuptools 19.4 (#1772, #1773, #1790, #1791)

	3.1 does not collect certain direct imports (#1780)

	Git reports wrong version even if on unchanged release (#1778)

	Don’t resolve symlinks in modulegraph.py (#1750, #1755)

	ShortFileName not returned in win32 util (#1799)

3.1 (2016-01-09)

	Support reproducible builds (#490, #1434, #1582, #1590).

	Strip leading parts of paths in compiled code objects (#1059, #1302,
#1724).

	With --log-level=DEBUG, a dependency graph-file is emitted in
the build-directory.

	Allow running pyinstaller as user root. By popular demand, see
e.g. #1564, #1459, #1081.

	New Hooks: botocore, boto3, distorm3, GObject, GI (G Introspection),
GStreamer, GEvent, kivy, lxml.isoschematron, pubsub.core,
PyQt5.QtMultimedia, scipy.linalg, shelve.

	Fixed or Updated Hooks: astroid, django, jsonschema logilab, PyQt4,
PyQt5, skimage, sklearn.

	Add option --hiddenimport as an alias for --hidden-import.

	(OSX): Fix issues with st_flags (#1650).

	(OSX) Remove warning message about 32bit compatibility (#1586).

	(Linux) The cache is now stored in $XDG_CACHE_HOME/pyinstaller
instead of $XDG_DATA_HOME - the cache is moved automatically (#1118).

	Documentation updates, e.g. about reproducible builds

	Put back full text of GPL license into COPYING.txt.

	Fix crashes when looking for ctypes DLLs (#1608, #1609, #1620).

	Fix: Imports in byte-code not found if code contains a function (#1581).

	Fix recursion into bytes-code when scanning for ctypes (#1620).

	Fix PyCrypto modules to work with crypto feature (--key option)
(#1663).

	Fix problems with excludedimports in some hook excluding the
named modules even if used elswhere (#1584, #1600).

	Fix freezing of pip 7.1.2 (#1699).

	FreeBSD and Solaris fixes.

	Search for ldconfig in $PATH first (#1659)

	Deny processing outdated package _xmlplus.

	Improvements to the test-suite, testing infrastructure and
continuous integration.

	For non-release builds, the exact git revision is not used.

	Internal code refactoring.

	Enhancements and clean-ups to the hooks API - only relevant for hook
authors. See the manual for details. E.g:

	Removed attrs in hooks - they were not used anymore anyway.

	Change add/del_import() to accept arbitrary number of module
names.

	New hook utility function copy_metadata().

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

3.0 (2015-10-04)

	Python 3 support (3.3 / 3.4 / 3.5).

	Remove support for Python 2.6 and lower.

	Full unicode support in the bootloader (#824, #1224, #1323, #1340, #1396)

	(Windows) Python 2.7 apps can now run from paths with non-ASCII characters

	(Windows) Python 2.7 onefile apps can now run for users whose usernames
contain non-ASCII characters

	Fix sys.getfilesystemencoding() to return correct values (#446, #885).

	(OSX) Executables built with PyInstaller under OS X can now be digitally
signed.

	(OSX) 32bit precompiled bootloader no longer distributed, only 64bit.

	(Windows) for 32bit bootloader enable flag LARGEADDRESSAWARE that allows
to use 4GB of RAM.

	New hooks: amazon-product-api, appy, certifi, countrycode, cryptography, gi,
httplib2, jsonschema, keyring, lensfunpy, mpl_toolkits.basemap, ncclient,
netCDF4, OpenCV, osgeo, patsy, PsychoPy, pycountry, pycparser, PyExcelerate,
PyGobject, pymssql, PyNaCl, PySiDe.QtCore, PySide.QtGui, rawpy, requests,
scapy, scipy, six, SpeechRecognition, u1db, weasyprint, Xlib.

	Hook fixes: babel, ctypes, django, IPython, pint, PyEnchant, Pygments, PyQt5,
PySide, pyusb, sphinx, sqlalchemy, tkinter, wxPython.

	Add support for automatically including data files from eggs.

	Add support for directory eggs support.

	Add support for all kind of namespace packages e.g.
zope.interface, PEP302 (#502, #615, #665, #1346).

	Add support for pkgutil.extend_path().

	New option --key to obfuscate the Python bytecode.

	New option --exclude-module to ignore a specific module or package.

	(Windows) New option --uac-admin to request admin permissions
before starting the app.

	(Windows) New option --uac-uiaccess allows an elevated
application to work with Remote Desktop.

	(Windows) New options for Side-by-side Assembly searching:

	--win-private-assemblies bundled Shared Assemblies into the
application will be changed into Private Assemblies

	--win-no-prefer-redirects while searching for Assemblies
PyInstaller will prefer not to follow policies that redirect to
newer versions.

	(OSX) New option --osx-bundle-identifier to set .app bundle identifier.

	(Windows) Remove old COM server support.

	Allow override PyInstaller default config directory by environment
variable PYINSTALLER_CONFIG_DIR.

	Add FreeBSD support.

	AIX fixes.

	Solaris fixes.

	Use library modulegraph for module dependency analysis.

	Bootloader debug messages LOADER: ... printed to stderr.

	PyInstaller no longer extends sys.path [https://docs.python.org/3/library/sys.html#sys.path] and bundled 3rd-party
libraries do not interfere with their other versions.

	Enhancemants to Analysis():

	New arguments excludedimports to exclude Python modules in
import hooks.

	New argument binaries to bundle dynamic libraries in .spec
file and in import hooks.

	New argument datas to bundle additional data files in .spec
file and in import hooks.

	A lot of internal code refactoring.

	Test suite migrated to pytest framework.

	Improved testing infrastructure with continuous integration (Travis - Linux,
Appveyor - Windows)

	Wiki and bug tracker migrated to github.

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

Changelog for PyInstaller 2.x

2.1 (2013-09-27)

	Rewritten manual explaining even very basic topics.

	PyInstaller integration with setuptools (direct installation with easy_install or pip
from PYPI - https://pypi.python.org/pypi). After installation there will be available
command ‘pyinstaller’ for PyInstaller usage.

	(Windows) Alter –version-file resource format to allow unicode support.

	(Windows) Fix running frozen app running from paths containing foreign characters.

	(Windows) Fix running PyInstaller from paths containing foreign characters.

	(OSX) Implement –icon option for the .app bundles.

	(OSX) Add argv emulation for OpenDocument AppleEvent (see manual for details).

	Rename –buildpath to –workpath.

	Created app is put to –distpath.

	All temporary work files are now put to –workpath.

	Add option –clean to remove PyInstaller cache and temporary files.

	Add experimental support for Linux arm.

	Minimum supported Python version is 2.4.

	Add import hooks for docutils, jinja2, sphinx, pytz, idlelib, sqlite3.

	Add import hooks for IPython, Scipy, pygst, Python for .NET.

	Add import hooks for PyQt5, Bacon, raven.

	Fix django import hook to work with Django 1.4.

	Add rthook for twisted, pygst.

	Add rthook for pkg_resource. It fixes the following functions for frozen app
pkg_resources.resource_stream(), pkg_resources.resource_string().

	Better support for pkg_resources (.egg manipulation) in frozen executables.

	Add option –runtime-hook to allow running custom code from frozen app
before loading other Python from the frozen app. This is useful for some
specialized preprocessing just for the frozen executable. E.g. this
option can be used to set SIP api v2 for PyQt4.

	Fix runtime option –Wignore.

	Rename utils to lowercase: archieve_viewer.py, bindepend.py, build.py,
grab_version.py, make_comserver.py, makespec.py, set_version.py.

	(OSX) Fix missing qt_menu.nib in dist directory when using PySide.

	(OSX) Fix bootloader compatibility with Mac OS X 10.5

	(OSX) Search libpython in DYLD_LIBRARY_PATH if libpython cannot be found.

	(OSX) Fix Python library search in virtualenv.

	Environment variable PYTHONHOME is now unset and path to python home
is set in bootloader by function Py_SetPythonHome().This overrides
sys.prefix and sys.exec_prefix for frozen application.

	Python library filename (e.g. python27.dll, libpython2.7.so.1.0, etc)
is embedded to the created exe file. Bootloader is not trying several
filenames anymore.

	Frozen executables now use PEP-302 import hooks to import frozen modules
and C extensions. (sys.meta_path)

	Drop old import machinery from iu.py.

	Drop own code to import modules from zip archives (.egg files) in frozen
executales. Native Python implementation is kept unchanged.

	Drop old crypto code. This feature was never completed.

	Drop bootloader dependency on Python headers for compilation.

	(Windows) Recompile bootloaders with VS2008 to ensure win2k compatibility.

	(Windows) Use 8.3 filenames for homepath/temppath.

	Add prefix LOADER to the debug text from bootloader.

	Allow running PyInstaller programmatically.

	Move/Rename some files, code refactoring.

	Add more tests.

	Tilde is in PyInstaller recognized as $HOME variable.

2.0 (2012-08-08)

	Minimum supported Python version is 2.3.

	(OSX) Add support for Mac OS X 64-bit

	(OSX) Add support Mac OS X 10.7 (Lion) and 10.8 (Mountain Lion).

	(OSX) With argument –windowed PyInstaller creates application bundle (.app)

	automatically.

	Add experimental support for AIX (thanks to Martin Gamwell Dawids).

	Add experimental support for Solaris (thanks to Hywel Richards).

	Add Multipackage function to create a collection of packages to avoid

	library duplication. See documentation for more details.

	New symplified command line interface. Configure.py/Makespec.py/Build.py

	replaced by pyinstaller.py. See documentation for more details.

	Removed cross-building/bundling feature which was never really finished.

	Added option –log-level to all scripts to adjust level of output
(thanks to Hartmut Goebel).

	rthooks.dat moved to support/rthooks.dat

	Packaged executable now returns the same return-code as the

	unpackaged script (thanks to Brandyn White).

	Add import hook for PyUSB (thanks to Chien-An “Zero” Cho).

	Add import hook for wx.lib.pubsub (thanks to Daniel Hyams).

	Add import hook for pyttsx.

	Improve import hook for Tkinter.

	Improve import hook for PyQt4.

	Improve import hook for win32com.

	Improve support for running PyInstaller in virtualenv.

	Add cli options –additional-hooks-dir and –hidden-import.

	Remove cli options -X, -K, -C, –upx, –tk, –configfile, –skip-configure.

	UPX is used by default if available in the PATH variable.

	Remove compatibility code for old platforms (dos, os2, MacOS 9).

	Use Python logging system for message output (thanks to Hartmut
Goebel).

	Environment variable MEIPASS2 is accessible as sys._MEIPASS.

	Bootloader now overrides PYTHONHOME and PYTHONPATH.
PYTHONHOME and PYTHONPATH is set to the value of MEIPASS2 variable.

	Bootloader uses absolute paths.

	(OSX) Drop dependency on otool from Xcode on Mac OSX.

	(OSX) Fix missing qt_menu.nib in dist directory when using PyQt4.

	(OSX) Bootloader does not use DYLD_LIBRARY_PATH on Mac OS X anymore.
@loader_path is used instead.

	(OSX) Add support to detect .dylib dependencies on Mac OS X containing
@executable_path, @loader_path and @rpath.

	(OSX) Use macholib to detect dependencies on dynamic libraries.

	Improve test suite.

	Improve source code structure.

	Replace os.system() calls by suprocess module.

	Bundle fake ‘site’ module with frozen applications to prevent loading
any user’s Python modules from host OS.

	Include runtime hooks (rthooks) in code analysis.

	Source code hosting moved to github:
https://github.com/pyinstaller/pyinstaller

	Hosting for running tests daily:
https://jenkins.shiningpanda-ci.com/pyinstaller/

Changelog for PyInstaller 1.x

1.5.1 (2011-08-01)

	New default PyInstaller icon for generated executables on Windows.

	Add support for Python built with –enable-shared on Mac OSX.

	Add requirements section to documentation.

	Documentation is now generated by rst2html and rst2pdf.

	Fix wrong path separators for bootloader-file on Windows

	Add workaround for incorrect platform.system() on some Python Windows
installation where this function returns ‘Microsoft’ instead ‘Windows’.

	Fix –windowed option for Mac OSX where a console executable was
created every time even with this option.

	Mention dependency on otool, ldd and objdump in documentation.

	Fix typo preventing detection of DLL libraries loaded by ctypes module.

1.5 (2011-05-05)

	Full support for Python 2.7.

	Full support for Python 2.6 on Windows. No manual redistribution
of DLLs, CRT, manifest, etc. is required: PyInstaller is able to
bundle all required dependencies (thanks to Florian Hoech).

	Added support for Windows 64-bit (thanks to Martin Zibricky).

	Added binary bootloaders for Linux (32-bit and 64-bit, using LSB),
and Darwin (32-bit). This means that PyInstaller users on this
platform don’t need to compile the bootloader themselves anymore
(thanks to Martin Zibricky and Lorenzo Mancini).

	Rewritten the build system for the bootloader using waf (thanks
to Martin Zibricky)

	Correctly detect Python unified binary under Mac OSX, and bail out
if the unsupported 64-bit version is used (thanks to Nathan Weston).

	Fix TkInter support under Mac OSX (thanks to Lorenzo Mancini).

	Improve bundle creation under Mac OSX and correctly support also
one-dir builds within bundles (thanks to Lorenzo Mancini).

	Fix spurious KeyError when using dbhash

	Fix import of nested packages made from Pyrex-generated files.

	PyInstaller is now able to follow dependencies of binary extensions
(.pyd/.so) compressed within .egg-files.

	Add import hook for PyTables.

	Add missing import hook for QtWebKit.

	Add import hook for pywinauto.

	Add import hook for reportlab (thanks Nevar).

	Improve matplotlib import hook (for Mac OSX).

	Improve Django import hooks.

	Improve compatibility across multiple Linux distributions by
being more careful on which libraries are included/excluded in
the package.

	Improve compatibility with older Python versions (Python 2.2+).

	Fix double-bouncing-icon bug on Mac OSX. Now windowed applications
correctly start on Mac OSX showing a single bouncing icon.

	Fix weird “missing symbol” errors under Mac OSX (thanks to Isaac
Wagner).

1.4 (2010-03-22)

	Fully support up to Python 2.6 on Linux/Mac and Python 2.5
on Windows.

	Preliminar Mac OSX support: both one-file and one-dir is supported;
for non-console applications, a bundle can be created. Thanks
to many people that worked on this across several months (Daniele
Zannotti, Matteo Bertini, Lorenzo Mancini).

	Improved Linux support: generated executables are fatter but now
should now run on many different Linux distributions (thanks to David
Mugnai).

	Add support for specifying data files in import hooks. PyInstaller
can now automatically bundle all data files or plugins required
for a certain 3rd-party package.

	Add intelligent support for ctypes: PyInstaller is now able to
track all places in the source code where ctypes is used and
automatically bundle dynamic libraries accessed through ctypes.
(Thanks to Lorenzo Mancini for submitting this). This is very
useful when using ctypes with custom-made dynamic libraries.

	Executables built with PyInstaller under Windows can now be digitally
signed.

	Add support for absolute imports in Python 2.5+ (thanks to Arve
Knudsen).

	Add support for relative imports in Python 2.5+.

	Add support for cross-compilation: PyInstaller is now able to
build Windows executables when running under Linux. See documentation
for more details.

	Add support for .egg files: PyInstaller is now able to look for
dependencies within .egg files, bundle them and make them available
at runtime with all the standard features (entry-points, etc.).

	Add partial support for .egg directories: PyInstaller will treat them
as normal packages and thus it will not bundle metadata.

	Under Linux/Mac, it is now possible to build an executable even when
a system packages does not have .pyc or .pyo files available and the
system-directory can be written only by root. PyInstaller will in
fact generate the required .pyc/.pyo files on-the-fly within a
build-temporary directory.

	Add automatic import hooks for many third-party packages, including:

	PyQt4 (thanks to Pascal Veret), with complete plugin support.

	pyodbc (thanks to Don Dwiggins)

	cElementTree (both native version and Python 2.5 version)

	lxml

	SQLAlchemy (thanks to Greg Copeland)

	email in Python 2.5 (though it does not support the old-style
Python 2.4 syntax with Python 2.5)

	gadfly

	PyQWt5

	mako

	Improved PyGTK (thanks to Marco Bonifazi and foxx).

	paste (thanks to Jamie Kirkpatrick)

	matplotlib

	Add fix for the very annoying “MSVCRT71 could not be extracted” bug,
which was caused by the DLL being packaged twice (thanks to Idris
Aykun).

	Removed C++-style comments from the bootloader for compatibility
with the AIX compiler.

	Fix support for .py files with DOS line endings under Linux (fixes
PyOpenGL).

	Fix support for PIL when imported without top-level package (“import
Image”).

	Fix PyXML import hook under NT (thanks to Lorenzo Mancini)

	Fixed problem with PyInstaller picking up the wrong copy of optparse.

	Improve correctness of the binary cache of UPX’d/strip’d files. This
fixes problems when switching between multiple versions of the
same third-party library (like e.g. wxPython allows to do).

	Fix a stupid bug with modules importing optparse (under Linux) (thanks
to Louai Al-Khanji).

	Under Python 2.4+, if an exception is raised while importing a module
inside a package, the module is now removed from the parent’s
namespace (to match the behaviour of Python itself).

	Fix random race-condition at startup of one-file packages, that was
causing this exception to be generated: “PYZ entry ‘encodings’ (0j)
is not a valid code object”.

	Fix problem when having unicode strings among path elements.

	Fix random exception (“bad file descriptor”) with “prints” in non-console
mode (actually a pythonw “bug” that’s fixed in Python 3.0).

	Sometimes the temporary directory did not get removed upon program
exit, when running on Linux.

	Fixed random segfaults at startup on 64-bit platforms (like x86-64).

1.3 (2006-12-20)

	Fix bug with user-provided icons disappearing from built executables
when these were compressed with UPX.

	Fix problems with packaging of applications using PIL (that was broken
because of a bug in Python’s import machinery, in recent Python
versions). Also add a workaround including Tcl/Tk with PIL unless
ImageTk is imported.

	(Windows) When used under Windows XP, packaged programs now have
the correct look & feel and follow user’s themes (thanks to the manifest
file being linked within the generated executable). This is especially
useful for applications using wxPython.

	Fix a buffer overrun in the bootloader (which could lead to a crash)
when the built executable is run from within a deep directory (more than
70-80 characters in the pathname).

	Bootstrap modules are now compressed in the executable (so that they
are not visible in plaintext by just looking at it with a hex editor).

	Fixed a regression introduced in 1.1: under Linux, the bootloader does
not depend on libpythonX.X.so anymore.

1.2 (2006-06-29)

	Fix a crash when invoking UPX with certain kinds of builds.

	Fix icon support by re-adding a resource section in the bootloader
executable.

1.1 (2006-02-13)

	(Windows) Make single-file packages not depend on MSVCRT71.DLL anymore,
even under Python 2.4. You can eventually ship your programs really as
single-file executables, even when using the newest Python version!

	Fix problem with incorrect python path detection. Now using helpers from
distutils.

	Fix problem with rare encodings introduced in newer Python versions: now all
the encodings are automatically found and included, so this problem should
be gone forever.

	Fix building of COM servers (was broken in 1.0 because of the new build
system).

	Mimic Python 2.4 behaviour with broken imports: sys.modules is cleaned up
afterwise. This allows to package SQLObject applications under Windows
with Python 2.4 and above.

	Add import hook for the following packages:

	GTK

	PyOpenGL (tested 2.0.1.09)

	dsnpython (tested 1.3.4)

	KInterasDB (courtesy of Eugene Prigorodov)

	Fix packaging of code using “time.strptime” under Python 2.3+.

	(Linux) Ignore linux-gate.so while calculating dependencies (fix provided
by Vikram Aggarwal).

	(Windows) With Python 2.4, setup UPX properly so to be able to compress
binaries generated with Visual Studio .NET 2003 (such as most of the
extensions). UPX 1.92+ is needed for this.

1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

	Add support for Python 2.3 (fix packaging of codecs).

	Add support for Python 2.4 (under Windows, needed to recompiled the
bootloader with a different compiler version).

	Fix support for Python 1.5.2, should be fully functional now (required
to rewrite some parts of the string module for the bootloader).

	Fix a rare bug in extracting the dependencies of a DLL (bug in PE header
parser).

	Fix packaging of PyQt programs (needed an import hook for a hidden import).

	Fix imports calculation for modules using the “from __init__ import” syntax.

	Fix a packaging bug when a module was being import both through binary
dependency and direct import.

	Restyle documentation (now using docutils and reStructuredText).

	New Windows build system for automatic compilations of bootloader in all
the required flavours (using Scons)

Credits

Thanks goes to all the kind PyInstaller contributors who have contributed
new code, bug reports, fixes, comments and ideas. A brief list follows,
please let us know if your name is omitted by accident:

Contributions to PyInstaller 5.8.0

	Rok Mandeljc

	Brénainn Woodsend

	Arjan Molenaar

	Breeze

	Ievgen Popovych

	João Vitor

	bersbersbers

Contributions to PyInstaller 5.7.0

	Rok Mandeljc

	Brénainn Woodsend

	Dan Yeaw

	Rumbelows

	Shoshana Berleant

Contributions to PyInstaller 5.6.2

	Rok Mandeljc

	bersbersbers

Contributions to PyInstaller 5.6.1

	Timmy Welch

	Rok Mandeljc

	Brénainn Woodsend

Contributions to PyInstaller 5.6

	Rok Mandeljc

	Brénainn Woodsend

	Padsala Tushal

Contributions to PyInstaller 5.5

	Rok Mandeljc

	Jasper Harrison

	Alex

	Andreas Schwab

	jsagarribay

Contributions to PyInstaller 5.4.1

	Rok Mandeljc

Contributions to PyInstaller 5.4

	Rok Mandeljc

	Brénainn Woodsend

	Efrem Braun

	Samuel T

Contributions to PyInstaller 5.3

	Rok Mandeljc

	Dan Yeaw

	Tim Gates

Contributions to PyInstaller 5.2

	Rok Mandeljc

	Brénainn Woodsend

	Florian Bruhin

	Zev Lee

	Highfire1

	Jasper Harrison

	KnockKnockWho

	Temerold

	relativisticelectron

Contributions to PyInstaller 5.1

	Rok Mandeljc

	Brénainn Woodsend

	Jasper Harrison

	byehack

	ARNTechnology

	James Gerity

	Kian-Meng Ang

Contributions to PyInstaller 5.0.1

	Rok Mandeljc

	Abdelhakim Qbaich

	Brénainn Woodsend

	Jasper Harrison

Contributions to PyInstaller 5.0

	Rok Mandeljc

	Brénainn Woodsend

	Jasper Harrison

	Starbuck5

	Chris Hillery

	Dan Yeaw

	eric15342335

	谭九鼎

	AdrianIssott

	Andreas Schwab

	Andrii Oriekhov

	Anssi Alahuhta

	Brian Teague

	Charlie Hayden

	Emil Berg

	Eric Missimer

	GoldinGuy

	James Gerity

	Melvin Wang

	Sapphire Becker

	dennisvang

	gentlegiantJGC

	johnthagen

	luc-x41

	wangling12

Contributions to PyInstaller 4.10

	Rok Mandeljc

	Brénainn Woodsend

	Andreas Schwab

	GoldinGuy

	Sapphire Becker

	dennisvang

Contributions to PyInstaller 4.9

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison - Core Develop, Maintainer, Release Manager

	gentlegiantJGC

Contributions to PyInstaller 4.8

	Rok Mandeljc - Core Developer

	Jasper Harrison - Core Develop, Maintainer, Release Manager

	Brénainn Woodsend - Core Developer

	Ankith, Safihre, luc-x41

Contributions to PyInstaller 4.7

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison - Core Develop, Maintainer, Release Manager

Contributions to PyInstaller 4.6

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison - Maintainer, Release Manager

	Anssi Alahutta, Dan Yeaw, Eric Missimer, Chris Hillery, Melvin Wang, wangling12, eric15342335

Contributions to PyInstaller 4.5.1

	Jasper Harrison - Maintainer, Release Manager

	ankith26

Contributions to PyInstaller 4.5

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison - Maintainer, Release Manager

	Dave Dykstra

	Andy Hobbs

	Nicholas Ollinger

Contributions to PyInstaller 4.4

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison - Core Developer, Maintainer, Release Manager

	Hartmut Goebel - Core Developer

	xoviat

	Chrisg2000

	Alex Gembe, James Duley, Jeffrey, Kenny Huynh, Maxim Mazurok, mozbugbox

Contributions to PyInstaller 4.3

	Rok Mandeljc - Core Developer

	Brénainn Woodsend - Core Developer

	Jasper Harrison (Legorooj) - Core Developer, Maintainer, Release Manager

	Hartmut Goebel, Core Developer, Maintainer

	xoviat

	Dan Yeaw, Bruno Oliveira, Maxim Kalinchenko, Max Mäusezahl, Olivier FAURAX, richardsheridan, memo-off

Contributions to PyInstaller 4.2

	Rok Mandeljc

	Hartmut Goebel - Core developer, maintainer and release manager.

	Legorooj - Core developer.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	Mickaël Schoentgen

	Brénainn Woodsend

	Damien Elmes, Dan Yeaw, hdf, Diggy, Filip Gospodinov, Kyle Altendorf,
Matt Simpson, Nathan Summers, Phoenix, Starbuck5, Tom Hu, rockwalrus

Contributions to PyInstaller 4.1

	Hartmut Goebel - Core developer, maintainer and release manager.

	Legorooj - Core developer.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	Rok Mandeljc

	Mickaël Schoentgen

	Brénainn Woodsend

	Aaron Althauser, Alex, Andrew Nelson, Benedikt Brückmann, Brénainn Woodsend,
Calin Culianu, Dan Yeaw, Ievgen Popovych, Loïc Messal, Łukasz Stolcman,
Matt, Mohamed, Petrus, Riz, Riz Syed, Santi Santichaivekin, Sid Gupta,
Victor Stinner, byehack, dcgloe, johnthagen, ozelikov,

Contributions to PyInstaller 4.0

	Hartmut Goebel - Core developer, maintainer and release manager.

	Legorooj - Core developer.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	M Felt aka aixtools, jonnyhsu, Corey Dexter, Rok Mandeljc, Dan Yeaw, Florian
Baumann, Ievgen Popovych, Ram Rachum, coreydexter, AndCycle, Dan Cutright,
David Kiliani, David Maiden Mueller, FeralRobot, Frederico, Ilya Orson,
ItsCinnabar, Juan Sotomayor, Matt M, Matteo Bertini, Michael Felt, Mohamed
Feddad, Nehal J Wani, Or Groman, Sebastian Hohmann, Vaclav Dvorak, Ville
Ilvonen, bwoodsend, eldadr, jeremyd2019, kraptor, seedgou.

Contributions to PyInstaller 3.6

	Hartmut Goebel - Core developer, maintainer and release manager.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	Dan Yeaw, Amir Rossert, Hugo Martins, Felix Schwarz, Giuseppe Corbelli,
HoLuLuLu, Jonathan Springer, Matt Khan, Min’an, Oracizan, Victor Stinner,
Andres, Andrew Chow, Bernát Gábor, Charles Duffy, Chris, Chrisg2000,
FranzPio, Lee Jeonghun, Lukasz Stolcman, Lyux, László Kiss Kollár, Mathias
Lohne, Michael Felt, Noodle-Head, Ogi Moore, Patryk, RedFantom, Rémy Roy,
Sean McGuire, Thomas Robitaille, Tim, Toby, Tuomo, V.Shkaberda, Vojtěch
Drábek, Wilmar den Ouden, david, ethframe, lnv42, ripdog, satvidh,
thisisivanfong

Contributions to PyInstaller 3.5

	Hartmut Goebel - Core developer, maintainer and release manager.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	Dave Cortesi, Kuisong Tong, melvyn2, Giuseppe Corbelli, Florian Bruhin, Amir
Ramezani, Cesar Vandevelde, Paul Müller, Thomas Robitaille, zachbateman,
Addison Elliott, Amir Rossert, AndCycle, Atomfighter10101, Chris Berthiaume,
Craig Younkins (bot), Don Krueger, Edward Chen, Exane Server Team, Hannes,
Iwan, Jakob Schnitzer, Janzert, Jendrik Seipp, Jonathan Springer, Kirill
German, Laszlo Kiss-Kollar, Loran425, Lori J, M*C*O, Nikita Melentev, Peter
Bittner, RedFantom, Roman, Roman Yurchak, Ruslan Kuprieiev, Spencer Brown,
Suzumizaki, Tobias Gruetzmacher, Tobias V. Langhoff, TobiasRzepka, Tom
Hacohen, Yuval Shkolar, cclauss, charlesoblack, djl197, matias morant,
satejkhedekar, zhu

Contributions to PyInstaller 3.4

	Hartmut Goebel - Core developer, maintainer and release manager.

	Bryan A. Jones - Core developer and PyQt5-tamer.

	David Vierra - Core developer and encoding specialist.

	xoviat - brave contributor

	Hugo vk - brave contributor

	Mickaël Schoentgen, Charles Nicholson, Jonathan Springer, Benoît
Vinot, Brett Higgins, Dustin Spicuzza, Marco Nenciarini, Aaron
Hampton, Cody Scot, Dave Cortesi, Helder Eijs, Innokenty Lebedev,
Joshua Klein, Matthew Clapp, Misha Turnbull, ethframe, Amir
Ramezani, Arthur Silva, Blue, Craig MacEachern, Cédric RICARD,
Fredrik Ahlberg, Glenn Ramsey, Jack Mordaunt, Johann Bauer, Joseph
Heck, Kyle Stewart, Lev Maximov, Luo Shawn, Marco Nenciarini, Mario
Costa, Matt Reynolds, Matthieu Gautier, Michael Herrmann, Moritz
Kassner, Natanael Arndt, Nejc Habjan, Paweł Kowalik, Pedro de
Medeiros, Peter Conerly, Peter Würtz, Rémy Roy, Saurabh Yadav, Siva
Prasad, Steve Peak, Steven M. Vascellaro, Steven M. Vascellaro,
Suzumizaki-Kimitaka, ThomasV, Timothée Lecomte, Torsten Sommer,
Weliton Freitas, Zhen Zhang, dimitriepirghie, lneuhaus, s3goat,
satarsa,

Contributions to PyInstaller 3.3.1

	Hartmut Goebel - Core developer and release manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	xoviat - brave contributor

	Dave Cortesi, David Hoese, John Daytona, Nejc Habjan, Addison Elliott,
Bharath Upadhya, Bill Dengler, Chris Norman, Miles Erickson, Nick Dimou,
Thomas Waldmann, David Weil, Placinta

Contributions to PyInstaller 3.3

Special Thanks xiovat for implementing Python3.6 support and to Jonathan
Springer and xoviat for stabilizing the continuous integration tests.

	Hartmut Goebel - Core developer and release manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	xoviat - brave programmer

	Jonathan Springer

	Vito Kortbeek

	Dustin Spicuzza

	Ben Hagen

	Paavo

	Brian Teague

	Chris Norman

	Jonathan Stewmon

	Guillaume Thiolliere

	Justin Harris

	Kenneth Zhao

	Paul Müller

	giumas

	y2kbugger

	肖寅东

	Adam Clark, AndCycle, Andreas Schiefer, Arthur Silva, Aswa Paul, Bharath
Upadhya, Brian Teague, Charles Duffy, Chris Coutinho, Cody Scott, Czarek
Tomczak, Dang Mai, Daniel Hyams, David Hoese, Eelco van Vliet, Eric
Drechsel, Erik Bjäreholt, Hatem AlSum, Henry Senyondo, Jan Čapek, Jeremy T.
Hetzel, Jonathan Dan, Julie Marchant, Luke Lee, Marc Abramowitz, Matt
Wilkie, Matthew Einhorn, Michael Herrmann, Niklas Rosenstein, Philippe
Ombredanne, Piotr Radkowski, Ronald Oussoren, Ruslan Kuprieiev, Segev Finer,
Shengjing Zhu 朱晟菁, Steve, Steven Noonan, Tibor Csonka, Till Bey, Tobias
Gruetzmacher, 陳鵬宇 (float)

Contributions to PyInstaller 3.2.1

Special Thanks to Thomas Waldmann and David Vierra for support when working on
the new build system.

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Cecil Curry - brave bug-fixing and code-refactoring

	Amane Suzuki

	Andy Cycle

	Axel Huebl

	Bruno Oliveira

	Dan Auerbach

	Daniel Hyams

	Denis Akhiyarov

	Dror Asaf

	Dustin Spicuzza

	Emanuele Bertoldi

	Glenn Ramsey

	Hugh Dowling

	Jesse Suen

	Jonathan Dan

	Jonathan Springer

	Jonathan Stewmon

	Julie Marchant

	Kenneth Zhao

	Linus Groh

	Mansour Moufid

	Martin Zibricky

	Matteo Bertini

	Nicolas Dickreuter

	Peter Würtz

	Ronald Oussoren

	Santiago Reig

	Sean Fisk

	Sergei Litvinchuk

	Stephen Rauch

	Thomas Waldmann

	Till Bald

	xoviat

Contributions to PyInstaller 3.2

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Cecil Curry - brave bug-fixing and code-refactoring

	And Cycle - unicode fixes.

	Chris Hager - QtQuick hook.

	David Schoorisse - wrong icon parameter in Windows example.

	Florian Bruhin - typo hunting.

	Garth Bushell - Support for objcopy.

	Insoleet - lib2to3 hook

	Jonathan Springer - hook fixes, brave works on PyQt.

	Matteo Bertini - code refactoring.

	Jonathan Stewmon - bug hunting.

	Kenneth Zhao - waf update.

	Leonid Rozenberg - typo hunting.

	Merlijn Wajer - bug fixing.

	Nicholas Chammas - cleanups.

	nih - hook fixes.

	Olli-Pekka Heinisuo - CherryPy hook.

	Rui Carmo - cygwin fixes.

	Stephen Rauch - hooks and fixes for unnecessary rebuilds.

	Tim Stumbaugh - bug hunting.

Contributions to PyInstaller 3.1.1

	Hartmut Goebel - Core developer and release manager.

	David Vierra - Core developer and encoding specialist.

	Torsten Landschoff - Fix problems with setuptools

	Peter Inglesby - resolve symlinks in modulegraph.py

	syradium - bug hunting

	dessant - bug hunting

	Joker Qyou - bug hunting

Contributions to PyInstaller 3.1

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Andrei Kopats - Windows fixes.

	Andrey Malkov - Django runtime hooks.

	Ben Hagen - kivy hook, GStreamer realtime hook.

	Cecil Curry - Module Version Comparisons and and reworking hooks.

	Dustin Spicuzza - Hooks for GLib, GIntrospection, Gstreamer, etc.

	giumas - lxml.isoschematron hook.

	Jonathan Stewmon - Hooks for botocore, boto, boto3 and gevent.monkey.

	Kenneth Zhao - Solaris fixes.

	Matthew Einhorn - kivy hook.

	mementum - pubsub.core hook.

	Nicholas Chammas - Documentation updates.

	Nico Galoppo - Hooks for skimage and sklearn.

	Panagiotis H.M. Issaris - weasyprint hook.

	Penaz - shelve hook.

	Roman Yurchak - scipy.linalg hook.

	Starwarsfan2099 - Distorm3 hook.

	Thomas Waldmann - Fixes for Bootloader and FreeBSD.

	Tim Stumbaugh - Bug fixes.

	zpin - Bug fixes.

Contributions to PyInstaller 3.0

	Martin Zibricky - Core developer and release manager.

	Hartmut Goebel - Core developer.

	David Cortesi - Initial work on Python 3 support, Python 3 fixes, documentation updates, various hook fixes.

	Cecil Curry - ‘six’ hook for Python 3, various modulegraph improvements, wxPython hook fixes,

	David Vierra - unicode support in bootloader, Windows SxS Assembly Manifest fixes and many other Windows improvements.

	Michael Mulley - keyring, PyNaCl import hook.

	Rainer Dreyer - OS X fixes, hook fixes.

	Bryan A. Jones - test suite fixes, various hook fixes.

	Philippe Pepiot - Linux fixes.

	Emanuele Bertoldi - pycountry import hook, Django import hook fixes.

	Glenn Ramsey - PyQt5 import hook - support for QtWebEngine on OSX, various hook fixes, Windows fixes.

	Karol Woźniak - import hook fixes.

	Jonathan Springer - PyGObject hooks. ctypes, PyEnchant hook fixes, OS X fixes.

	Giuseppe Masetti - osgeo, mpl_toolkits.basemap and netCDF4 import hooks.

	Yuu Yamashita - OS X fixes.

	Thomas Waldmann - FreeBSD fixes.

	Boris Savelev - FreeBSD and Solaris fixes.

	Guillermo Gutiérrez - Python 3 fixes.

	Jasper Geurtz - gui fixes, hook fixes.

	Holger Pandel - Windows fixes.

	Anthony Zhang - SpeechRecognition import hook.

	Andrei Fokau - Python 3.5 fixes.

	Kenneth Zhao - AIX fixes.

	Maik Riechert - lensfunpy, rawpy import hooks.

	Tim Stumbaugh - hook fixes.

	Andrew Leech - Windows fixes.

	Patrick Robertson - tkinter import hook fixes.

	Yaron de Leeuw - import hook fixes.

	Bryan Cort - PsychoPy import hook.

	Phoebus Veiz - bootloader fixes.

	Sean Johnston - version fix.

	Kevin Zhang - PyExcelerate import hook.

	Paulo Matias - unicode fixes.

	Lorenzo Villani - crypto feature, various fixes.

	Janusz Skonieczny - hook fixes.

	Martin Gamwell Dawids - Solaris fixes.

	Volodymyr Vitvitskyi - typo fixes.

	Thomas Kho - django import hook fixes.

	Konstantinos Koukopoulos - FreeBSD support.

	Jonathan Beezley - PyQt5 import hook fixes.

	Andraz Vrhovec - various fixes.

	Noah Treuhaft - OpenCV import hook.

	Michael Hipp - reportlab import hook.

	Michael Sverdlik - certifi, httplib2, requests, jsonschema import hooks.

	Santiago Reig - apply import hook.

Contributions to PyInstaller 2.1 and older

	Glenn Ramsey - PyQt5 import hook.

	David Cortesi - PyInstaller manual rewrite.

	Vaclav Smilauer - IPython import hook.

	Shane Hansen - Linux arm support.

	Bryan A. Jones - docutils, jinja2, sphinx, pytz, idlelib import hooks.

	Patrick Stewart <patstew at gmail dot com> - scipy import hook.

	Georg Schoelly <mail at georg-schoelly dot com> - storm ORM import hook.

	Vinay Sajip - zmq import hook.

	Martin Gamwell Dawids - AIX support.

	Hywel Richards - Solaris support.

	Brandyn White - packaged executable return code fix.

	Chien-An “Zero” Cho - PyUSB import hook.

	Daniel Hyams - h2py, wx.lib.pubsub import hooks.

	Hartmut Goebel - Python logging system for message output. Option –log-level.

	Florian Hoech - full Python 2.6 support on Windows including automatic
handling of DLLs, CRT, manifest, etc. Read and write resources from/to Win32
PE files.

	Martin Zibricky - rewrite the build system for the bootloader using waf.
LSB compliant precompiled bootloaders for Linux. Windows 64-bit support.

	Peter Burgers - matplotlib import hook.

	Nathan Weston - Python architecture detection on OS X.

	Isaac Wagner - various OS X fixes.

	Matteo Bertini - OS X support.

	Daniele Zannotti - OS X support.

	David Mugnai - Linux support improvements.

	Arve Knudsen - absolute imports in Python 2.5+

	Pascal Veret - PyQt4 import hook with Qt4 plugins.

	Don Dwiggins - pyodbc import hook.

	Allan Green - refactoring and improved in-process COM servers.

	Daniele Varrazzo - various bootloader and OS X fixes.

	Greg Copeland - sqlalchemy import hook.

	Seth Remington - PyGTK hook improvements.

	Marco Bonifazi - PyGTK hook improvements. PyOpenGL import hook.

	Jamie Kirkpatrick - paste import hook.

	Lorenzo Mancini - PyXML import hook fixes under Windows. OS X support. App
bundle creation on OS X. Tkinter on OS X. Precompiled bootloaders for OS X.

	Lorenzo Berni - django import hook.

	Louai Al-Khanji - fixes with optparse module.

	Thomas Heller - set custom icon of Windows exe files.

	Eugene Prigorodov <eprigorodov at naumen dot ru> - KInterasDB import hook.

	David C. Morrill - vtkpython import hook.

	Alan James Salmoni - Tkinter interface to PyInstaller.

Man Pages

	pyinstaller

	pyi-makespec

pyinstaller

SYNOPSIS

pyinstaller <options> SCRIPT…

pyinstaller <options> SPECFILE

DESCRIPTION

PyInstaller is a program that freezes (packages) Python programs into
stand-alone executables, under Windows, GNU/Linux, macOS,
FreeBSD, OpenBSD, Solaris and AIX.
Its main advantages over similar tools are that PyInstaller works with
Python 3.7-3.11, it builds smaller executables thanks to transparent
compression, it is fully multi-platform, and use the OS support to load the
dynamic libraries, thus ensuring full compatibility.

You may either pass one or more file-names of Python scripts or a single
.spec-file-name. In the first case, pyinstaller will generate a
.spec-file (as pyi-makespec would do) and immediately process it.

If you pass a .spec-file, this will be processed and most options given on
the command-line will have no effect.
Please see the PyInstaller Manual for more information.

OPTIONS

Positional Arguments

scriptname

Name of scriptfiles to be processed or exactly one
.spec file. If a .spec file is specified, most options
are unnecessary and are ignored.

Optional Arguments

	-h, --help

	show this help message and exit

	-v, --version

	Show program version info and exit.

	--distpath DIR

	Where to put the bundled app (default: ./dist)

	--workpath WORKPATH

	Where to put all the temporary work files, .log, .pyz
and etc. (default: ./build)

	-y, --noconfirm

	Replace output directory (default:
SPECPATH/dist/SPECNAME) without asking for
confirmation

	--upx-dir UPX_DIR

	Path to UPX utility (default: search the execution
path)

	-a, --ascii

	Do not include unicode encoding support (default:
included if available)

	--clean

	Clean PyInstaller cache and remove temporary files
before building.

	--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of TRACE, DEBUG, INFO, WARN, DEPRECATION,
ERROR, FATAL (default: INFO). Also settable via and
overrides the PYI_LOG_LEVEL environment variable.

What To Generate

	-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	-F, --onefile

	Create a one-file bundled executable.

	--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What To Bundle, Where To Search

	--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to the executable. The
path separator is platform specific, os.pathsep (which is ; on
Windows and : on most unix systems) is used. This option can be used
multiple times.

	--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable. See the
--add-data option for more details. This option can be used multiple
times.

	-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ':', or
use this option multiple times. Equivalent to
supplying the pathex argument in the spec file.

	--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the script(s). This option can be
used multiple times.

	--collect-submodules MODULENAME

	Collect all submodules from the specified package or module. This option
can be used multiple times.

	--collect-data MODULENAME, --collect-datas MODULENAME

	Collect all data from the specified package or module. This option can be
used multiple times.

	--collect-binaries MODULENAME

	Collect all binaries from the specified package or module. This option can
be used multiple times.

	--collect-all MODULENAME

	Collect all submodules, data files, and binaries from the specified package
or module. This option can be used multiple times.

	--copy-metadata PACKAGENAME

	Copy metadata for the specified package. This option can be used multiple
times.

	--recursive-copy-metadata PACKAGENAME

	Copy metadata for the specified package and all its dependencies. This
option can be used multiple times.

	--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option can be used multiple
times.

	--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is code that is bundled
with the executable and is executed before any other code or module to set
up special features of the runtime environment. This option can be used
multiple times.

	--exclude-module EXCLUDES

	Optional module or package (the Python name, not the path name) that will
be ignored (as though it was not found). This option can be used multiple
times.

	--splash IMAGE_FILE

	(EXPERIMENTAL) Add an splash screen with the image
IMAGE_FILE to the application. The splash screen can
display progress updates while unpacking.

How To Generate

-d {all,imports,bootloader,noarchive}, –debug {all,imports,bootloader,noarchive}

Provide assistance with debugging a frozen application. This argument may
be provided multiple times to select several of the following options. -
all: All three of the following options. - imports: specify the -v option
to the underlying Python interpreter, causing it to print a message
each time a module is initialized, showing the place (filename or
built-in module) from which it is loaded. See
https://docs.python.org/3/using/cmdline.html#id4. - bootloader: tell the
bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports. -
noarchive: instead of storing all frozen Python source files as an
archive inside the resulting executable, store them as files in the
resulting output directory.

	--python-option PYTHON_OPTION

	Specify a command-line option to pass to the Python interpreter at runtime.
Currently supports “v” (equivalent to “–debug imports”), “u”, and “W
<warning control>”.

	-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

	--upx-exclude FILE

	Prevent a binary from being compressed when using upx.
This is typically used if upx corrupts certain
binaries during compression. FILE is the filename of
the binary without path. This option can be used
multiple times.

Windows And Mac Os X Specific Options

	-c, --console, --nowindowed

	Open a console window for standard i/o (default). On Windows this option
has no effect if the first script is a ‘.pyw’ file.

	-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window for standard i/o. On
Mac OS this also triggers building a Mac OS .app bundle. On Windows this
option is automatically set if the first script is a ‘.pyw’ file. This
option is ignored on *NIX systems.

	-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>, --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>

	FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on
Mac OS. If an image file is entered that isn’t in the platform format (ico
on Windows, icns on Mac), PyInstaller tries to use Pillow to translate the
icon into the correct format (if Pillow is installed). Use “NONE” to not
apply any icon, thereby making the OS show some default (default: apply
PyInstaller’s icon). This option can be used multiple times.

	--disable-windowed-traceback

	Disable traceback dump of unhandled exception in windowed (noconsole) mode
(Windows and macOS only), and instead display a message that this feature
is disabled.

Windows Specific Options

	--version-file FILE

	Add a version resource from FILE to the exe.

	-m <FILE or XML>, --manifest <FILE or XML>

	Add manifest FILE or XML to the exe.

	--no-embed-manifest

	Generate an external .exe.manifest file instead of
embedding the manifest into the exe. Applicable only
to onedir mode; in onefile mode, the manifest is
always embedded, regardless of this option.

	-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The RESOURCE is one to
four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file or an
exe/dll. For data files, at least TYPE and NAME must be specified. LANGUAGE
defaults to 0 or may be specified as wildcard * to update all resources of
the given TYPE and NAME. For exe/dll files, all resources from FILE will be
added/updated to the final executable if TYPE, NAME and LANGUAGE are
omitted or specified as wildcard *. This option can be used multiple
times.

	--uac-admin

	Using this option creates a Manifest that will request
elevation upon application start.

	--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-By-Side Assembly Searching Options (Advanced)

	--win-private-assemblies

	Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will
always be used, and any newer versions installed on user machines at the
system level will be ignored.

	--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to bundle into the
application, PyInstaller will prefer not to follow policies that redirect
to newer versions, and will try to bundle the exact versions of the
assembly.

Mac Os Specific Options

	--argv-emulation

	Enable argv emulation for macOS app bundles. If
enabled, the initial open document/URL event is
processed by the bootloader and the passed file paths
or URLs are appended to sys.argv.

	--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS .app bundle identifier is used as the default unique program name
for code signing purposes. The usual form is a hierarchical name in reverse
DNS notation. For example: com.mycompany.department.appname (default: first
script’s basename)

	--target-architecture ARCH, --target-arch ARCH

	Target architecture (macOS only; valid values: x86_64, arm64, universal2).
Enables switching between universal2 and single-arch version of frozen
application (provided python installation supports the target
architecture). If not target architecture is not specified, the current
running architecture is targeted.

	--codesign-identity IDENTITY

	Code signing identity (macOS only). Use the provided identity to sign
collected binaries and generated executable. If signing identity is not
provided, ad- hoc signing is performed instead.

	--osx-entitlements-file FILENAME

	Entitlements file to use when code-signing the collected binaries (macOS
only).

Rarely Used Special Options

	--runtime-tmpdir PATH

	Where to extract libraries and support files in onefile-mode. If this
option is given, the bootloader will ignore any temp-folder location
defined by the run-time OS. The _MEIxxxxxx-folder will be created here.
Please use this option only if you know what you are doing.

	--bootloader-ignore-signals

	Tell the bootloader to ignore signals rather than forwarding them to the
child process. Useful in situations where for example a supervisor process
signals both the bootloader and the child (e.g., via a process group) to
avoid signalling the child twice.

ENVIRONMENT VARIABLES

	PYINSTALLER_CONFIG_DIR

	This changes the directory where PyInstaller caches some files.
The default location for this is operating system dependent,
but is typically a subdirectory of the home directory.

SEE ALSO

pyi-makespec(1),
The PyInstaller Manual https://pyinstaller.readthedocs.io/,
Project Homepage http://www.pyinstaller.org

pyi-makespec

SYNOPSIS

pyi-makespec <options> SCRIPT [SCRIPT …]

DESCRIPTION

The spec file is the description of what you want PyInstaller to do
with your program. pyi-makespec is a simple wizard to create spec
files that cover basic usages:

pyi-makespec [--onefile] yourprogram.py

By default, pyi-makespec generates a spec file that tells
PyInstaller to create a distribution directory contains the main
executable and the dynamic libraries. The option --onefile
specifies that you want PyInstaller to build a single file with
everything inside.

In most cases the specfile generated by pyi-makespec is all you
need. If not, see When things go wrong in the manual and be sure to
read the introduction to Spec Files.

OPTIONS

Positional Arguments

scriptname

Optional Arguments

	-h, --help

	show this help message and exit

	--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of TRACE, DEBUG, INFO, WARN, DEPRECATION,
ERROR, FATAL (default: INFO). Also settable via and
overrides the PYI_LOG_LEVEL environment variable.

What To Generate

	-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	-F, --onefile

	Create a one-file bundled executable.

	--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What To Bundle, Where To Search

	--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to the executable. The
path separator is platform specific, os.pathsep (which is ; on
Windows and : on most unix systems) is used. This option can be used
multiple times.

	--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable. See the
--add-data option for more details. This option can be used multiple
times.

	-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ':', or
use this option multiple times. Equivalent to
supplying the pathex argument in the spec file.

	--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the script(s). This option can be
used multiple times.

	--collect-submodules MODULENAME

	Collect all submodules from the specified package or module. This option
can be used multiple times.

	--collect-data MODULENAME, --collect-datas MODULENAME

	Collect all data from the specified package or module. This option can be
used multiple times.

	--collect-binaries MODULENAME

	Collect all binaries from the specified package or module. This option can
be used multiple times.

	--collect-all MODULENAME

	Collect all submodules, data files, and binaries from the specified package
or module. This option can be used multiple times.

	--copy-metadata PACKAGENAME

	Copy metadata for the specified package. This option can be used multiple
times.

	--recursive-copy-metadata PACKAGENAME

	Copy metadata for the specified package and all its dependencies. This
option can be used multiple times.

	--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option can be used multiple
times.

	--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is code that is bundled
with the executable and is executed before any other code or module to set
up special features of the runtime environment. This option can be used
multiple times.

	--exclude-module EXCLUDES

	Optional module or package (the Python name, not the path name) that will
be ignored (as though it was not found). This option can be used multiple
times.

	--splash IMAGE_FILE

	(EXPERIMENTAL) Add an splash screen with the image
IMAGE_FILE to the application. The splash screen can
display progress updates while unpacking.

How To Generate

-d {all,imports,bootloader,noarchive}, –debug {all,imports,bootloader,noarchive}

R|Provide assistance with debugging a frozen application. This argument may
be provided multiple times to select several of the following options. -
all: All three of the following options. - imports: specify the -v option
to the underlying Python interpreter, causing it to print a message each
time a module is initialized, showing the place (filename or built-in
module) from which it is loaded. See
https://docs.python.org/3/using/cmdline.html#id4. - bootloader: tell the
bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports. - noarchive:
instead of storing all frozen Python source files as an archive inside the
resulting executable, store them as files in the resulting output
directory.

	--python-option PYTHON_OPTION

	Specify a command-line option to pass to the Python interpreter at runtime.
Currently supports “v” (equivalent to “–debug imports”), “u”, and “W
<warning control>”.

	-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

	--upx-exclude FILE

	Prevent a binary from being compressed when using upx.
This is typically used if upx corrupts certain
binaries during compression. FILE is the filename of
the binary without path. This option can be used
multiple times.

Windows And Mac Os X Specific Options

	-c, --console, --nowindowed

	Open a console window for standard i/o (default). On Windows this option
has no effect if the first script is a ‘.pyw’ file.

	-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window for standard i/o. On
Mac OS this also triggers building a Mac OS .app bundle. On Windows this
option is automatically set if the first script is a ‘.pyw’ file. This
option is ignored on *NIX systems.

	-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>, --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or “NONE”>

	FILE.ico: apply the icon to a Windows executable. FILE.exe,ID: extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on
Mac OS. If an image file is entered that isn’t in the platform format (ico
on Windows, icns on Mac), PyInstaller tries to use Pillow to translate the
icon into the correct format (if Pillow is installed). Use “NONE” to not
apply any icon, thereby making the OS show some default (default: apply
PyInstaller’s icon). This option can be used multiple times.

	--disable-windowed-traceback

	Disable traceback dump of unhandled exception in windowed (noconsole) mode
(Windows and macOS only), and instead display a message that this feature
is disabled.

Windows Specific Options

	--version-file FILE

	Add a version resource from FILE to the exe.

	-m <FILE or XML>, --manifest <FILE or XML>

	Add manifest FILE or XML to the exe.

	--no-embed-manifest

	Generate an external .exe.manifest file instead of
embedding the manifest into the exe. Applicable only
to onedir mode; in onefile mode, the manifest is
always embedded, regardless of this option.

	-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The RESOURCE is one to
four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file or an
exe/dll. For data files, at least TYPE and NAME must be specified. LANGUAGE
defaults to 0 or may be specified as wildcard * to update all resources of
the given TYPE and NAME. For exe/dll files, all resources from FILE will be
added/updated to the final executable if TYPE, NAME and LANGUAGE are
omitted or specified as wildcard *. This option can be used multiple
times.

	--uac-admin

	Using this option creates a Manifest that will request
elevation upon application start.

	--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-By-Side Assembly Searching Options (Advanced)

	--win-private-assemblies

	Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will
always be used, and any newer versions installed on user machines at the
system level will be ignored.

	--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to bundle into the
application, PyInstaller will prefer not to follow policies that redirect
to newer versions, and will try to bundle the exact versions of the
assembly.

Mac Os Specific Options

	--argv-emulation

	Enable argv emulation for macOS app bundles. If
enabled, the initial open document/URL event is
processed by the bootloader and the passed file paths
or URLs are appended to sys.argv.

	--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS .app bundle identifier is used as the default unique program name
for code signing purposes. The usual form is a hierarchical name in reverse
DNS notation. For example: com.mycompany.department.appname (default: first
script’s basename)

	--target-architecture ARCH, --target-arch ARCH

	Target architecture (macOS only; valid values: x86_64, arm64, universal2).
Enables switching between universal2 and single-arch version of frozen
application (provided python installation supports the target
architecture). If not target architecture is not specified, the current
running architecture is targeted.

	--codesign-identity IDENTITY

	Code signing identity (macOS only). Use the provided identity to sign
collected binaries and generated executable. If signing identity is not
provided, ad- hoc signing is performed instead.

	--osx-entitlements-file FILENAME

	Entitlements file to use when code-signing the collected binaries (macOS
only).

Rarely Used Special Options

	--runtime-tmpdir PATH

	Where to extract libraries and support files in onefile-mode. If this
option is given, the bootloader will ignore any temp-folder location
defined by the run-time OS. The _MEIxxxxxx-folder will be created here.
Please use this option only if you know what you are doing.

	--bootloader-ignore-signals

	Tell the bootloader to ignore signals rather than forwarding them to the
child process. Useful in situations where for example a supervisor process
signals both the bootloader and the child (e.g., via a process group) to
avoid signalling the child twice.

ENVIRONMENT VARIABLES

	PYINSTALLER_CONFIG_DIR

	This changes the directory where PyInstaller caches some files.
The default location for this is operating system dependent,
but is typically a subdirectory of the home directory.

SEE ALSO

pyinstaller(1),
The PyInstaller Manual https://pyinstaller.readthedocs.io/,
Project Homepage http://www.pyinstaller.org

Development Guide

Developer Documentation

	Quickstart

	New to GitHub or Git?

	Coding conventions

	Running the Test Suite

	Guidelines for Commits
	In Detail

	Please Write Good Commit Messages

	Content of the commit message

	The first Line

	The Commit-Message Body

	Standard prefixes

	Please set the correct Author

	Further Reading

	Credits

	Improving and Building the Documentation
	PyInstaller extensions

	reStructuredText Cheat-sheet

	Creating Pull-Requests
	Example

	Changelog Entries

	pyenv and PyInstaller

	PyInstaller’s Branch Model

Quickstart

	Our git repository is at https://github.com/pyinstaller/pyinstaller:

git clone https://github.com/pyinstaller/pyinstaller

	Development is done on the develop branch. Pull-request shall be filed
against this branch.

	Releases will reside on the master branch.

	Install required testing tools:

pip install -r tests/requirements-tools.txt

	Commit as often as you’d like, but squash or otherwise
rewrite your commits into logical patches before asking
for code review. git rebase -i is your friend.
Read the »» Detailed Commit Guideline
for more information.

Reformatting code without functional changes will generally not be accepted
(for rationale see #2727 [https://github.com/pyinstaller/pyinstaller/issues/2727]).

	Write meaningful commit messages.

	The first line shall be a short sentence
that can stand alone as a short description of the change,
written in the present tense, and
prefixed with the subsystem-name.

	The body of the commit message should explain or justify the change.
Read the »» Detailed Commit Message Rules
for more information.

	Provide tests that cover your changes and try to run the tests locally
first.

	Submit pull-requests against the develop branch.
Mind adding a changelog entry
so our users can learn about your change!

	For new files mind adding the copyright header, see
PyInstaller/__init__.py [https://github.com/pyinstaller/pyinstaller/blob/develop/PyInstaller/__init__.py]
(also mind updating to the current year).

	In response to feedback, squash the new “fix up” commits
into the respective commit that is being fixed
with an interactive rebase (git rebase -i).
Push the new, rewritten branch
with a git push --force.
(Scary! But github doesn’t play nicely with a safer method.)

New to GitHub or Git?

Our development workflow is build around Git and GitHub.
Please take your time to become familiar with these.
If you are new to GitHub,
GitHub has instructions [https://help.github.com/categories/bootcamp/]
for getting you started.
If you are new to Git there are a
tutorial [https://git-scm.com/docs/gittutorial] and an
excellent book available online [https://git-scm.com/book].

Further Reading

	Please Write Good Commit Messages

	Creating Pull-Requests

	Updating a Pull-Request

	PyInstaller’s Branch Model

Coding conventions

The PyInstaller project follows the PEP 8 [https://www.python.org/dev/peps/pep-0008] Style Guide for Python Code for
new code.
It uses yapf [https://github.com/google/yapf] to do the bulk of the formatting (mostly putting spaces in the
correct places) automatically and flake8 [https://flake8.pycqa.org/] to validate PEP 8 [https://www.python.org/dev/peps/pep-0008] rules which yapf [https://github.com/google/yapf]
doesn’t cover.

Before submitting changes to PyInstaller, please check your code with both
tools.

To install them run:

pip install flake8 yapf==0.32.0 toml

Reformat your code automatically with yapf [https://github.com/google/yapf]:

yapf -rip .

Then manually adjust your code based on any suggestions given by flake8 [https://flake8.pycqa.org/]:

git diff -U0 last-commit-id-which-you-did-not-write -- | flake8 --diff -

Please abstain from reformatting existing code, even it it doesn’t follow
PEP 8. We will not accept reformatting changes since they make it harder to
review the changes and to follow changes in the long run. For a complete
rationale please see #2727 [https://github.com/pyinstaller/pyinstaller/issues/2727].

Running the Test Suite

To run the test-suite, please proceed as follows.

	If you don’t have a git clone of PyInstaller, first fetch the current
development head, either using pip, …:

pip download --no-deps https://github.com/pyinstaller/pyinstaller/archive/develop.zip
unzip develop.zip
cd pyinstaller-develop/

… or using git:

git clone https://github.com/pyinstaller/pyinstaller.git
cd pyinstaller

	Then setup a fresh virtualenv [https://virtualenv.pypa.io] for running the test suite in and install
all required tools:

pip install --user virtualenv
virtualenv /tmp/venv
. /tmp/venv/bin/activate
pip install -r tests/requirements-tools.txt

	To run a single test use e.g.:

pytest tests/unit -k test_collect_submod_all_included

	Run the test-suite:

pytest tests/unit tests/functional

This only runs the tests for the core functionality and some packages from
the Python standard library.

	To get better coverage, including many of the available hooks, you need to
download the Python packages to be tested. For this please run:

pip install -U -r tests/requirements-libraries.txt
pytest tests/unit tests/functional

To learn how we run the test-suite in the continuous integration tests please
have a look at .travis.yml [https://github.com/pyinstaller/pyinstaller/blob/develop/.travis.yml] (for GNU/Linux and macOS) and appveyor.yml [https://github.com/pyinstaller/pyinstaller/blob/develop/appveyor.yml]
(for Windows).

Guidelines for Commits

Please help keeping code and changes comprehensible for years.
Provide a readable commit-history following this guideline.

A commit

	stands alone as a single, complete, logical change,

	has a descriptive commit message (see below),

	has no extraneous modifications (whitespace changes,
fixing a typo in an unrelated file, etc.),

	follows established coding conventions (PEP 8 [https://www.python.org/dev/peps/pep-0008]) closely.

Avoid committing several unrelated changes in one go. It makes merging
difficult, and also makes it harder to determine which change is the culprit
if a bug crops up.

If you did several unrelated changes before committing, git gui makes
committing selected parts and even selected lines easy. Try the context menu
within the windows diff area.

This results in a more readable history, which makes it easier to understand
why a change was made. In case of an issue, it’s easier to git bisect to
find breaking changes any revert those breaking changes.

In Detail

A commit should be one (and just one) logical unit.
It should be something that someone might want to patch or
revert in its entirety, and never piece-wise.
If it could be useful in pieces, make separate commits.

	Make small patches (i.e. work in consistent increments).

	Reformatting code without functional changes will generally not be
accepted (for rationale see #2727 [https://github.com/pyinstaller/pyinstaller/issues/2727]).
If such changes are required, separate it into a commit of its own
and document as such.

This means
that when looking at patches later, we don’t have to wade through loads of
non-functional changes to get to the relevant parts of the patch.

	Especially don’t mix different types of change, and put a standard prefix
for each type of change to identify it in your commit message.

	Abstain refactorings!
If any, restrict refactorings (that should not change functionality) to
their own commit (and document).

	Restrict functionality changes (bug fix or new feature) to their own
changelists (and document).

	If your commit-series includes any “fix up” commits
(“Fix typo.”, “Fix test.”, “Remove commented code.”)
please use git rebase -i … to clean them up
prior to submitting a pull-request.

	Use git rebase -i to sort, squash, and fixup commits
prior to submitting the pull-request.
Make it a readable history, easy to understand what you’ve done.

Please Write Good Commit Messages

Please help keeping code and changes comprehensible for years.
Write good commit messages following this guideline.

Commit messages should provide enough information to enable a third party to
decide if the change is relevant to them and if they need to read the change
itself.

PyInstaller is maintained since 2005 and we often need to
comprehend years later why a certain change has been implemented as it is.
What seemed to be obvious when the change was applied may be just obscure
years later. The original contributor may be out of reach, while another
developer needs to comprehend the reasons, side-effects and decisions the
original author considered.

We learned that commit messages are important to comprehend changes and
thus we are a bit picky about them.

We may ask you to reword your commit messages. In this case, use git
rebase -i … and git push -f … to update your pull-request. See
Updating a Pull-Request for details.

Content of the commit message

Write meaningful commit messages.

	The first line shall be a short sentence
that can stand alone as a short description of the change,
written in the present tense, and
prefixed with the subsystem-name.
See below for details.

	The body of the commit message should explain or justify the change,
see below for details.

Examples of good commit messages are
@5c1628e [https://github.com/pyinstaller/pyinstaller/commit/5c1628e66e18e2bb1c44faa88387b1f627181b43] or
@73d7710 [https://github.com/pyinstaller/pyinstaller/commit/73d7710613e26c3d59212e9e031f41a916c1e892].

The first Line

The first line of the commit message shall

	be a short sentence (≤ 72 characters maximum, but shoot for ≤ 50),

	use the present tense (“Add awesome feature.”) 1,

	be prefixed with an identifier for the
subsystem
this commit is related to
(“tests: Fix the frob.” or “building: Make all nodes turn faster.”),

	always end with a period.

	Ending punctuation other than a
period should be used to indicate that the summary line is incomplete and
continues after the separator; “…” is conventional.

	1

	Consider these messages as the instructions for what applying the
commit will do. Further this convention matches up with commit messages
generated by commands like git merge and git revert.

The Commit-Message Body

The body of a commit log should:

	explain or justify the change,

	If you find yourself describing implementation details, this most probably
should go into a source code comment.

	Please include motivation for the change, and contrasts its
implementation with previous behavior.

	For more complicate or serious changes please document relevant decisions,
contrast them with other possibilities for chosen,
side-effect you experienced,
or other thinks to keep in mind when touching this peace of code again.
(Although the later might better go into a source code comment.)

	for a bug fix, provide a ticket number or link to the ticket,

	explain what changes were made at a high level
(The GNU ChangeLog [https://www.gnu.org/prep/standards/html_node/Change-Logs.html#Change-Logs]
standard is worth a read),

	be word-wrapped to 72 characters per line, don’t go over 80; and

	separated by a blank line from the first line.

	Bullet points and numbered lists are okay, too:

* Typically a hyphen or asterisk is used for the bullet, preceded by a
 single space, with blank lines in between, but conventions vary here.

* Use a hanging indent.

	Do not start your commit message with a hash-mark (#) as git some git
commands may dismiss these message. (See this discussion [http://stackoverflow.com/questions/2788092/start-a-git-commit-message-with-a-hashmark].
for details.)

Standard prefixes

Please state the “subsystem” this commit is related to as a prefix in the
first line. Do learn which prefixes others used for the files you changed you
can use git log --oneline path/to/file/or/dir.

Examples for “subsystems” are:

	Hooks for hook-related changes

	Bootloader, Bootloader build for the bootloader or it’s build system

	depend for the dependency detection parts (PyInstaller/depend)

	building for the building part (PyInstaller/building)

	compat for code related to compatibility of different Python versions
(primary PyInstaller/compat.py)

	loader

	utils, utils/hooks

	Tests, Test/CI: For changes to the test suite (incl. requirements),
resp. the CI.

	modulegraph: changes related to PyInstaller/lib/modulegraph

	Doc, Doc build for the documentation content resp. it’s build
system. You may want to specify the chapter or section too.

Please set the correct Author

Please make sure you have setup git to use the correct name and email for your
commits. Use the same name and email on all machines you may push from.
Example:

Set name and email
git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

This will set this name and email-address to be used for all git-repos you are
working on on this system. To set it for just the PyInstaller repo, remove the
--global flag.

Alternatively you may use git gui ‣ Edit ‣
Options … to set these values.

Further Reading

Further hints and tutorials about writing good commit messages can also be
found at:

	FreeBSD Committer’s Guide [http://www.freebsd.org/doc/en_US.ISO8859-1/articles/committers-guide/article.html]

	http://365git.tumblr.com/post/3308646748/writing-git-commit-messages

	http://wincent.com/blog/commit-messages: The Good, the Bad and the Ugly.

	http://wiki.scummvm.org/index.php/Commit_Guidelines

	http://lbrandy.com/blog/2009/03/writing-better-commit-messages/

	http://blog.looplabel.net/2008/07/28/best-practices-for-version-control/

	http://subversion.apache.org/docs/community-guide/conventions.html (Targeted
a bit too much to subversion usage, which does not use such fine-grained
commits as we ask you strongly to use.)

Credits

This page was composed from material found at

	http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions/Git

	http://lbrandy.com/blog/2009/03/writing-better-commit-messages/

	http://365git.tumblr.com/post/3308646748/writing-git-commit-messages

	http://www.catb.org/esr/dvcs-migration-guide.html

	https://git.dthompson.us/presentations.git/tree/HEAD:/happy-patching

	and other places.

Improving and Building the Documentation

PyInstaller’s documentation is created using Sphinx [http://www.sphinx-doc.org/].
Sphinx uses reStructuredText [http://docutils.sourceforge.net/rst.html] as its markup language, and many of its
strengths come from the power and straightforwardness of reStructuredText and
its parsing and translating suite, Docutils [http://docutils.sourceforge.net/].

The documentation is maintained in the Git repository along with the code
and pushing to the develop branch will create
a new version at https://pyinstaller.readthedocs.io/en/latest/.

For small changes (like typos) you may just fork PyInstaller on Github,
edit the documentation online and create a pull-request.

For anything else we ask you to clone the repository and verify your changes
like this:

pip install -r doc/requirements.txt
cd doc
make html
xdg-open _build/html/index.html

Please watch out for any warnings and errors while building the documentation.
In your browser check if the markup is valid
prior to pushing your changes and creating the pull-request.
Please also run:

make clean
...
make html

to verify once again everything is fine. Thank you!

We may ask you to rework your changes or reword your commit messages. In this
case, use git rebase -i … and git push -f … to update your
pull-request. See Updating a Pull-Request for details.

PyInstaller extensions

For the PyInstaller documentation there are roles available *
in addition to the ones from Sphinx [http://www.sphinx-doc.org/en/stable/markup/inline.html] and docutils [http://www.sphinx-doc.org/en/stable/rest.html#inline-markup].

	
:commit:

	Refer to a commit, creating a web-link to the online git repository.
The commit-id will be shortened to 8 digits for readability.
Example: :commit:`a1b2c3d4e5f6a7b8c9` will become
@a1b2c3d [https://github.com/pyinstaller/pyinstaller/commit/a1b2c3d4e5f6a7b8c9].

	
:issue:

	Link to an issue or pull-request number at Github.
Example: :issue:`123` will become #123 [https://github.com/pyinstaller/pyinstaller/issues/123].

	*

	Defined in doc/_extensions/pyi_sphinx_roles.py

reStructuredText Cheat-sheet

	Combining markup and links:

The easiest way to install PyInstaller is using |pip|_::

.. |pip| replace:: :command:`pip`
.. _pip: https://pip.pypa.io/

Creating Pull-Requests

Example

	Create an account on https://github.com

	Create a fork of project pyinstaller/pyinstaller [https://github.com/pyinstaller/pyinstaller/] on github.

	Set up your git client by following this documentation on github [http://help.github.com/set-up-git-redirect].

	Clone your fork to your local machine.:

git clone git@github.com:YOUR_GITHUB_USERNAME/pyinstaller.git
cd pyinstaller

	Develop your changes (aka “hack”)

	Create a branch to work on (optional):

git checkout -b my-patch

	If you are going to implement a hook, start with creating a minimalistic
build-test (see below). You will need to test your hook anyway, so why not
use a build-test from the start?

	Incorporate your changes into PyInstaller.

	Test your changes by running all build tests to ensure nothing else is
broken. Please test on as many platform as you can.

	You may reference relevant issues in commit messages (like #1259) to make
GitHub link issues and commits together, and with phrase like “fixes #1259”
you can even close relevant issues automatically.

	Synchronize your fork with the PyInstaller upstream repository. There are two
ways for this:

	Rebase you changes on the current development head (preferred, as it
results in a straighter history and conflicts are easier to solve):

git remote add upstream https://github.com/pyinstaller/pyinstaller.git
git checkout my-patch
git pull --rebase upstream develop
git log --online --graph

	Merge the current development head into your changes:

git remote add upstream https://github.com/pyinstaller/pyinstaller.git
git fetch upstream develop
git checkout my-patch
git merge upstream/develop
git log --online --graph

For details see syncing a fork at github [https://help.github.com/articles/syncing-a-fork].

	Push your changes up to your fork:

git push

	Open the Pull Requests page at
https://github.com/YOUR_GITHUB_USERNAME/pyinstaller/pulls
and click “New pull request”.
That’s it.

Updating a Pull-Request

We may ask you to update your pull-request to improve it’s quality or for
other reasons. In this case, use git rebase -i … and git push -f … as
explained below. 1 Please do not close the pull-request and open a new
one – this would kill the discussion thread.

This is the workflow without actually changing the base:

git checkout my-branch
find the commit your branch forked from 'develop'
mb=$(git merge-base --fork-point develop)
rebase interactively without actually changing the base
git rebase -i $mb
… process rebase
git push -f my-fork my-branch

Or if you want to actually base your code on the current development head:

git checkout my-branch
rebase interactively on 'develop'
git rebase -i develop
… process rebase
git push -f my-fork my-branch

	1

	There are other ways to update a pull-request, e.g. by “amending” a
commit. But for casual (and not-so-casual :-) users rebase -i might be
the easiest way.

Changelog Entries

If your change is noteworthy, there needs to be a changelog entry so our users
can learn about it!

To avoid merge conflicts, we use the towncrier [https://pypi.org/project/towncrier/] package to manage our
changelog. towncrier uses independent files for each pull request –
called news fragments – instead of one monolithic changelog file. On
release, those news fragments are compiled into our doc/CHANGELOG.rst.

You don’t need to install towncrier yourself, you just have to abide by a
few simple rules:

	For each pull request, add a new file into news/ with a filename
adhering to the pr#.(feature|bugfix|breaking).rst schema:
For example, news/42.feature.rst for a new feature that is
proposed in pull request #42.

Our categories are:
feature,
bugfix,
breaking (breaking changes),
deprecation,
hooks (all hook-related changes),
bootloader,
moduleloader,
doc,
process (project infrastructure, development process, etc.),
core,
build (the bootloader build process),
and
tests.

	As with other docs, please use semantic newlines [http://rhodesmill.org/brandon/2012/one-sentence-per-line/] within news fragments.

	Prefer present tense or constructions with “now” or “new”.
For example:

	Add hook for my-fancy-library.

	Fix crash when trying to add resources to Windows executable using
--resource option.

If the change is relevant only for a specific platform, use a prefix,
like here:

	(GNU/Linux) When building with --debug turn of FORTIFY_SOURCE to ease
debugging.

	Wrap symbols like modules, functions, or classes into double backticks so
they are rendered in a monospace font.
If you mention functions or other callables, add parentheses at the end of
their names: is_module().
This makes the changelog a lot more readable.

	If you want to reference multiple issues,
copy the news fragment to another filename.
towncrier will merge all news fragments with identical contents
into one entry with multiple links to the respective pull requests.
You may also reference to an existing newsfragment by copying that one.

	If your pull-request includes several distinct topics, you may want to add
several news fragment files.
For example
4242.feature.rst for the new feature,
4242.bootloader for the accompanying change to the bootloader.

Remember that a news entry is meant for end users
and should only contain details relevant to an end user.

pyenv and PyInstaller

Note

This section is a still a draft.
Please help extending it.

	clone pyenv repository:

git clone https://github.com/yyuu/pyenv.git ~/.pyenv

	clone virtualenv plugin:

git clone https://github.com/yyuu/pyenv-virtualenv.git \
 ~/.pyenv/plugins/pyenv-virtualenv

	add to .bashrc or .zshrc:

Add 'pyenv' to PATH.
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"

Enable shims and autocompletion for pyenv.
eval "$(pyenv init -)"
Load pyenv-virtualenv automatically by adding
the following to ~/.zshrc:
#
eval "$(pyenv virtualenv-init -)"

	Install python version with shared libpython (necessary for PyInstaller to
work):

env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.5.0

	setup virtualenv pyenv virtualenv 3.5.0 venvname

	activate virtualenv pyenv activate venvname

	deactivate virtualenv pyenv deactivate

PyInstaller’s Branch Model

	develop branch

	We consider origin/develop to be the main branch where the
source code of HEAD always reflects a state with the latest delivered
development changes for the next release. Some would call this the
“integration branch”.

	master branch

	We consider origin/master to be the main branch where the
source code of HEAD always reflects a production-ready state. Each commit
to master is considered a new release and will be tagged.

The PyInstaller project doesn’t use long living branches (beside master
and develop) as we don’t support bugfixes for several major releases in
parallel.

Occasionally you might find these branches in the repository: 1

	release/ branches

	These branches are for preparing the next release. This
is for example: updating the version numbers, completing the change-log,
recompiling the bootloader, rebuilding the manuals.
See ref:release-workflow for details about the release process and what
steps have to be performed.

	hotfix/ branches

	These branches are also meant to prepare for a new
production release, albeit unplanned.
This is what is commonly known as a “hotfix”.

	feature/ branches

	Feature branches (or sometimes called topic branches)
are used to develop new features for the upcoming or a distant future
release.

	1

	This branching-model is basically the same as Vincent Driessen
described [http://nvie.com/posts/a-successful-git-branching-model/] in
this blog. But currently we are not following it strictly.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyi_splash	

 	[image: -]
 	
 PyInstaller	

 	
 	
 PyInstaller.compat	

 	
 	
 PyInstaller.isolated	

 	
 	
 PyInstaller.utils.hooks	

 	
 	
 PyInstaller.utils.hooks.conda	

Index

 Symbols
 | _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | W

Symbols

 	
 	
 --add-binary <SRC;DEST or SRC:DEST>

 	command line option

 	
 --add-data <SRC;DEST or SRC:DEST>

 	command line option

 	
 --additional-hooks-dir HOOKSPATH

 	command line option

 	
 --argv-emulation

 	command line option

 	
 --ascii

 	command line option

 	
 --bootloader-ignore-signals

 	command line option

 	
 --clean

 	command line option

 	
 --codesign-identity IDENTITY

 	command line option

 	
 --collect-all MODULENAME

 	command line option

 	
 --collect-binaries MODULENAME

 	command line option

 	
 --collect-data MODULENAME

 	command line option

 	
 --collect-datas MODULENAME

 	command line option

 	
 --collect-submodules MODULENAME

 	command line option

 	
 --console

 	command line option

 	
 --copy-metadata PACKAGENAME

 	command line option

 	
 --debug {all,imports,bootloader,noarchive}

 	command line option

 	
 --disable-windowed-traceback

 	command line option

 	
 --distpath DIR

 	command line option

 	
 --exclude-module EXCLUDES

 	command line option

 	
 --help

 	command line option

 	
 --hidden-import MODULENAME

 	command line option

 	
 --hiddenimport MODULENAME

 	command line option

 	
 --icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">

 	command line option

 	
 --log-level LEVEL

 	command line option

 	
 --manifest <FILE or XML>

 	command line option

 	
 --name NAME

 	command line option

 	
 --no-embed-manifest

 	command line option

 	
 --noconfirm

 	command line option

 	
 --noconsole

 	command line option

 	
 --noupx

 	command line option

 	
 --nowindowed

 	command line option

 	
 --onedir

 	command line option

 	
 --onefile

 	command line option

 	
 --osx-bundle-identifier BUNDLE_IDENTIFIER

 	command line option

 	
 --osx-entitlements-file FILENAME

 	command line option

 	
 --paths DIR

 	command line option

 	
 	
 --python-option PYTHON_OPTION

 	command line option

 	
 --recursive-copy-metadata PACKAGENAME

 	command line option

 	
 --resource RESOURCE

 	command line option

 	
 --runtime-hook RUNTIME_HOOKS

 	command line option

 	
 --runtime-tmpdir PATH

 	command line option

 	
 --specpath DIR

 	command line option

 	
 --splash IMAGE_FILE

 	command line option

 	
 --strip

 	command line option

 	
 --target-arch ARCH

 	command line option

 	
 --target-architecture ARCH

 	command line option

 	
 --uac-admin

 	command line option

 	
 --uac-uiaccess

 	command line option

 	
 --upx-dir UPX_DIR

 	command line option

 	
 --upx-exclude FILE

 	command line option

 	
 --version

 	command line option

 	
 --version-file FILE

 	command line option

 	
 --win-no-prefer-redirects

 	command line option

 	
 --win-private-assemblies

 	command line option

 	
 --windowed

 	command line option

 	
 --workpath WORKPATH

 	command line option

 	
 -a

 	command line option

 	
 -c

 	command line option

 	
 -D

 	command line option

 	
 -d {all,imports,bootloader,noarchive}

 	command line option

 	
 -F

 	command line option

 	
 -h

 	command line option

 	
 -i <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">

 	command line option

 	
 -m <FILE or XML>

 	command line option

 	
 -n NAME

 	command line option

 	
 -p DIR

 	command line option

 	
 -r RESOURCE

 	command line option

 	
 -s

 	command line option

 	
 -v

 	command line option

 	
 -w

 	command line option

 	
 -y

 	command line option

_

 	
 	__init__() (Splash method)

B

 	
 	base_prefix (in module PyInstaller.compat)

C

 	
 	call() (in module PyInstaller.isolated)

 	(Python method)

 	CC

 	close() (in module pyi_splash)

 	collect_all() (in module PyInstaller.utils.hooks)

 	collect_data_files() (in module PyInstaller.utils.hooks)

 	collect_delvewheel_libs_directory() (in module PyInstaller.utils.hooks)

 	collect_dynamic_libs() (in module PyInstaller.utils.hooks)

 	(in module PyInstaller.utils.hooks.conda)

 	collect_entry_point() (in module PyInstaller.utils.hooks)

 	collect_submodules() (in module PyInstaller.utils.hooks)

 	
 command line option

 	--add-binary <SRC;DEST or SRC:DEST>

 	--add-data <SRC;DEST or SRC:DEST>

 	--additional-hooks-dir HOOKSPATH

 	--argv-emulation

 	--ascii

 	--bootloader-ignore-signals

 	--clean

 	--codesign-identity IDENTITY

 	--collect-all MODULENAME

 	--collect-binaries MODULENAME

 	--collect-data MODULENAME

 	--collect-datas MODULENAME

 	--collect-submodules MODULENAME

 	--console

 	--copy-metadata PACKAGENAME

 	--debug {all,imports,bootloader,noarchive}

 	--disable-windowed-traceback

 	--distpath DIR

 	--exclude-module EXCLUDES

 	--help

 	--hidden-import MODULENAME

 	--hiddenimport MODULENAME

 	--icon <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">

 	--log-level LEVEL

 	--manifest <FILE or XML>

 	--name NAME

 	--no-embed-manifest

 	--noconfirm

 	--noconsole

 	--noupx

 	--nowindowed

 	--onedir

 	--onefile

 	--osx-bundle-identifier BUNDLE_IDENTIFIER

 	--osx-entitlements-file FILENAME

 	--paths DIR

 	--python-option PYTHON_OPTION

 	--recursive-copy-metadata PACKAGENAME

 	--resource RESOURCE

 	--runtime-hook RUNTIME_HOOKS

 	--runtime-tmpdir PATH

 	--specpath DIR

 	--splash IMAGE_FILE

 	--strip

 	--target-arch ARCH

 	--target-architecture ARCH

 	--uac-admin

 	--uac-uiaccess

 	--upx-dir UPX_DIR

 	--upx-exclude FILE

 	--version

 	--version-file FILE

 	--win-no-prefer-redirects

 	--win-private-assemblies

 	--windowed

 	--workpath WORKPATH

 	-a

 	-c

 	-D

 	-d {all,imports,bootloader,noarchive}

 	-F

 	-h

 	-i <FILE.ico or FILE.exe,ID or FILE.icns or Image or "NONE">

 	-m <FILE or XML>

 	-n NAME

 	-p DIR

 	-r RESOURCE

 	-s

 	-v

 	-w

 	-y

 	scriptname

 	
 	commit (role)

 	copy_metadata() (in module PyInstaller.utils.hooks)

D

 	
 	decorate() (in module PyInstaller.isolated)

 	
 	Distribution (class in PyInstaller.utils.hooks.conda)

 	distribution() (in module PyInstaller.utils.hooks.conda)

E

 	
 	
 environment variable

 	CC

 	OBJECT_MODE, [1], [2], [3], [4]

 	PYTHONHASHSEED, [1]

 	PYTHONPATH

 	
 	eval_statement() (in module PyInstaller.utils.hooks)

 	exec_statement() (in module PyInstaller.utils.hooks)

 	EXTENSION_SUFFIXES (in module PyInstaller.compat)

F

 	
 	files() (in module PyInstaller.utils.hooks.conda)

G

 	
 	get_homebrew_path() (in module PyInstaller.utils.hooks)

 	get_hook_config() (in module PyInstaller.utils.hooks)

 	
 	get_module_attribute() (in module PyInstaller.utils.hooks)

 	get_module_file_attribute() (in module PyInstaller.utils.hooks)

 	get_package_paths() (in module PyInstaller.utils.hooks)

I

 	
 	include_or_exclude_file() (in module PyInstaller.utils.hooks)

 	is_aix (in module PyInstaller.compat)

 	is_alive() (in module pyi_splash)

 	is_cygwin (in module PyInstaller.compat)

 	is_darwin (in module PyInstaller.compat)

 	is_freebsd (in module PyInstaller.compat)

 	is_linux (in module PyInstaller.compat)

 	
 	is_module_or_submodule() (in module PyInstaller.utils.hooks)

 	is_module_satisfies() (in module PyInstaller.utils.hooks)

 	is_openbsd (in module PyInstaller.compat)

 	is_package() (in module PyInstaller.utils.hooks)

 	is_solar (in module PyInstaller.compat)

 	is_venv (in module PyInstaller.compat)

 	is_win (in module PyInstaller.compat)

 	issue (role)

L

 	
 	locate() (PackagePath method)

M

 	
 	
 module

 	pyi_splash

 	PyInstaller.compat

 	PyInstaller.isolated

 	PyInstaller.utils.hooks

 	PyInstaller.utils.hooks.conda

O

 	
 	OBJECT_MODE, [1], [2], [3], [4]

P

 	
 	package_distribution() (in module PyInstaller.utils.hooks.conda)

 	PackagePath (class in PyInstaller.utils.hooks.conda)

 	
 pyi_splash

 	module

 	
 PyInstaller.compat

 	module

 	
 PyInstaller.isolated

 	module

 	
 PyInstaller.utils.hooks

 	module

 	
 PyInstaller.utils.hooks.conda

 	module

 	
 	Python (class in PyInstaller.isolated)

 	
 Python Enhancement Proposals

 	PEP 0440

 	PEP 239

 	PEP 302, [1]

 	PEP 405

 	PEP 527

 	PEP 552

 	PEP 8, [1], [2]

 	PYTHONHASHSEED, [1]

 	PYTHONPATH

R

 	
 	requires() (in module PyInstaller.utils.hooks.conda)

S

 	
 	
 scriptname

 	command line option

U

 	
 	update_text() (in module pyi_splash)

W

 	
 	walk_dependency_tree() (in module PyInstaller.utils.hooks.conda)

 nav.xhtml

 Table of Contents

 		
 PyInstaller Manual

 		
 Requirements

 		
 Windows

 		
 macOS

 		
 GNU/Linux

 		
 AIX, Solaris, FreeBSD and OpenBSD

 		
 License

 		
 How To Contribute

 		
 Some ideas how you can help

 		
 How to Install PyInstaller

 		
 Installing from the source archive

 		
 Verifying the installation

 		
 Installed commands

 		
 What PyInstaller Does and How It Does It

 		
 Analysis: Finding the Files Your Program Needs

 		
 Bundling to One Folder

 		
 How the One-Folder Program Works

 		
 Bundling to One File

 		
 How the One-File Program Works

 		
 Using a Console Window

 		
 Hiding the Source Code

 		
 Using PyInstaller

 		
 Options

 		
 Positional Arguments

 		
 Optional Arguments

 		
 What To Generate

 		
 What To Bundle, Where To Search

 		
 How To Generate

 		
 Windows And Mac Os X Specific Options

 		
 Windows Specific Options

 		
 Windows Side-By-Side Assembly Searching Options (Advanced)

 		
 Mac Os Specific Options

 		
 Rarely Used Special Options

 		
 Shortening the Command

 		
 Running PyInstaller from Python code

 		
 Using UPX

 		
 Excluding problematic files from UPX processing

 		
 Splash Screen (Experimental)

 		
 The pyi_splash Module

 		
 Defining the Extraction Location

 		
 Supporting Multiple Platforms

 		
 Supporting Multiple Python Environments

 		
 Supporting Multiple Operating Systems

 		
 Capturing Windows Version Data

 		
 Building macOS App Bundles

 		
 Platform-specific Notes

 		
 GNU/Linux

 		
 Windows

 		
 macOS

 		
 AIX

 		
 Run-time Information

 		
 Using __file__

 		
 Placing data files at expected locations inside the bundle

 		
 Using sys.executable and sys.argv[0]

 		
 LD_LIBRARY_PATH / LIBPATH considerations

 		
 Using Spec Files

 		
 Spec File Operation

 		
 Adding Files to the Bundle

 		
 Adding Data Files

 		
 Using Data Files from a Module

 		
 Adding Binary Files

 		
 Advanced Methods of Adding Files

 		
 Giving Run-time Python Options

 		
 Spec File Options for a macOS Bundle

 		
 POSIX Specific Options

 		
 The Splash Target

 		
 Multipackage Bundles

 		
 Multipackaging with One-Folder Apps

 		
 Multipackaging with One-File Apps

 		
 Example MERGE spec file

 		
 Globals Available to the Spec File

 		
 Notes about specific Features

 		
 Ctypes Dependencies

 		
 Solution in PyInstaller

 		
 Gotchas

 		
 SWIG support

 		
 Cython support

 		
 macOS multi-arch support

 		
 Architecture validation during binary collection

 		
 Trimming fat binaries for single-arch targets

 		
 macOS binary code signing

 		
 App bundles

 		
 macOS event forwarding and argv emulation in app bundles

 		
 Event forwarding

 		
 Optional argv emulation

 		
 Practical examples

 		
 Initial open event

 		
 Signal handling in console Windows applications and onefile application cleanup

 		
 Example of console control signal handling in python application

 		
 Onefile mode and temporary directory cleanup

 		
 Interrupting via Ctrl+C or Ctrl+Break

 		
 Closing the console window

 		
 Terminating the application via the Task Manager

 		
 When Things Go Wrong

 		
 Recipes and Examples for Specific Problems

 		
 Finding out What Went Wrong

 		
 Build-time Messages

 		
 Build-Time Dependency Graph

 		
 Build-Time Python Errors

 		
 Getting Debug Messages

 		
 Getting Python’s Verbose Imports

 		
 Figuring Out Why Your GUI Application Won’t Start

 		
 Operation not permitted error

 		
 Helping PyInstaller Find Modules

 		
 Extending the Path

 		
 Listing Hidden Imports

 		
 Extending a Package’s __path__

 		
 Changing Runtime Behavior

 		
 Getting the Latest Version

 		
 Asking for Help

 		
 Advanced Topics

 		
 The Bootstrap Process in Detail

 		
 Bootloader

 		
 Python imports in a bundled app

 		
 Splash screen startup

 		
 pyi_splash Module (Detailed)

 		
 Functions

 		
 The TOC and Tree Classes

 		
 TOC Class (Table of Contents)

 		
 The Tree Class

 		
 Inspecting Archives

 		
 ZlibArchive

 		
 CArchive

 		
 Using pyi-archive_viewer

 		
 Inspecting Executables

 		
 Creating a Reproducible Build

 		
 Understanding PyInstaller Hooks

 		
 How a Hook Is Loaded

 		
 Providing PyInstaller Hooks with your Package

 		
 Hook Global Variables

 		
 Useful Items in PyInstaller.compat

 		
 Useful Items in PyInstaller.utils.hooks

 		
 Support for Conda

 		
 Subprocess isolation with PyInstaller.isolated

 		
 The hook(hook_api) Function

 		
 The pre_find_module_path(pfmp_api) Method

 		
 The pre_safe_import_module(psim_api) Method

 		
 Hook Configuration Options

 		
 Supported hooks and options

 		
 GObject introspection (gi) hooks

 		
 GStreamer (gi.repository.Gst) hook

 		
 Matplotlib hooks

 		
 Adding an option to the hook

 		
 Building the Bootloader

 		
 Building for GNU/Linux

 		
 Development Tools

 		
 Building Linux Standard Base (LSB) compliant binaries (optional)

 		
 Cross Building for Different Architectures

 		
 Building for macOS

 		
 Cross-Building for macOS

 		
 Building for Windows

 		
 Build using Visual Studio C++

 		
 Build using MinGW-w64

 		
 Build using cygwin and MinGW

 		
 Building for AIX

 		
 Building for FreeBSD

 		
 Vagrantfile Virtual Machines

 		
 Changelog for PyInstaller

 		
 5.8.0 (2023-02-11)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 Module Loader

 		
 5.7.0 (2022-12-04)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Deprecations

 		
 Hooks

 		
 Bootloader

 		
 Bootloader build

 		
 5.6.2 (2022-10-31)

 		
 Bugfix

 		
 5.6.1 (2022-10-25)

 		
 Bugfix

 		
 5.6 (2022-10-23)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Bootloader

 		
 5.5 (2022-10-08)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 5.4.1 (2022-09-11)

 		
 Bugfix

 		
 5.4 (2022-09-10)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 5.3 (2022-07-30)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Documentation

 		
 5.2 (2022-07-08)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 5.1 (2022-05-17)

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 Bootloader build

 		
 5.0.1 (2022-04-25)

 		
 Bugfix

 		
 Hooks

 		
 5.0 (2022-04-15)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 Bootloader

 		
 Documentation

 		
 PyInstaller Core

 		
 Bootloader build

 		
 4.10 (2022-03-05)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 4.9 (2022-02-03)

 		
 Bugfix

 		
 Hooks

 		
 4.8 (2022-01-06)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 Bootloader build

 		
 4.7 (2021-11-10)

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 4.6 (2021-10-29)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 Bootloader

 		
 4.5.1 (2021-08-06)

 		
 Bugfix

 		
 4.5 (2021-08-01)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 Documentation

 		
 PyInstaller Core

 		
 Bootloader build

 		
 4.4 (2021-07-13)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 Documentation

 		
 Bootloader build

 		
 4.3 (2021-04-16)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 Documentation

 		
 PyInstaller Core

 		
 Breaking

 		
 4.2 (2021-01-13)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 PyInstaller Core

 		
 4.1 (2020-11-18)

 		
 Features

 		
 Bugfix

 		
 Hooks

 		
 Bootloader

 		
 Documentation

 		
 PyInstaller Core

 		
 Test-suite and Continuous Integration

 		
 Bootloader build

 		
 4.0 (2020-08-08)

 		
 Features

 		
 Bugfix

 		
 Incompatible Changes

 		
 Hooks

 		
 Bootloader

 		
 Documentation

 		
 PyInstaller Core

 		
 Bootloader build

 		
 Older Versions

 		
 Changelog for PyInstaller 3.0 – 3.6

 		
 Changelog for PyInstaller 2.x

 		
 Changelog for PyInstaller 1.x

 		
 Credits

 		
 Contributions to PyInstaller 5.8.0

 		
 Contributions to PyInstaller 5.7.0

 		
 Contributions to PyInstaller 5.6.2

 		
 Contributions to PyInstaller 5.6.1

 		
 Contributions to PyInstaller 5.6

 		
 Contributions to PyInstaller 5.5

 		
 Contributions to PyInstaller 5.4.1

 		
 Contributions to PyInstaller 5.4

 		
 Contributions to PyInstaller 5.3

 		
 Contributions to PyInstaller 5.2

 		
 Contributions to PyInstaller 5.1

 		
 Contributions to PyInstaller 5.0.1

 		
 Contributions to PyInstaller 5.0

 		
 Contributions to PyInstaller 4.10

 		
 Contributions to PyInstaller 4.9

 		
 Contributions to PyInstaller 4.8

 		
 Contributions to PyInstaller 4.7

 		
 Contributions to PyInstaller 4.6

 		
 Contributions to PyInstaller 4.5.1

 		
 Contributions to PyInstaller 4.5

 		
 Contributions to PyInstaller 4.4

 		
 Contributions to PyInstaller 4.3

 		
 Contributions to PyInstaller 4.2

 		
 Contributions to PyInstaller 4.1

 		
 Contributions to PyInstaller 4.0

 		
 Contributions to PyInstaller 3.6

 		
 Contributions to PyInstaller 3.5

 		
 Contributions to PyInstaller 3.4

 		
 Contributions to PyInstaller 3.3.1

 		
 Contributions to PyInstaller 3.3

 		
 Contributions to PyInstaller 3.2.1

 		
 Contributions to PyInstaller 3.2

 		
 Contributions to PyInstaller 3.1.1

 		
 Contributions to PyInstaller 3.1

 		
 Contributions to PyInstaller 3.0

 		
 Contributions to PyInstaller 2.1 and older

 		
 Man Pages

 		
 pyinstaller

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 ENVIRONMENT VARIABLES

 		
 SEE ALSO

 		
 pyi-makespec

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 ENVIRONMENT VARIABLES

 		
 SEE ALSO

 		
 Development Guide

 		
 Quickstart

 		
 New to GitHub or Git?

 		
 Coding conventions

 		
 Running the Test Suite

 		
 Guidelines for Commits

 		
 In Detail

 		
 Please Write Good Commit Messages

 		
 Content of the commit message

 		
 The first Line

 		
 The Commit-Message Body

 		
 Standard prefixes

 		
 Please set the correct Author

 		
 Further Reading

 		
 Credits

 		
 Improving and Building the Documentation

 		
 PyInstaller extensions

 		
 reStructuredText Cheat-sheet

 		
 Creating Pull-Requests

 		
 Example

 		
 Changelog Entries

 		
 pyenv and PyInstaller

 		
 PyInstaller’s Branch Model

_images/CArchive.png

_images/SE_exe.png

_static/SE_exe.png

_static/ZlibArchive.png
Comprassad pye B

Compraszad oy B

Comprassad pye B

[recinsman]
N

_images/ZlibArchive.png
Comprassad pye B

Compraszad oy B

Comprassad pye B

[recinsman]
N

_static/CArchive.png

_static/file.png

_static/pyinstaller-draft1a-100_trans.png

_static/minus.png

_static/plus.png

